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Abstract

A solidification front advancing into a binary melt is often preceded by a mushy
layer of fine dendritic crystals in thermodynamic equilibrium with solutal liquid in
the interstices. One of the most striking features of such directional solidification —
and most undesirable in industrial contexts — is the formation of vertical channels
of zero solid fraction in the mushy layer. These “chimneys” are believed to form as a
consequence of coupling between dissolution, solidification and compositional convection
within the mush.

In this work, we extend the weakly nonlinear analysis of previous studies to the case
of a continuous horizontal planform, in an effort to understand better the structure
and spatial distribution of chimneys in a mushy layer. The relevent pattern equation is
derived and has the form of a Swift-Hohenberg equation with an additional quadratic
term. We show that this quadratic term is only present for the case of a hexagonal
array of rolls and breaks the symmetry between up-flow and down-flow at the center
of hexagons. Such symmetry-breaking is ultimately rooted in the non-Boussinesq solid-
fraction dependence of the permeability within the mushy layer. Finally, we show that in
a periodic domain the pattern equation exhibits localized structures which we interpret
as nascent chimneys.

”Work is the curse of the drinking classes.” -Oscar Wilde

”One of us has to go.” -Oscar Wilde (last words, attrib.)

”Press On!” -EAS

1 Introduction

A mushy layer can be thought of as the means by which a solidification front adjusts
to constitutional supercooling in a two-component melt. The mush itself is a forest of
dendritic crystals – generated via morphalogical instability of the solid–liquid interface –
in thermodynamic equilibrium with solutal liquid in the interstices. It can also be thought
of as a reactive porous medium in which the solid fraction, and hence the permeability, is
dynamically coupled to the flow. Mushy layers are found in a wide variety of situations in
nature and industry: large alloy castings, sea ice, lava lakes and Earth’s inner-core boundary
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are a few examples. For an overview of mushy layers and other issues in solidification theory,
see Davis [1].

One of the most compelling features of mushy layers, and most undesirable in the context
of industrial applications, is the formation of ”chimneys” — quasi-vertical channels of zero
solid fraction from which solute-poor residual liquid is expelled from the mush into the
adjacent liquid region [2]. Such chimneys manifest themselves as ”brine channels” in sea
ice and are believed to give rise to ”freckles” in alloy casting and geological formations.

Weakly nonlinear analysis of a simplified model of convection in a mushy layer was
first carried out by Amberg & Homsy ([3]; hereafter AH93) and Anderson & Worster ([4];
hereafter AW95). In both of these treatments a discrete planform was assumed — three
rolls of different amplitude were superimposed at 120 degrees to one another. In AW95 the
relative stability of rolls (one non-zero amplitude), hexagons (three equal amplitudes) and
mixed modes (three finite amplitudes, two equal) was calculated and it was concluded that
there exists a transcritical bifurcation to hexagons.

AW95 also indicated the presence of a Hopf bifurcation, giving rise to an oscillatory
instability examined in more detail in a later paper [5]. In constrast to an oscillatory
instability detected earlier by Chen, Lu and Yang [6], and which owed its origin to double-
diffusive convection in the liquid above, the instability of Anderson & Worster [5] is due to
physical interactions internal to the mush itself. A number of authors have developed the
theory of these oscillatory modes [7, 8, 9]. In this work, we shall focus attention on the
direct mode, leaving its extension to the oscillatory case a subject for future research.

In this work we ask the following question: what determines the structure and spatial
distribution of the chimneys? This article proceeds as follows: we briefly review the formu-
lation of AH93 and AW95 in section 2 and the linear theory of Anderson & Worster [5] in
section 3. In section 4 we extend the weakly nonlinear analysis of AW95 to the case of a
continuous horizontal planform and derive the relevant pattern equation. In section 5, we
calculate explicit expressions for the coefficients appearing in the pattern equation in terms
of the physical parameters of the sytem for the near-marginal case of an infinitesimally thin
band of wavenumbers centred on the critical value. We show in section 6 that the general,
stationary pattern equation possesses solutions with localized structure and interpret these
as nascent chimneys. Finally, in section 7 we discuss our results.

2 Formulation

We outline here the formulation of AH93 and subsequent studies [4, 5, 7, 8, 9, 10, 11], as
depicted in fig.(1). The mush is modelled as a single porous layer sandwiched between liquid
above and solid below. For mathematical expedience we prescribe a constant solidification
speed V and assume that the mush is dynamically decoupled from both the liquid and
the solid. These and subsequent assumptions are considered in detail in the references
cited above and will not be discussed further here. It is sufficient to note that, while
the assumptions simplify the analysis considerably, they preserve the essential physical
interactions of interest.

