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1 Interfacial Premelting

In the previous lectures, we have concentrated on solidification of ice on large scales. In
the last two lectures, we will switch to microscopic scale and study a phenomenon of pre-
melting : the existence of a thin liquid film on the surface of a solid below the bulk freezing
temperature. Although the thickness of the films generated by premelting are typically of
the order of 100 molecular diameters, we will see that they are highly relevant: for example
premelting plays an important role in the generation of frost heave.

The existence of premelted films was first postulated by Faraday and Tyndall in the
19th century in order to explain the observation that snow sticks together when compacted,
unlike most granular solids. The idea being that upon contact of two ice grains, the thin
film will freeze at the contact line to join the two crystals (see Fig. 1). At the time however,
it was accepted that an increase in pressure also caused melting and so in the absence of
proof of the existence of premelted films, the pressure melting view prevailed. Recently
however, experiments have delivered proof of the existence of the films, and this, coupled
with the theoretical evidence showing that pressure melting can not possibly explain all
observed effects has finally confirmed the validity of Faraday and Tyndall’s ideas.

The presence of the film stems from a repulsive force between the solid and the air, due
to van der Waals forces. As we will see, this force means that it is energetically favourable
for some of the solid to melt, increasing the gap between the solid and the air. However,
as the system is below the bulk freezing temperature of the liquid, the film is limited to
microscopic thicknesses. It is this competition between repulsive force and freezing drive
that determines the equilibrium thickness of the film.

2 van der Waals Forces

van der Waals forces are attractive forces arising from fluctuctions in the dipole field of
molecules giving rise to fluctuations in nearby molecules. These fluctuations cause electro-
static forces to act between the molecules, giving rise to a potential between two molecules
that takes the form

φ = −
k12

r6
, (1)
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Figure 1: The sintering of two ice blocks upon contact by freezing of the premelted film.

where k12 is a constant depending on the properties of molecules 1 and 2, and r is the
distance between the molecules.

2.1 Force between a molecule and an extended solid

From this expression, we can work out the attractive force between a molecule of phase 2,
separated from a semi-infinite plane of phase 1 by a distance h (see Fig. 2(i)). Letting ρ1

be the number density of molecules in phase 1 and D be the semi–infinite domain of phase
1, we can then integrate in cylindrical polar co–ordinates to yield the total potential

φ =

∫

D

−ρ1k12dV

[r2 + (h + z)2]3
= −

π

6

k12ρ1

h3
. (2)

2.2 Interaction between a slab and a semi–infinite material

We can now use this potential to calculate the potential per unit area between an infinite
slab of thickness h and a semi–infinite solid (Fig. 2(ii)), by integrating over the molecules
that make up the infinite slab. Integrating equation (2) between z = 0, h, we find that the
potential per unit area is

φ =

∫ h

0

−
π

6

k12ρ1ρ2

(z + d)3
dz =

A12

12π

[

1

(h + d)2
−

1

d2

]

, (3)

where A12 = ρ1ρ2k12 is the Hamaker constant for materials 1 and 2.
From this expression, we can obtain the surface energy when two infinite solids of phases

1 and 2 are in contact. By assuming that there is a molecular cutoff distance d = σ12 that
separates phases in contact, corresponding to the repulsive forces between molecules at
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Figure 2: (i) The potential between a molecule and a semi–infinite solid. (ii) The potential
between a semi–infinite solid and a slab. (iii) The derivation of the potential for a liquid
film. The reference state (LHS) is modified to achieve the desired potential (RHS).

short distances, when h → ∞ in the above expression, we find that the potential per unit
area between two semi–infinite phases separated by a gap of thickness d is

φ = −
A

12πd2
, (4)

and letting d → σ12, we obtain the surface energy, given by

γ12 = −φ =
A12

12πσ2

12

. (5)

