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1 Introduction

Evaporation of water is an important phase transformation that appears in many guises
throughout everday life. Its effects range from processes intrinsically involved in the at-
mospheric water cycle, to the regulation of body temperature in hot environments, the
production of coffee ring stains beneath a spilt coffee droplet and to important processes
underlying microfluidics.

Although evaporation as a pure bulk phase transformation is well understood, when one
adds solutes to the liquid, or brings the liquid into contact with a substrate, we obtain a
new and rich variety of possible behaviours that we can access experimentally and analyse
theoretically.

A well known example of is the effect of combining a solute with evaporation is given
by the ‘tears of wine’ phenomenon [1],[2]. When one swills a glass of wine, a liquid film is
produced up the side of the glass above the bulk liquid. Alcohol evaporates more rapidly in
the film away from the bulk wine, and the film becomes depleted of alcohol. This depletion
decreases the surface concentration of the film relative to that of the bulk wine, leading
to a gradient in surface energy. This gradient causes a marangoni flow, drawing liquid up
into the film above the bulk wine. Eventually, enough liquid is drawn up into the film
that it becomes unstable to gravity and falls–like a tear of wine. Any gradient in surface
temperature or concentration will cause Marangoni flows, and thus marangoni flows can be
extremely important in the presence of phase transitions, particularly evaporation.

A second complexity is introduced by the addition of a substrate into the problem
[3]. Although the wetting of substrates has been well studied [4], there are still many
interesting phenomena associated with the evaporation of films that have only recently
received attention, such as the investigation of coffee ring formation by a sessile, particle–
laden droplet [5], the observations of a finite contact angle in an evaporating wetting film
[6], and of particular interest, the experiments of Du and Stone on evaporatively grown salt
trees [7].

Neufeld has recently performed a series of experiments observing the evaporation of a
sessile, salty droplet (private communication). Although simple in nature, the experiments
show several key features that we wish to understand (see Fig. 1). Namely:

• Overturning of liquid in the bulk
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• Salt crystal deposition in the bulk, initiating at the outer edge

• Formation of a thin, rough salt crystal film beyond the edge of the bulk droplet

• Continual growth of the outer limit of this thin salt film

  (1) (2)

(3) (4)

(5) (6)

Figure 1: Plan view of the evaporation of a 5µl droplet of saturated NH4Cl solution. Room
temperature is 22◦C and relative humidity is 42%. The images are shown at approximately
six minute intervals. (1) Just post commencement of the experiment: some salt is observed
at the edge of the droplet when evaporation is highest. (2) Precursor film growth observed
around droplet. (3) Some dendritic growth observed in the bulk droplet: these crystals
are effected by flow in the droplet. (4) Bulk liquid reduces in radius while precursor film
continues to spread. (5) Dewetting occurs at the centre of the droplet and hence bulk liquid
is no longer exposed to air. (6) Precursor film continues to grow and dewetted area covered
in growth similar in appearance to outlying precursor growth.

In this work, we will demonstrate the basic processes at work in the evaporation of a
salty droplet by way of simplified models and show that the above observations stem from
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the combined action of these processes. In this way, we will be able to understand the
processes important for the growth of evaporatively grown salt trees which we aim to study
in later work. For the current study, of most interest is the creation of the salt crystal under
and beyond the edge of the bulk droplet. Vapour transport of salt cannot account for the
deposition beyond the confines of the bulk droplet, so we ascribe the presence of the salt
to the evaporation of a thin film of liquid fed by Marangoni flow from the bulk droplet.
We will see that the growth of the salt–crystal from this film is subject to a new instability
associated with the development of supersaturation at the liquid–vapour boundary.

We describe the mechanism for this new instability as follows. A thin film of constant
salt concentration sits atop a planar salt crystal with which it is in equilibrium. The vapour
pressure in the surrounding atmosphere is reduced so that evaporation occurs from the
surface of the film and so that salt previously dissolved in the evaporated portion of liquid
is rejected into the surface layer of the film (salt having effectively zero partial pressure in
the vapour phase). This causes supersaturation at the liquid–vapour interface that diffuses
towards the solid–liquid interface. In this manner, salt will be transported from the liquid–
vapour interface to deposit upon the salt crystal. However, as the salt crystal will be growing
into an increasing supersaturation, the interface will be unstable to small perturbations.

In many aspects, this salt precipitation is similar to the unstable solidification front of
a salt freezing from a binary alloy [8]. For comparison, we briefly review the theory of
constitutional supercooling.

