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1 Introduction

We are all familiar with gases, liquid and solids, which make up the 3 possible states of
a pure substance. These states of solid, liquid and gas are functions of pressure, P and
temperature, T as depicted qualitatively in the phase diagram figure 1. The negatively
sloped dashed line represents ice in contact with water; the former floating on the latter.
There are few other substances with this property and most other materials have a positively
sloped solid–liquid coexistence line. Despite substantial advances in our understanding of
microscopic phenomena, no phase diagram in its entirely can be computed solely from
information about intermolecular interactions; phase diagrams are principally empirically
determined.
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Figure 1: Phase diagram for a pure substance, showing the lines of pressure and temperature
delineating the 3 possible phases of matter; gas, liquid and water. The dashed line represents
the special case of ice, which has a negatively sloped solid–liquid phase boundary.

2 First Law of Thermodynamics

In 1850 Rudolph Clausius first stated what is now referred to as the first law of ther-
modynamics: the change in internal energy E of an isolated system is equal to the heat

93



absorbed by the system d̄ Q minus the work done by the system on its surroundings d̄W .
Mathematically this can be written as

dE = d̄ Q − d̄W, (1)

where the symbol d̄ denotes the path dependence of a differential, namely, that it is an
inexact differential.

3 Second Law of Thermodynamics

Consider an isolated system consisting of two subsystems A and A′, as shown in figure 2.
The boundary between A and A′ allows conduction and may move like a piston, but is
impermeable to particles i. e. there is no mass transfer across it. We assume that all changes
which occur to the system are quasi-static; interactions happen on a long timescale relative
to the relaxation time of the system.
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Figure 2: An isolated system consisting of A adjacent to A′. Heat conduction is permitted
between the subsystems, and the boundary may move as a piston.

The second law states that the number of accessible micro-states of an isolated system,
Ω, never decreases. If we consider subsystem A to contain and ideal atomic gas, then the
number of accessible micro-states of A is simply the number of places in space that may be
occupied by the gas atoms. Thus, A has ΩA micro-states and we assume that the volume
of A equals the volume of A′ which contains no gas. We then remove the barrier between
A and A′. Initially, the system has not relaxed, but at some later time, the whole system
A + A′ is available to the gas atoms that were confined to A.

The probability p that a particular micro-state is occupied is given by

p ∝
ΩA

ΩA + ΩA′

. (2)

Moreover, because ΩA ∝ V N
A , where VA is the volume of subsystem A and N is the number

of particles in the system (which is typically of the same order as Avogadro’s number,

6.02 × 1023). We therefore have that p ∝
(

1
2

)N
.
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Finally, because the entropy, S, of a system is defined by

S = kb lnΩ, (3)

where kb is Boltzmann’s constant, kb = 1.381 × 10−23 J K−1. Whence, the second law is
written as

ΩA′+A − ΩA ≥ 0 ⇒ dS ≥ 0, (4)

so that the entropy of a system approaching equilibrium always increases with the equality
in equation (4) occurring when the system has reached equilibrium. We can write

d̄ Q = TdS, (5)

thereby demonstrating that T is an integrating factor for the second law, and hence in the
case in which there are no mechanical interactions (no volume change) we find

dSTotal = dSA + dSA′ =

(

1

TA
−

1

TA′

)

∂QA. (6)

We therefore see that if TA > TA′ , heat will flow from A to A′ until equilibrium is reached.

4 Thermodynamic Potentials

Thermodynamic potentials are homogeneous functions that are the principal tools used to
understand phase equilibria. They have the following properties

• Thermodynamic potentials have units of energy.

• They all involve the entropy and several, denoted say P , are such that P ∝ -S.

• For all systems approaching equilibrium, dS ≥ 0, therefore for the potentials P ,

• for all systems approaching equilibrium, dP ≤ 0: the thermodynamic potential is a
minimum.

By way of example, the internal energy of a system, E(S, V ), satisfies

dE = TdS − pdV, (7)

and hence is a minimum for constant entropy and volume. The enthalpy of a system,
H(S, p), is often used when a system is at constant pressure, and is defined by

H = E + pV, (8)

such that dH = 0 for constant entropy, isobaric processes. The Helmholtz free energy is
given by

F (V, T ) = E − TS, (9)

and hence is conserved in an isothermal, constant volume process, while the Gibbs free
energy is given by

G(T, p) = F + pV = E − TS + pV, (10)
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From equations (7) and (10), we find

dG = −SdT + V dp, (11)

and we note therefore that dG = 0 for systems at constant temperature and pressure.
If we consider a system consisting of a solid in contact with a liquid and we ignore the

effect of surface energy, along the solid-liquid phase boundary the phases will have equal
free energies, i. e.

dGs = dGl, (12)

where the subscript s denotes evaluation in the solid and l evaluation in the liquid. Note
that we are considering solid/liquid coexistence and thus pressure and temperature are
constrained to a line, defined by Tm(p) = pm(T ), due to the Gibbs phase rule. From
equations (11) and (12) we can write this as

−SsdTm + Vsdp = −SldTm + Vldp, (13)

for continuous temperature and pressure across the interface. Rearranging equation (13)
gives

dTm

dp
=

Vl − Vs

Sl − Ss
=

Tm

L
(Vl − Vs). (14)

where the latent heat of fusion is L, and is defined as L = ∆S
Tm

. In the case of ice, where

Vl < Vs, we see that dTm

dp
will have negative slope. Hence, from equation (14), we can write

the Clausius-Clapeyron equation in the following form

dTm

dp
= −

Tm

ρsL

(

1 −
ρs

ρl

)

, (15)

where ρs and ρl are the densities of the solid and liquid phases, respectively.
It should be stressed that this treatment only deals with bulk free energies and interfacial

and nucleation problems require consideration of the surface energies. This is because the
free energy of the system can be shifted due to the surface energy of the phase boundary,
intermolecular forces and other effects which extend the equilibrium domain of the liquid
phase into the solid region of the bulk phase diagram. In general, for any system in which
the surface energy plays a significant role, we can express the total Gibbs free energy as the
sum of bulk and surface contributions,

G = GB + Gsurface, (16)

where GB represents the bulk free energy and is proportional to the volume of the system
and Gsurface is proportional to the surface area. Thus, the specific form of the surface area of
the solid/liquid interface in question dictates the detailed nature of the shift in equilibrium
and thereby leads to the specific effects referred to often in the principal lectures such as
the Gibbs-Thomson effect and interfacial premelting. These are reviewed in (1).
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Figure 3: An equilibrium phase diagram of Gibbs free energy G as a function of temperature
T , where pressure is assumed constant. GL denotes the Gibbs free energy associated with
the liquid phase; GS that associated with the solid phase. We see that below the melting
temperature Tm, the liquid has a greater free energy than the solid, which implies that there
is a barrier to forming the solid phase.
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