2.3 Thin liquid films

We are now in a position to calculate the potential of thin liquid film of thickness h on
top of a semi–infinite solid. We will find the potential by starting with a reference state of
known energy and then modify it, while tracking the energy changes associated with the
modifications (Fig. 2(iii)). In this case, we start with a half–plane of solid underlying a
half–plane of liquid. As we have seen, this has a surface–energy of γsl. We then remove the
upper portion of liquid to leave the desired configuration. In doing so, we have removed the
energy associated with the attractive forces between the removed chunk of liquid and the
film, and the removed chunk of liquid and the underlying solid. Therefore the energy per
unit area of the new state is

φ = −γsl −

[

Asl

12πh2
+

All

12π

(

1

(h + σll)2
−

1

σ2

ll

)]

, (6)
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which (as h � σll) gives

φ = const. −
A

12πh2
, (7)

where A = Asl − All. We note that A can have either sign depending on the magnitude of
Asl and All, so the force acting on the liquid can be either attractive or repulsive, leading
to film rupture or wetting respectively. This force is known as the disjoining pressure and
is given by

pT =
A

6πh3
= −

∂φ

∂h
, (8)

so that the force is attractive when A < 0, and repulsive when A > 0.

2.4 Two materials with an intervening liquid layer

As we will see, in real situations the liquid layer tends to be in between two phases, such
as vapour and solid, or substrate and solid. Therefore, by using a similar argument to that
of the previous section, it is possible to build the potential for a liquid layer of thickness h
between two semi–infinite materials of phases 1,2 to find that

φ = const −
A

12πh2
, (9)

where A = A1l + A2l − A12 − All can take both signs, so that the film can also either be
wetting, or be unstable leading to rupture.

3 Premelting

Imagine a liquid film of water sandwiched between a semi-infinite block of ice and an-
other substrate (e.g. water vapour or a solid wall). In equilibrium, the Clausius-Clapeyron
equation gives

ρsL(Tm − T )

Tm
= ps − pl + (pl − pm)

(

1 − ρs/ρl

)

. (10)

Here we shall assume, for simplicity, that ρs = ρl so that the last term on the right-hand
side of (10) disappears. This term is associated with pressure melting (since it includes
the difference between the liquid pressure and the reference pressure, pm) and so we are
neglecting pressure melting in the calculation that follows. Now, ps−pl = pT , the disjoining
pressure, which is given in terms of the film thickness h by (8). Equation (10) therefore
simplifies further to:

ρsL(Tm − T )

Tm
= pT =

A

6πh3
, (11)

where h is the thickness of the melt layer above the ice.
If A > 0, so that the layer is wetting, then we find immediately that

h ∝ (Tm − T )−1/3, (12)

provided that T < Tm. Notice from (12) that as T ↗ Tm, h → ∞ so that the film thickness
diverges as the temperature approaches the equilibrium melting temperature. Physically,
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Figure 3: Diagram showing an ice block and its premelted film in a horizontal temperature
gradient.

this is as expected because at the equilibrium melting temperature, we can have bulk liquid
in coexistence with ice.

Equation (12) shows that below its equilibrium melting temperature, ice can coexist
with a thin layer of water. This thin layer of water has important consequences that we
shall investigate further in the last lecture. We begin by considering a simple mechanism
by which flow can be driven in a premelted layer and compare this to a more conventional
thin layer flow.

3.1 Premelting driven flow

Consider a semi-infinite block of ice between two vertical walls with a liquid film sitting
between the ice and its vapour as shown in Fig. 3. If the walls are maintained at different
temperatures (both with T < Tm) then a temperature gradient is set up across the width
of the system. For the liquid film to remain in thermodynamic equilibrium, the film must
be thicker at the hotter end of the experiment and so the ice melts a little here. However,
this means that the thermomolecular pressure pT is lower here and so, since pl = ps − pT ,
the liquid pressure is higher. Therefore there is flow in the premelted film from hot to cold
(i.e. from left to right in the setup shown in Fig. 3).