Imagine a pure, planar salt crystal, growing from a binary alloy (water and salt). We
set the far field composition and temperature of the alloy to be c∞ and T∞ respectively,
and assume that the liquidus relationship between concentration c and temperature T is
approximately linear so that

TL(c) = mc + T0. (1)

Then TL(c∞) < T∞ so that the far field liquid is not supercooled. Also, the temperature
at the solid–liquid interface Ti < T∞ is such that the solid is in equilibrium with the
surrounding liquid so that we must have Ti = TL(ci).

Now, in front of the advancing salt front, water must be being rejected so that ci < c∞.
Thus we will see solutal and thermal boundary layers in front of the advancing front, across
which the salt and temperature respectively will vary between their interface and far field
values. The diffusivity of heat κ is much larger than the diffusivity of salt in water Ds,
and so the thermal boundary layer will be thicker than the solutal boundary layer. If we
translate the solutal concentration into the equilibrium liquidus temperature in the liquid
from Eq.(1), we then see (Fig. 2) that this implies that there will be a region directly ahead
of the advancing solid front where the liquid is at a temperature below the liquidus if

∂T

∂z
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∣

∣

∣
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∂c
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∣

∣

∣

∣

sl

. (2)

This ‘constitutional supercooling’ is produced by rejection of solvent in front of the solid-
ification front, and it is well known that the front is unstable to small perturbations [9]
leading to dendritic growth as has been observed experimentally, for example in the case of
ammonium chloride, by Huppert [10].

Therefore in both situations, we produce salt from a binary alloy of salt and water.
Also in both cases, there is a local increase of the free energy of the system above the
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Figure 2: Diagram demonstrating the origin of constitutional supercooling at the salt–liquid
interface (cf principle lectures by MGW for added details).
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Figure 3: Close up of salt dendrites at the surface of a mushy layer advancing into ammo-
nium chloride solution [10].

equilibrium value (supersaturation/supercooling) which drives the salt–liquid interface to
become unstable. One final similarity is that in both situations convection can occur due to
density differences associated with gradients in temperature and concentration. However,
the key difference lies in the fact that constitutional supercooling is caused by water rejection
at the salt crystal boundary, and is always immediately relieved by immediate solidification
upon the salt crystal. However in the evaporative case, supersaturation is produced at some
distance, namely the film thickness, away from the deposited salt crystal and therefore leads
to differing growth behaviour and the possibility of homogeneous nucleation of salt at the
liquid–vapour interface for rapid enough evaporation rates. The simple observation that
the crystal forms produced by both processes vary significantly (Fig. 3) tells us that this
difference is important in determining growth characteristics, and thus worthy of study.

2 Model of an evaporating film

In order to wade through the mire of ccompeting processes involved in producing the com-
plex patterns seen experimentally, we begin by considering a simple modelconsisting of a
planar salt interface, covered with a film of uniform thickness d In this manner we can
systematically study the most important physical mechanisms at play. We can control
the water vapour pressure P∞ in the surrounding atmosphere and so initially we choose a
vapour pressure such that the water in the film is in equilibrium with the water vapour and
the film has uniform concentration cL in equilibrium with the underlying salt crystal. We
then reduce P∞ so evaporation occurs at the liquid–vapour interface at a rate E where E
is measured in volume per second per unit area of surface.

At this point it is useful to make explicit the assumptions that we make in order that
we may justify them later:

• Because of the disparity between solutal and thermal diffusivities, thermal effects are
neglected in the dynamics of the system.
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Figure 4: Schematic diagram for the evaporation of a film of salty liquid

• The film is of uniform thickness, and vapour pressure over the film is constant so that
there is no marangoni flow feeding the film,

• The salt concentration is sufficiently low that the advection–diffusion equations hold,

• The addition of salt to a volume of liquid does not change the volume: ρl(c) =const.

Therefore we have a film as shown in Fig.(4), in the frame of reference of the liquid–
vapour interface. In the liquid, the concentration of the salt satisfies the diffusion–advection
equation, so that we have

∂c

∂t
− E

∂c

∂z
= Ds∇2c, (3)

which we can nondimensionalise by scaling times with d0/E and lengths with d0, where d0

is the initial thickness of the quasi–stationary film, to give

Pe

[

∂c

∂t̃
− ∂c

∂z̃

]