It is assumed that, within the mushy layer, interstitial liquid is in thermodynamic equi-
librium with fine-grained dendritic crystals, so that the temperature and solute fields are
coupled via a liquidus relation
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Figure 1: The model system. A solidification front advances into a binary alloy at a rate
V . A mushy layer of thickness d is sandwiched between the two regions and advances with
the front. The solid is at the eutectic temperature TE and solid composition CS ; the liquid
region is at the far-field composition C0 and associated liquidus temperature TL (C0). See
text and references for further discussion.

T = TL (C) . (1)

The far-field composition C0 and temperature T∞ are taken to be above the eutectic compo-
sition (C0 > CE), and above the far-field liquidus temperature (T∞ > TL (C0)), respectively.
The temperature field T , solid fraction φ, fluid velocity u and pressure p within the mushy
layer are then governed by equations describing heat balance, solute balance, Darcy’s law
for flow in a porous medium, and mass continuity; the non-dimensional ideal mushy layer
equations in a reference frame moving with the solidification front are given by Worster [12]
as

(∂t − ∂z) (θ − Sφ) + u · ∇θ = ∇2θ, (2)

(∂t − ∂z) ((1 − φ) θ + Cφ) + u · ∇θ = 0, (3)

K (φ)u = −∇p − Raθẑ, (4)

∇ · u = 0. (5)

The non-dimensional temperature field (or, via the liquidus relation (1), the composi-
tional field) is

θ =
T − TL (C0)

TL (C0) − TE
=

C − C0

C0 − CE
, (6)
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Symbol Physical Quantity Symbol Physical Quantity

L Latent heat β Expansion coefficient

cl Specific heat g Gravitational acceleration

TE Eutectic temperature Π (0) Permeability at zero solid-fraction

T∞ Far-field temperature κ Thermal diffusivity

CE Eutectic composition ν Kinematic viscosity

C0 Far-field composition d Mushy layer thickness

CS Solid composition V Speed of solidification front

Table 1: Physical quantities appearing in the dimensionless parameters S, C and Ra, and
the mushy layer equations (2-5). For further details see cited references.

while lengths, times and velocities in (2-5) have been scaled with κ/V , κ/V 2 and V re-
spectively, with κ as the thermal diffusivity. The function K (φ) appearing in equation
(4) measures the variation of permeability Π (φ) with solid fraction, with respect to some
zero-solid-fraction permeability Π (0), assumed finite:

K (φ) =
Π (0)

Π (φ)
. (7)

The dimensionless parameters appearing in (2-5) are the Stefan number

S =
L

cl (TL (C0) − TE)
, (8)

the concentration ratio

C =
CS − C0

C0 − CE
, (9)

and the Rayleigh number

Ra =
β (C0 − CE) gΠ(0) κ/V

νκ
. (10)

The various physical quantities appearing in (8–10) are listed in table (1). Futher discussion
of these parameters and their physical significance can be found in the references cited above.

A fourth dimensionless parameter, the dimensionless mush thickness δ = d/ (κ/V ),
appears in the boundary conditions:

θ = −1, w = 0 on z = 0, (11)

θ = 0, w = 0, φ = 0 on z = δ. (12)

Boundary conditions (11) and (12) correspond to impermeable rigid plates co-moving with
the upper and lower boundary of the mushy layer. The lower plate, between the solid and
the mush, is maintained at the eutectic temperature TE , while the upper boundary between
the liquid and the mush (that is, at zero solid fraction φ), is maintained at the far-field
liquidus temperature TL (C0).
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A more physically plausible kinematic upper boundary condition might be one of con-
stant pressure p. Chung and Chen [10] considered a stress-free upper boundary condition
and, while their analysis was much more involved than that of AH93 and AW95, no qualita-
tively new results were uncovered. We therefore proceed with confidence that the boundary
conditions (11) and (12) preserve the interactions of interest without undue complication.