= ∇̃2c, (4)

where nondimensional variables are denoted by a tilde, and the effective Peclet number
Pe = d0E/Ds is the ratio of evaporation to diffusion rates. A natural starting point in
the analysis of the phenomenon is therefore to select a small Peclet number by choosing
a slow evaporation rate (or sufficiently small film). We will then use a quasi–stationary
approximation so that d ≈ d0 throughout the analysis.
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As boundary conditions for the problem, there are several natural conditions arising
from the formulation. These consist of equilibrium at the solid–liquid interface

c|sl = cL + CKsl, (5)

conservation of salt at the solid–liquid interface

Ds
∂c

∂z

∣

∣

∣

∣

sl

= (V + ḣ)csalt, (6)

thinning of the film
ḋ = −E, (7)

and conservation of salt at the liquid–vapour interface

Ds
∂c

∂z

∣

∣

∣

∣

lv

= EcT , (8)

where we define Ksl to be the curvature of the solid–liquid interface, C to be the Gibbs–
Thomson coefficient for the equilibrium salt concentration (see Appendix A), V is the growth
velocity of the salt crystal, h is the height of the crystal surface, and cT and csalt are the
salt concentrations at the liquid–vapour interface and in the salt crystal respectively.

We will require one more boundary condition to complete the set of equations, and this
will come from the relationship between the evaporation rate E, the concentration at the
liquid–vapour interface cT and far field vapour pressure P∞. The evaporation rate will
depend upon the dynamics of the vapour, in that the transport of water vapour from the
interface will be determined by the water vapour gradient at the liquid–vapour interface

Dw
∂Pwv

∂z

∣

∣

∣

∣

lv

= E, (9)

where Dw is the diffusivity of water vapour in air and Pwv is the local water vapour pressure.
Therefore to obtain the water vapour pressure profile for a steady diffusion of vapour in a
background of air, we must solve Laplace’s equation in the vapour with boundary conditions
p(∞) = P∞ and

Plv = P0(1 − cT ), (10)

where P0 is the vapour pressure at pure equilibrium, and cT is the concentration of salt
at the film surface (see Appendix B). For pure evaporation, these boundary conditions
reduce to constant values at the surface of the droplet and in the far field, and so good
approximations to the evaporation rate can be made by assuming simple geometries for
the droplet [5],[11]. For fast evaporation rates, there is a jump in vapour pressure from the
equilibrium vapour pressure, given by Eq.(10) that will be controlled by the Hertz–Knudsen
relationship, which written as the boundary conditions will add some detail to the form of
the flow. However in this paper, since E is an experimentally controllable parameter, we
will assume constant evaporation rate.

For small Peclet number, the diffusion–advection equation reduces to Laplace’s equation,
and so the solutal field in the film for planar growth is given by

c ≈ (cT − cL)
z

d
+ cL. (11)
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Applying boundary condition (8) gives

cT =
cL

1 − Pe
(12)

and so the rate of growth of the solid is given by

V = E
cT

csalt
. (13)

This agrees with our intuition, because for the small Peclet number limit, information
is diffused rapidly across the film, and so we expect evaporation to occur simultaneously
with salt precipitation. Equation (13) demonstrates that if we evaporate a layer of water
of thickness δd, simultaneously an amount of salt equivalent to the salt dissolved in δd is
precipitated corresponding to instantaneous diffusion.

We are now in a position to conduct a quasi–stationary linear stability analysis of the
film. In the film, there is a slow time dependence of the basic state given by O(ċ/cL) ∼
PeE/d. We will impose a perturbation upon the solid–liquid interface which will grow on
a faster timescale (that we can check a posteriori). Therefore we designate slow and fast
timescales as (PeE/d)t = t∗ and (E/d)t = τ respectively so that

∂

∂t
=

∂

∂t∗
+

∂

∂τ
.

We label the linear, quasi-stationary state given by Equation (11) as c0(z, t∗), and impose
a dimensionaless perturbation with a fast timescale upon the solid–liquid interface

h = h̃eikx̃+στ . (14)

We assume a form
c(z̃, τ, t∗) = c0(z, t∗) + c̃(z̃, t∗)eikx̃+στ . (15)

Then the diffusion advection equation (3) in the frame of reference of the solid–liquid
interface becomes

Pe2 ∂

∂t∗

(

c0 + c̃eikx̃+στ
)

+ Peσc̃eikx̃+στ =
∂2c0

∂z̃2
+

[

∂2c̃

∂z̃2
− k2c̃

]

eikx̃+στ , (16)

which in the small Peclet number limit, reduces to

∂2c̃

∂z̃2
− k2c̃ = 0, (17)

and has solution
c̃ = A sinh kz̃ + B cosh kz̃. (18)

Applying boundary conditions in the small Peclet number limit, we obtain

A = −h̃ tanh kd

[C
d
k2 + Pe

cL

1 − Pe

]

and

B = h̃

[C
d
k2 + Pe

cL

1 − Pe

]

,
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Table 1: Table of typical values for the ammonium chloride/water system at T = 20◦C

Constant Value Units

cL 27.2 wt%
γsl 5 × 10−2 Jm−2

µ 1.787 × 10−3 kg m−1 s−1

R 8.314 JK−1 mol−1

m 4.79 Kwt%−1

Ds 10−9 m2 s−1

∂γ
∂c 4 × 10−4 kg s−2 wt%−1

ρs 5.6×104 molm−3

C −7 × 10−9 wt%m
E 10−7 ms−1

so that applying the Equation (6) for the conservation of salt at the solid–liquid interface,
we find the dimensional dispersion relationship

σ =
1

csalt
k tanhkd

[

EcL + DsCk2
]

. (19)

For relatively short wavelengths, we can approximate this as

σ =
k

100
[EcL + DsCk2], (20)

as is plotted in Fig.(5).
Using typical values from Table (1), we find from Eq.(20) that the cutoff wavenumber

kc = 6.2 × 105m−1, so that the small wavelength approximation is justified. The maximum
growth rate can also be derived from Eq.(20), and we find that kmax = 3.57 × 105m−1 and
σmax = 6.4×10−3s−1 corresponding to a time period of around 3 hours. For this instability
to be relevant, we require that the growth rate be faster than the rate of thinning of the
film, so that E/d < σmax and we find that d > 1.5 × 10−5m. Therefore we expect that in
the precursor film (typically around a micron thick), with these conditions, the instability
will not have time to develop, unless there is a flow of liquid in to replace evaporated
material. We must also remember that for a sufficiently thin film such as the precursor film,
electrostatic forces will retard the evaporation rate of the film, and so for a full treatment,
we will need to include these effects.

We note that for E ∼ 10−7ms−1, the Peclet number is d× 102, and so for most natural
situations, the Peclet number will be reasonably small. We also note that when the film
is sufficiently thick, convection of the film will set in due to the increase in density at the
surface of the film, and the stationary approximation of the liquid in the film will no longer
be valid.
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Figure 5: Plot of growth rate against wavenumber for small Peclet number.
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3 Large Peclet number

When the evaporation rate is sufficiently high, or the film is sufficiently thick, the rate of
diffusion of salt across the film becomes small relative to the thinning rate of the film. This
means that there will be a solutal boundary layer at the liquid–vapour interface with on
some time scale, the salt–liquid interface unaware of the presence of evaporation at the
upper surface.

Therefore, in the frame of reference of the liquid–vapour interface, the diffusion–advection
equation for salt concentration becomes

∂c

∂t
− E

∂c

∂z
= d

∂2c

∂z2
, (21)

so that before the diffusive information reaches the salt–liquid interface, the profile will
satisfy the time independent form of Eq.(21) so that

c = cL + (cT − cL)





e
E(z+d)

Ds − 1

e
dE

Ds − 1



 . (22)

Applying Eq.(6) for the conservation of mass at the liquid-vapour interface, we find that

cT = cLePe (23)

which, we note gives the same result as for the small Peclet number case (Eq.(12)) when
we take the small Peclet number limit of this expression. From this expression, we notice
that the surface value of the salt concentration in the film will increase very rapidly with
Peclet number. Therefore, there will be some value of the Peclet number above which
the concentration at the liquid–vapour interface is sufficiently high to cause homogeneous
nucleation.

In order to estimate the critical Peclet number above which homogeneous nucleation
will occur, we need to calculate the energy required to create a critical nucleus of salt from
solution.

The free energy change associated with creating a nucleus of radius r of salt from salt
solution is

∆G = γsl4πr2 + [µs(T, Ps) − µl(T, Pl, c)]
4

3
πr3, (24)

where the first term on the right hand side stems from the energy change required to create
a solid–liquid surface between the two phases, and the second term is the change in free
energy associated with the change of phase.