To isolate a parameter regime for which there is a physically interesting interplay be-
tween dissolution, solidification and convection we adopt the following additional scalings:
we consider a thin mushy layer (δ � 1) [3]; we assume a near-eutectic approximation
(C = C̄/δ = O

(

δ−1
)

) [13]; and we assume a large Stefan number (S = S̄/δ = O
(

δ−1
)

) [4].
The reader may consult the cited references for further details on these scalings. We note in
passing, however, that a key implication of the near-eutectic approximation (C = O

(

δ−1
)

)
is that the solid fraction is small, and hence the permeability is uniform to lowest order. As
a consequence, we follow AH93 and expand the permeability in the small solid fraction:

K (φ) = 1 + K1φ + K2φ
2 + · · · (13)

where, on physical grounds, we demand that K1, K2, etc. are non-negative.

3 Linear theory

We continue to follow AH93 and AW95 and rescale space and time as

x → δx, (14)

t → δ2t, (15)

and introduce the effective Rayleigh number

R2 = δRa. (16)

Note that, following the notation of AH93 and AW95, R is the square root of the effective
Rayleigh number.

The dynamical fields θ, φ, u and p are separated into a stationary basic state and a
perturbation:

θ → θB (z) + εθ (x, t) ,

φ → φB (z) + εφ (x, t) ,

u → 0 + εu (x, t) ,

p → pB (z) + εp (x, t) , (17)

where the subscript ’B’ denotes the basic state and ε is the amplitude of the perturbations.
Subtracting the basic states from the equations of motion and eliminating the pressure p
via the incompressibility condition, we obtain the equations for the perturbations θ, φ and
u:
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(

δ∂z − ε2∂T

)

(

θ − S̄

δ
φ

)

− R′θ′B (z) w + ∇2θ = εRu · ∇θ,

(

δ∂z − ε2∂T

)

(

(

1 − δ ¯φB (z) − εφ
)

θ −
(

θB − C̄

δ

)

φ

)

−Rθ′B (z) w = εRu · ∇θ,

∇2 (Ku) − ∂x (u · ∇K) − R∂x∂zθ = 0,

∇2 (Kv) − ∂y (u · ∇K) − R∂y∂zθ = 0,

∇2 (Kw) − ∂z (u · ∇K) + R∇2
2θ = 0,

∇ · u = 0. (18)

The equations of motion (18) can be written as

(L− T ∂t)v = εN, (19)

where v = {θ, φ, u} is the vector of perturbed fields, L − T ∂t is the linear operator.
We discard the nonlinearity N by setting ε to zero, and look for solutions of the form
v0kσ (z) exp (ik · x + σt) satisfying

(L0k − σT0k)v0kσ = 0. (20)

Here, k = (kx, ky) and x = (x, y). Note that, as a consequence of the assumption that
K1 = O (ε), variations in the permeability appear only at higher order.

The matrix operators L0k and T0k, the linear fields v0kσ, the growth rate σ and the
basic states θB (z) and φB (z) can be expanded in powers of δ and the linear equation (20)
solved perturbatively. Thus, we have

L0k (z) = L00 + δL01 + · · · (21)

v0kσ (z) = v00 + δv01 + · · · (22)

σ = σ0 + δσ1 + · · · (23)

φB (z) = −δ
z − 1

C̄
− δ2

(

(z − 1)2

C̄2
− z2 − z

2C̄

)

+ · · · (24)

θB (z) = (z − 1) − δ
z2 − z

2
+ · · · (25)

We now substitute the expansions (21–25) into the linear equation (20) and at each order
in δ obtain a linear ordinary differential equation for the linear fields v00 (z) , v01 (z) · · · .
At O

(

δ−1
)

we find

σ0φ00 = 0, (26)

implying that σφ0 = O (δ).
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At O
(

δ0
)

, we find solutions

θ00k
= −fksinπz, w00k

= fk
|k|√
Ω

√

1 +
Ωσ0

π2 + k2
sinπz, (27)

u00k
=

ikx

k2
w′

00k
, v00k

=
iky

k2
w′

00k
, (28)

where, as a consequence of incompressibility, the planform fk satisfies

∇2
Hfk = −k2fk, (29)

and we have introduced Ω = 1 + S̄/C̄. The zeroth-order growth rate is given by

σ0 =
π2 + k2

Ω

(

R2

R2
00 (k)

− 1

)

, (30)

where R2
00 (k) describes the neutral curve

R2
00 (k) =

(

π2 + k2
)2

Ωk2
. (31)

The neutral curve (31) has a minimum of 4π2/Ω at kc = π.
In addition to the solutions (27) and (28), we require the linear perturbation to the solid

fraction φ0. However, the condition (26) requires that we consider terms of higher order in
δ. To lowest order,