Expanding the chemical potentials of the two phases about equilibrium, we have

µs(T, Ps) − µ(T, Pl, c) = −RT ln(c/cL), (25)

and therefore

∆G = γsl4πr2 − RT ln(c/cL)
4

3
πr3. (26)
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As can be seen, this free energy change has a maximum at r = r∗, so that if r < r∗,
the nucleus will shrink to zero and if r > r∗, the nucleus will diverge and homogeneous
nucleation occurs. The critical energy is therefore

∆G(r∗) =
16πγ3

sl

ρ2R2T 2 ln(c/cL)
. (27)

For homogeneous nucleation to occur, the thermal fluctuations in the film must be large
relative to the critical free energy of nucleation. This means that the Gibbs number g =
∆G(r∗)/kT must be smaller than O(100) for nucleation to occur [12] (note that this estimate
will depend upon the nature of the system). Approximating c/cL = ePe from Eq.(23), we
thus obtain that

Pe ≤ 1 (28)

for no homogeneous nucleation, and so the large Peclet number case is unviable.
We note that for intermediate Peclet number, we cannot treat the profile as quasi–

stationary, and so a full treatment of the instability will require a numerical evaluation of
the instability from the initial conditions, or otherwise a modified model. One possibility
would be to assume a flow perpendicular to the plane of the instability that maintains the
film at constant thickness. This model may be applicable to the case of the precursor film.

Finally, we note that for a thick enough film, there is the possibility of convection in the
the film due to the salty cold liquid overlying hot, fresh liquid. As previously mentioned,
we expect the thermal effect to be small relative to the solutal effect due to the high
thermal diffusivity relative to solutal diffusivity in the system. In order to estimate the
film thickness at which Rayleigh–Benard convection sets in, we approximate the system
by Ralyeigh–Benard convection with a solid base and an open top. Letting the critical
Rayleigh number be Rac ≈ 1000, and taking the small Peclet number limit (which holds up
to films of the order of 1mm thick), we find that [13]

Rac =
βgd3(cT − cL)

Dsν
≈ 1100 (29)

where all the symbols take their standard meanings. Thus we expect Rayleigh Benard
convection to set in when d ≈ 2mm.

4 Flow in a thin film

Consider a droplet of salt solution evaporating on an infinite planar substrate. Evaporation
is driven by the far–field vapour pressure below the equilibrium vapour pressure of the film.
Towards the edge of the droplet, the liquid film is exposed to the drier air above the adjacent
dry substrate, while in the centre of the droplet, the ambient air is more moist due to the
homogeneity of the environment more than a diffusion length from the edge. This means
that the evaporation rate will change from the centre to the edge of the film, and hence
there will be a gradient in salinity along the surface of the film and an associated marangoni
flow.

The Marangoni effect is a well known process whereby gradients in surfactant concen-
tration in liquids cause associated gradients in surface tension. These gradients then drive
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a flow from regions of low surface tension to regions of high surface tension. Unlike for most
solutes, where the Marangoni coefficient, or gradient in surface tension associated with a
change in solute is negative, for ionic salts such as ammonium chloride and sodium chloride,
the surface tension gradient,

∂γlv

∂c
≈ 4 × 10−4Jm−2 wt%−1 (30)

is positive [14]. This means that as the evaporation rate, and hence the salinity, increases
towards the edge of the film, we will see an outwards marangoni flow associated with the
salinity gradient. We can analyse the flow in order to determine the volume flow rate, and
the possibility of this flow as a volume source for precursor film growth.

Assuming that the film is thin enough that we can use lubrication theory, when we
incorporate the marangoni flow, the equation of conservation of solute (3) becomes

∂c

∂t
− V

∂c

∂z
+ z

τ

µ

∂c

∂x
= Ds

∂2c

∂z2
+ Ds

∂2c

∂x2
, (31)

where µ is the dynamic viscosity of water and

τ =
∂γlv

∂c

∂c

∂x
(32)

is the surface stress, and in order to simplify the model, we will assume that the the liquid
is a planar film of constant thickness d, and that the surface concentration is linear in x
[15], which is equivalent to the assumption that the vapour pressure is linear in x (Fig. 6).

We would like to investigate whether adding a linear surface concentration gradient will
significantly vary the concentration profile in the film. Therefore, we will consider the small
Peclet number case in the instance that the surface concentration is given by

cT = c0 + Gx. (33)

By imposing this concentration profile, we have also imposed a horizontal lengthscale upon
the problem given by (cO − cL)/G, which we will assume is large relative to d so that we
can reduce equation (31) to

z
τ

µ

∂c

∂x
= Ds

∂2c

∂z2
,

and so upon non–dimensionalisation of lengths with d, and concentrations such that c =
(c0 − cL)c̃ + cL, the governing equations become

z̃F
∂c̃

∂x̃
=

∂2c̃

∂z̃2
, (34)

with
c̃(0) = 0, (35)

and
c̃(d) = 1 + δx̃, (36)
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Figure 6: Schematic diagram for a marangoni film in a thin film.
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where F = τd2/µDs is the ratio of the diffusive response time to the viscous response time
over the film and we have required δ = Gd/(c0 − cL) ≈ GDs to be small as previously
mentioned. Estimating c0 − cL = p from the small Peclet number, this implies that for
typical evaporation rates, G � 2700wt%m−1, which will be satisfied over all but the very
edges of the droplet (see Appendix C).

We proceed by seeking a separable solution to the equations, by setting (dropping tildes)
c(x, z) = X(x)Z(z) so that

F
X ′

X
= λ =

Z ′′

Zz
, (37)

where λ is a constant. Thus we see that

X = Ae
λx

F ,

which for small values of the exponent becomes

X = A

(

1 +
λx

F

)

which is of the right form to match Eq. (36) if we set λ/F = δ, so that our assumption of
a small exponent value is appropriate for δx � 1.

Thus we see that

Z ′′ − d3τG

µDs(c0 − cI)
zZ,

and by letting z = αζ, with

α =

(

µDs(c0 − cI)

d3τG

)
1
3

,

the Z equation reduces to Airy’s Equation

Z ′′(ζ) − Z(ζ)ζ = 0. (38)

Therefore we find the dimensional solution to the concentration profile to be

c = cI + (c0 − cI)

[

Bi
(

z
αd

)

Ai(0) − Ai
(

z
αd

)

Bi(0)

Bi
(

1

α

)

Ai(0) − Ai
(

1

α

)

Bi(0)

]

e
Gx

(c0−cI ) (39)

= cI + (c0 − cI)f(z)e
Gx

(c0−cI )

Thus we see that the relative importance of the Marangoni flow is given by the size of the
parameter α: when α is large, we can Taylor expand Eq. (39) to see that

c ≈ cI + (c0 − cI)
z

d
e

Gx

(c0−cI ) ≈ cI + (c0 − cI + Gx)
z

d

so that we may effectively ignore the horizontal flow, and treat the concentration profile
as linear. However, when α is sufficiently small, the solution can deviate from the linear
solution.
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c(z)

z

Figure 7: f(x) calculated for α = 1, 10. To good approximation c = z/d for α > 1.

In Appendix C, we treat the question of the value of G for an evaporating droplet,
from which we obtain a reasonable upper estimate for G near the edge of the droplet of
2.7 × 103wt%m−1. For films in the small Peclet number limit, this implies α � 1 except
within 2d of the edge of the droplet where geometry dependent factors will be important.
Therefore there will be no significant alteration to the linear profile across the bulk of the
film (cf Fig. 7).

5 Linear stability of a film including marangoni flow

In the previous section, we investigated the concentration profile for a film with a con-
centration gradient applied to the upper surface giving rise to a Marangoni flow. As has
been seen previously, the underlying salt–crystal growth is diffusively unstable, and so the
solid–liquid boundary will become corrguated. When we include a Marangoni flow with the
perturbation, we expect the perturbation to move upstream because the flow will compress
the solutal boundary layer on the upstream side, and thus promote growth in that direction.
We can analyse this effect as follows.

From the previous section we saw that the steady state solutal profile for small Peclet
number can be closely approximated by

c = cL + (c0 − cL)
z

d
e

Gx

(c0−cL) , (40)

for Gx/(c0 − cL) � 1. Hence we will use the linear approximation throughout.
Assuming that we are in the lubrication limit and that any perturbations are long

wavelength, the non–dimensional governing equations are the same as previously (Eqns.
34-36). Therefore the steady state can be taken as that given in Eqn. (40).
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If we apply a perturbation of the form

z = h̃eikx̃+σt

to the solid–liquid interface (where we do not expect σ to be real), then c̃ = c0(x̃, z̃) +
c̄(z̃)exp(ikx̃ + σt), where c0 is the steady state solution. Neglecting the Gibbs–Thomson
effect, and dropping tildes we find that

ikF c̄ = c̄′′, (41)

and we can convert this to Airy’s equation by transforming

z = i

(

1

kF

)
1
3

ζ ≡ iβζ.