φ0k (z) = −π2 + k2

ΩC̄

π

π2 + (σ/δ)2

(

cosπz +
σ

πδ
sinπz + e−σ(1−z)/δ

)

fk. (32)

Notice that this expression is valid for the case of both σ = O (1) and σ = O (δ). In the
former, condition (26) demands that φ0 = O (δ), while the latter implies that φ0 = O (1).
Anderson & Worster [5] showed that, for the case of σ = O (δ), the dispersion relation
admits complex solutions, indicating the presence of an oscillatory instability. As we will be
performing weakly nonlinear analysis near the marginal stability curve (R = R00 (k)+O (ε))
in the asymptotic limit ε � δ � 1, we will be considering only the case of σ = O (δ), in
which case (32) reduces to

φ00k (z) = −π2 + k2

ΩC̄

π

π2 + σ2
1

(

cosπz +
σ1

π
sinπz + e−σ1(1−z)

)

fk. (33)

This is precisely the result of Anderson & Worster [5]. We shall employ this result for
φ00k (z) throughout our analysis.

4 Weakly nonlinear analysis

In this section, we perform a finite-amplitude perturbation expansion of the equations of
motion in the spirit of AH93 and AW95. In contrast to these studies, and those of subsequent
authors, we retain horizontal spatial information by considering a continuous horizontal
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planform rather than prescribing a discrete superposition of rolls. Again, unlike previous
authors, we shall not a priori assume that the critical wavenumber kc is the only mode
excited. Rather, we consider a continuous band of wavenumbers, centred on kc. In section 5,
we restrict our attention to an infinitesimally thin band of wavenumbers, thus reproducing
the results of previous studies. What is different about this approach is that we retain
information about horizontal gradients in the amplitude equation thus obtained, and hence
need make no a priori assumptions about the pattern. Note that in this calculation we do
not rely upon a separation of scales to retain some slow spatial dependence of the amplitudes,
as in standard derivations of the Ginzburg-Landau equation for example. Rather, spatial
dependence is preserved in the wavenumber k, which is allowed to vary.

We follow AW95 and perform an asymptotic expansion in the ordered limit ε � δ � 1.
That is, we first expand v = {θ, φ,u} and R in ε; then, at each order, we expand in δ:

v = (v00 + δv01 + · · · ) + ε (v10 + δv11 + · · · )
+ε2

(

δ−1v2,−1 + v20 + δv21 + · · ·
)

+ · · · (34)

R = (R00 + δR01 + · · · ) + ε (R10 + δR11 + · · · )
+ε2 (R20 + δR21 + · · · ) + · · · (35)

Notice that, as a consequence of S, C = O
(

δ−1
)

, we must include in the expansion the
field v2,−1 = {0, φ2,−1,0}. It is also worthwhile noting that, because of the presence of a
term of order ε2δ−1, the expansion (34) is singular in the limit δ � ε � 1, when the order
is reversed.

We now substitute expansions (34) and (35) into the equations of motion (19) and look
for slow time dependence ∂t = ε2∂T . The perturbation expansion then proceeds as follows:

O
(

ε0δ0
)

: L00 · v00 = 0,

O
(

ε0δ1
)

: L00 · v01 = −L01 · v00,

...
...

...

O
(

ε1δ0
)

: L00 · v10 = −L10 · v00 + N10,

O
(

ε1δ1
)

: L00 · v11 = −L11 · v00 −L10 · v01 + N11,

...
...

...

O
(

ε2δ−1
)

: L00 · v2,−1 = T2,−1 · ∂Tv00,

O
(

ε2δ0
)

: L00 · v20 = T2,−1 · ∂Tv01 + T20 · ∂Tv00 −L20 · v00

−L10 · v10 −L01 · v2,−1 + N20,

...
...

...

At each step in the perturbation expansion, we obtain a system of linear, inhomogeneous
ordinary differential equations of the form

L00 · vmn = Imn. (36)
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As is well-known (see, for instance, [14, 15, 16]) a solution to (36) exists if and only if
the inhomogeneities Imn are orthogonal to the solutions ṽ of the adjoint problem. That is,

∫ 1

0
dzṽ·Imn = 0. (37)

In the present problem, neither the differential operator nor the boundary conditions is
self-adjoint.