Thus

c̄ = −h̃





Ai
(

z
iβ

)

Bi
(

1

iβ

)

− Ai
(

1

iβ

)

Bi
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)
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 , (42)

and by applying the boundary condition for conservation of salt (Eqn. 6), we obtain the
dispersion relation for the system

σ =
iDs

βd2

(

cL − c0

1 − cL

)





Ai′(0)Bi
(

1

iβ

)

− Ai
(

1

iβ

)

Bi′(0)

Ai(0)Bi
(

1

iβ

)

− Ai
(

1

iβ

)

Bi(0)



 . (43)

Figure 8 shows the imaginary part of σ, as a function of β. As expected, the velocity
of the travelling waves disappears for small k (large β), and we see that σ is significant
relative to the timescale V/d associated with the growth of the salt for β < 1. From
the previous linear stability analysis, we found that the most unstable wavenumber was
kmax ≈ 3.57 × 105d, which corresponds to β = (1.2 × 10−14/d3G)1/3 and therefore we see
from the appendix estimates of G that the travelling velocity of the waves may be significant
for sufficiently thick films.

It should be mentioned that this is only a longwave analysis of the problem, and for k
small, the entire Laplacian must be considered in Eq. (34). This will also reintroduce the
instability considered in the first linear stability analysis. However this analysis should give
a good indication of the relative size of the travelling wave velocity.

6 Volume flow rate due to Marangoni flows

We are interested in whether the gradient in surface concentration across a droplet is suffi-
cient to act as a source for precursor film growth. From the Appendix, we have that

∂cT

∂r
=

2cIdDv(PI − P∞)

πDPa

r

(R2 − r2)
3
2

.
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σ

Figure 8: Im(σ) from the dispersion relation for the travelling wave instability in terms of
β.

and from lubrication theory, the volumetric flow rate is

∫ d

0

z
∂γ

∂c

∂c

∂r

1

µ
dz =

d2

2µ

∂γ

∂c

∂c

∂r
.

so that the flow rate is given by

q =
cId

3Dv(PI − P∞)

πµDPa

∂γ

∂c

r

(R2 − r2)
3
2

. (44)

As discussed in the Appendix, we will ignore the region at the edge of the droplet, as there
will be local shape complications there that will effect the expression for cT . In order to
avoid this, we calculate q at a distance d from the edge of the droplet, to find that for
R = 1cm, d = 10−6 that q(R− d) ≈ 3.4d or 1.2cm hr−1 which is in line with typical growth
rates of the film.

It should be noted that there are only sufficiently large concentration gradients to main-
tain this flow rate near to the edge of the film. However away from the edge, decreases in
curvature associated with the Marangoni flow should draw fluid outwards to help maintain
the source of liquid to the edge.

7 Conclusions

In this work, we have considered the processes involved with the growth of salt from an ses-
sile, salty, evaporating droplet. The chief result is that we have demonstrated the existence
of a new instability of the growing salt crystal due to evaporation at the liquid–vapour

221



interface. The instability stems from the creation of supersaturation at the evaporating
interface, which diffuses through the film to the growing salt crystal. Hence the salt crystal
grows into an increasing supersaturation and the interface will be unstable. The instability
differs from the morphological instability of a binary alloy [8] in that in the new instability,
the creation of supersaturation is created at some distance away from the advancing salt
front. Whereas with morphological instability, the supersaturation is caused by rejection of
solvent immediately adjacent to the salt front.

We find that for typical evaporation rates, the instability will be important for films of
thickness d > 1.5 × 10−5m. For sufficiently thick films (d ∼ O(1mm) ), convection will set
in and the formulation becomes invalid. Marangoni convection may also be important, as
well as thermal effects, howeverthese are expected to be small relative to the solutal effects.

For a growing droplet, there will exist gradients in surface tension associated with the
gradient in evaporation rate across the liquid–vapour interface. Associated with these gra-
dients in surface tension there will be a Marangoni flow that drives liquid outwards, feeding
the precursor film observed in experiments. We have analysed the effect of the Maragoni
flow on solutal profile in the small Peclet number regime (relevant for typical film thick-
nesses), and find that there will be no significant alteration to the solutal profile across the
film except in the tip region, where geometry effects are expected to be important.

We have also analysed the effect of the Marangoni flow upon corrugation of the salt
surface. We find that the flow induced compression of the upstream boundary layer of the
surface roughness causes increased solid growth thereby creating an upstream travelling
solid/liquid wave. The calculated travelling wave velocity suggests that the process will
be operative in sufficiently thick films. Finally an estimate of the overall flow rate due
to Marangoni flow in a precursor film shows that the flow is sufficient to cause observed
spreading rates of the precursor film.