The solvability condition at O
(

ε1δ0
)

gives:

R10 ≡ 0. (38)

This is a direct consequence of the assumption that K1 = O (ε).
The solvability condition at O

(

ε2δ0
)

gives the pattern equation for the planform fk :

λk∂T fk =
2√
Ω

R20 |k| fk + M
{

f2
}

+ N
{

f3
}

, (39)

where

M
{

f2
}

≡
∫

dpdqδ2 (k− p− q)Mkpqfpfq, (40)

N
{

f3
}

≡
∫

dldmdnδ2 (k− l−m − n)Nklmnflfmfn. (41)

Here Mkpq and Nklmn, the kernals of the integrals (40) and (41) are complicated func-
tions of the horizontal wavevectors k, p, q, l, m, and n.

Close to marginality, the coefficient of the linear term on the right-hand side of (39) can
be expressed as

2√
Ω

R20 |k| ≈
π2 + k2

Ωε2

(

R2

R2
00 (k)

− 1

)

. (42)

This is exactly the linear growth rate σ0. Expanding about the critical wavenumber kc = π
we find

σ0 ≈ 2π2

Ωε2

(

R2 − R2
c

R2
c

− 1

4

(

k2

π2
− 1

)2
)

, (43)

so that in real space the pattern equation for the planform f = f (x, y) becomes

λ∂T f = ρf −
(

∇2
H + 1

)2
f + µf2 − νf3. (44)

This has of the form of a Swift-Hohenberg equation [17] with an addtional quadratic
term. In (44), we have replaced the integrals M

{

f2
}

and N
{

f3
}

with numbers µf 2 and
νf3; we shall calculate explicit expressions for µ and ν in the following section.
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5 Evaluation of the integrals

As discussed in section 4, the primary motivation for deriving a general pattern equation
for a continuous planform fk (or, in real space, f(x, y)) was to avoid making any a priori

assumptions about the pattern. Rather, one can proscribe some arbitrary initial pattern (for
instance, a random one) and, with the aid of a small computer, investigate its evolution. For
Swift-Hohenberg-like pattern equations, one typically sees a number of patterns competing
with one another until the planform settles into a fixed pattern and evolves no further.
The final pattern generally falls into one of three categories: discrete rolls, hexagons (up or
down), or labyrinths - which can be thought of as a planform frustrated between rolls and
hexagons.

It is interesting to calculate explicit expressions for the coefficients µ and ν for discrete
planforms. This is aided by the observation that, close to criticality the planforms fp, fq etc.
are confined to a narrow band of wavenumbers centred on kc = π, as depicted in fig. (2).
Under these conditions it is possible to evaluate the integrals M

{

f2
}

and N
{

f3
}

. That
is, we assume that fp = f (α) δ (|p| − π) where α is the angle p makes with k = kx̂, without
loss of generality. Under this assumption, all wavevectors must be of the same length and
so only certain tessellations will satisfy the delta functions present in the integrands.

+kc

f(k)

kc

ky

kx

− kc

k

Figure 2: Support for fk. We assume that fk is confined to a narrow band of wavenumbers
centred on kc = π.
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Concretely, the quadratic term M
{

f2
}

in the pattern equation (44) is integrated over
wavevector triads {k, p, q} satisfying the condition

k = p + q (45)

p

k q

f(q)f(k), f(p)

Figure 3: Allowed tesselations satisfying the condition k = p + q. As k, p and q are all
of the same length (kc = π), the triplet must form an equilateral triangle. Thus, the only
planform possessing a quadratic term in its pattern equation is an ”hexagonal array”.

As all wavevectors are of the same length, the triad {k, p, q} must form an equilateral tri-
angle. Consequently, the only planform possessing a quadratic term in its pattern equation
is one with an equiangular array (“hexagonal array”) of three superposed rolls, as depicted
in fig. (3). This is the discrete case considered by AH93 and AW95. It is interesting to
note that the appearance of a quadratic term is a special case of the more general pattern
equation for a continuous planform.