As noted in the text, numerical work is necessary to properly analyse the intermediate
Peclet number case and solutal convection, and we hope to achieve these in further studies.
For the future, we aim to produce a more complete model of the precursor film including
electrostatic double layer forces and van der Waals forces and to extend the results from the
current work to produce a more complete model of the processes involved in salty droplet
evaporation and salt tree formation.
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9 Appendix A: Derivation of the Gibbs–Thomson co–efficient

C

In order to obtain an approximation for C, the dependence of the equilibrium salt concen-
tration at an interface upon curvature, we start with the liquidus relationship at a curved
surface including solute:

T = Tm − m(1 − c) +
γslTm

Lf
K (45)

where Tm is the melting temperature of a pure liquid salt, m is the slope of the liquidus,
γsl is the surface energy of the liquid–salt interface and Lf is the heat of solution of the
salt. We note that we have assumed that the curvature term is independent of solution
concentration, so the resulting expression will not be exact.

Rearranging, we obtain

c = 1 − Tm − T

m
− γslTm

mLf
K (46)

we we recognise as
c = cL(T ) + CK (47)

where cL(T ) is the liquidus concentration, so that we find

C = −γslTm

mLf
. (48)

Taking typical values of the constants, Lf = 4 × 108Jm−3, Tm = 273K and γsl = 5 ×
10−2Jm−2, we find that C ∼ −7 × 10−9wt%m.

10 Appendix B: Equilibrium vapour pressure and surface

concentration

We consider the effect upon equilibrium vapour pressure of adding salt to a liquid. In
equilibrium, the chemical potentials of the two phases are equal:

µl(T, P, c) = µv(T, P ), (49)

where the subscripts correspond to liquid and vapour respectively and we have assumed the
vapour pressure of salt to be zero.

Expanding the chemical potentials about pure equilibrium at temperature T and vapour
pressure P0, and using the Gibbs–Duhem equation [Wood Battino],

µl(T, P0) + υl(P − P0) − kTc = µv(T, P0) + υv(P − P0), (50)

where υl � υv are the volumes per mole of each phase, so that using

µl(T, P0) = µv(T, P0), (51)

we obtain

P − P0 = −kT

υv
c, (52)

which for an ideal gas becomes
P = P0(1 − c). (53)
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11 Appendix C: Estimating the magnitude of G

For a realistic experiment, the controllable factors are the temperature T , the initial salinity
of the droplet, the initial volume of the droplet and the far field water vapour pressure P∞.
Therefore there will be a variation in local vapour pressure at the surface of the droplet
which is determined by local equilibrium with the droplet and diffusion in the vapour.

Assuming that the vapour is stagnant above the droplet so that vapour transport occurs
by diffusion alone, then the vapour pressure will satisfy Laplace’s equation

∇2P = 0. (54)

A number of studies [11],[5] have modelled the evaporation rates of a pure droplet by
treating the vapour diffusion problem identically to an electrostatic problem. Poulard et
al. assumed that the droplet is effectively a flat disc, which is appropriate for fluids with
small contact angles to the substrate, while Deegan et al achieved a more accurate result
by considering the electrostatic field associated with a lens. As we require an estimate only,
we will assume the evaporation rate matchs that for a disc held at constant surface vapour
pressure so that the evaporation rate is approximately

E ≈ 2Dv(PI − P∞)

πPa

1√
R2 − r2

(55)

where Dv is the diffusion rate of water vapour in the air, Pa is atmospheric pressure, PI is
the vapour pressure for a droplet in equilibrium with the vapour, r is the radial coordinate
for the disc, and R is the radius of the disc.

Although in deriving the evaporation rate, we have assumed a constant vapour pressure
(and hence constant surface concentration which is only an approximation), this should
provide us with a reasonable approximation for the local surface vapour pressure.

We will now convert the local evaporation rate into the surface concentration csurf

as follows. Using the boundary condition for conservation of mass at the liquid–vapour
interface,

Ds
∂c

∂z

∣

∣

∣

∣

z=d

= EcT , (56)

and using the approximations

cT = cL and
∂c

∂z
=

cT − cL

d
, (57)

we find that

E =
Ds

d

(

cT − cL

cL

)

(58)

and so

cT − cL =
2cIdDv(PI − P∞)

πDsPa

1√
R2 − r2

so that
∂cT

∂r
=

2cIdDv(PI − P∞)
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r

(R2 − r2)
3
2

.
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As we expect there to be shape determined complications at the edge of the droplet we
take r = R − d to obtain an upper limit upon C, and r = 0 for a lower limit. Therefore,
for a 6% difference in relative humidity so that (PI − P∞)/Pa ≈ 1.8 × 10−3, and letting
d = 10−6m, we find that a reasonable approximation for G is that it will vary from 0 to
2.7 × 103wt%m−1 across the droplet.
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