We summarize this result as follows:

µf2 = π3
(

K̄1/ΩC̄
)

f
(

π
3

)

f∗
(

2π
3

)

for a hexagonal array,
= 0 otherwise,

(46)

where f ∗ (α) = f (α + π).
In the case of the cubic term, the 4-tuple {k, l, m n} must satisfy

k = l + m + n, (47)

so that {k, l, m, n} form an equilateral parallelogram (fig. (4)). For general angle α
between k and l (say), we find that

νf3 =
8π5

9

∫ 2π

0
dα

{

8

5
+

3 − cosα

9 − 4cosα
(1 + cosα)2 +

3 + cosα

9 + 4cosα
(1 − cosα)2

}

f (0) |f (α)|2

+
22π5

3

K2

Ω2C̄2

∫ 2π

0
dαf (0) |f (α)|2 . (48)

As both rolls (α ≡ 0) and hexagons (α ∈ {0, π/3, 2π/3}) are special cases of (47),
we expect the cubic term to appear in pattern equations for both planforms, with the
coefficients
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l

m

n

k

f(m)f(k), f(l)

f(n)

Figure 4: Allowed tesselations satisfying the condition k = l + m + n. The 4-tuple
{k, l, m, n} forms an equilateral parallelogram. If all four wavevectors lie along the same
axis, this corresponds to the case of three interacting 1D rolls.

νf3 = π5

(

2.36 + 7.34
K2

Ω2C̄2

)

f (0)

(

∣

∣

∣
f
(π

3

)
∣

∣

∣

2
+

∣

∣

∣

∣

f

(

2π

3

)∣

∣

∣

∣

2
)

+π5

(

2.84 + 7.34
K2

Ω2C̄2

)

f (0) |f (0)|2 for a hexagonal array,

= π5

(

2.84 + 7.34
K2

Ω2C̄2

)

f (0) |f (0)|2 for rolls. (49)

Note that (48) is positive definite, indicating that, in the absence of a quadratic term in the
pattern equation, the bifurcation is supercritical.

Finally, we note that the coefficient in front of the time derivative in the pattern equation
(44) is sign-altering:

λ = Ω − 2
S̄

ΩC̄2
. (50)

Thus, for a particular parameter regime λ may be negative or even vanish. As AW95 noted,
this indicates the presence of a Hopf bifurcation. In this work, we do not consider this
regime of parameter values and consider the direct mode only. A derivation of the full
pattern equation in the presence of a Hopf bifurcation remains a topic for further research;
in the meantime, our analysis is valid away from λ = O (δ) in parameter space.

6 Nascent chimney solutions to the pattern equation

For a stationary planform, the pattern equation (44) reduces to a non-linear inhomogenous
ordinary differential boundary value problem and is easily handled by numerical mathe-
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matical tools such as matlab. Figure (5) depicts the solution in a periodic domain with
representative values of ρ = 3.9, µ = 0.1 and ν = 1.0. See caption for details.
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Figure 5: Stationary solutions for the planform (top) and perturbed fields (bottom). Hori-
zontal position in each is measured in units of the critical wavelength. In the upper figure,
the planform amplitude is plotted in arbitrary units. In the lower figure, the streamfunction
is plotted in the x-z plane. Moving from left to right, the direction of rotation of the rolls is
alternately clockwise and counter-clockwise. The region indicated by the vertical hatched
lines represents a nascent chimney. In the background of the lower diagram, the temper-
ature perturbation (left) and solid fraction pertubation (right) are indicated by contours.
The units of these perturbations are arbitrary.

7 Discussion

As we have noted, the pattern equation derived in section (4) has the form of a Swift-
Hohenberg equation with an additional quadratic term. The Swift-Hohenberg equation
arises in a wide variety of physical, chemical and biological contexts and has a substan-
tial literature associated with it (see Cross & Hohenberg [17] and references therein for a
comprehensive review of this topic).

The quadratic term appearing in the pattern equation (44) breaks the symmetry between
up and down. As we have noted, this quadratic term appears only for planforms made up
of three rolls superposed at 120◦ to one another. If all three rolls have an equal amplitude,
the unit cell is a hexagon. Thus, we recover the result of AH93 that the transition to three-
dimensional hexagons is transcritical. The sign of the quadratic term determines whether
there is up-flow or down-flow at the center of the hexagons.
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We also note that the expression for the quadratic term (46) is proportional to K̄1. Thus,
symmetry-breaking between up-flow and down-flow at the center of hexagons is ultimately
rooted in the non-Boussinesq effect of permeability variation with solid fraction. As K̄1 is
strictly positive on physical grounds, the overall sign of the quadratic term is determined
by the planform f (α) itself, at least in this pared-down model.

Finally, it is amusing to note that while hexagons may determine which way is up
by looking at the flow direction in their centre, rolls and all other planforms have no such
method of distinguishing up from down. Translation of rolls and parallelograms by a half-cell
merely exchanges the two directions. In this way, the hexagonal planform is fundamentally
different from all other patterns: it is manifestly asymmetric.
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