Here we neglect gradients in the surface tension coefficient resulting from the tempera-
ture change and so there is no traction on the interface. The pressure in the liquid film is
therefore given by

pl = −γlvHxx −
A

6πh3
, (13)

where H(x) is the interface position and not the film thickness h(x). Here the Hamaker
constant A = Asl +Alv −All −Asv depends on the Hamaker constants of the different pairs
of materials in the system.

The flow in the liquid layer is driven by the gradient in pl and acts to eliminate this
gradient. Eventually a static situation is reached with pl = const. everywhere but with the
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Premelting Marangoni

Driving force Disjoining Pressure Surface tension gradient
(normal to interface) (tangent to interface)

Direction of mass Hot to cold Hot to cold
transport

Morphology of Yes No
underlying solid

Equilibrium Stationary Dynamic

Film Thickness Thermodynamically Dynamically
Determined:

Table 1: Comparison of main characteristics of the Premelting- and Marangoni-driven film
flow problems.

interface deformed. Here the curvature force (surface tension) balances the thermomolecular
forces. This means that in regions of high disjoining pressure (thin films), we expect to see
large interfacial curvatures in steady state.

3.2 Marangoni driven flow

We now contrast this with the case of a thin wetting film on a rigid, solid substrate, such
as glass. Again a temperature gradient is imposed across the system but now we account
for the gradients in surface tension caused by the temperature gradient. In particular, we
note that for water, the surface tension is higher at the cold end than at the warm end and
so there is a surface tension gradient from warm to cold. This exerts a surface traction,
τ = µ∂u/∂n, which balances the surface tension gradient. We therefore have

µ
∂u

∂n
=

∂γlv

∂s
, (14)

where s denotes the arc length measured along the interface. Unlike the previous case, at
equilibrium the liquid is not quiescent (see figure (4)). The gradient in surface tension will
drive a flow along the surface of the liquid from hot to cold, while the pressure reduction
under the cold region of high curvature will drive a return flow underneath the surface
flow. The equilibrium shape of the surface in this situation is controlled by a dynamic flow
balance.

Although the flow of the two liquid films are similar in many respects, there are also
several differences. These differences are summarized in table 1. In addition to these
differences, we also note that when the vapour phase is replaced with a deformable solid,
the Marangoni effect disappears but the premelting flow remains. We will consider such
deformations in the final lecture.

Student Problem Consider a thin disk of weight W , radius R and against which ice
premelts, just ahead of an interface that is solidifying at a speed V (see Fig. 5). Find the
maximum speed for which there is a steady state in which the disk translates ahead of the
ice.
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Figure 4: Diagram showing a thin film of water wetting a rigid substrate in a horizontal
temperature gradient. Left: The initial configuration in which a layer of liquid lies above
the solid. Right: The steady state in which flow in the layer continues because of the surface
tension gradient.

Figure 5: Diagram for the student problem: a disc of radius R is pushed ahead of a steadily
translating ice–liquid interface.
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Solution Because of the presence of the disk, there will be a pre-melted liquid layer, of
constant thickness h, separating the disk from the solid interface. Assuming that h � R
so that the gap is ‘thin’, we can neglect effects associated with the edges of the disk. The
liquid film exerts a disjoining pressure

pT =
A

6πh3

on the disk, where A is the Hamaker constant. The disjoining force pT × πR2 repels the
disk from the ice phase.

Two forces are acting to move the disk in the direction of the ice. The first of these is
the disk’s weight W , while the second force is a suction force resulting from the inward flow
of liquid beneath the disk. This force can be calculated using lubrication theory, as follows.

In the thin gap, the horizontal fluid velocity is

u =
1

2µ
z(z − h)

∂p

∂r
, (15)

where p(r) is the unknown fluid pressure. The depth integrated radial fluid flux is then

Q =

∫ h

0

u dz = −
h3

12µ

∂p

∂r
. (16)

Using the continuity equation ht + ∇ ·Q = 0, we then have

V =
h3

12µ

1

r

∂

∂r

(

r
∂p

∂r

)

, (17)

which can immediately be integrated twice to give

p =
3µV

h3
(r2 − R2) (18)

where we have defined zero pressure to be at r = R. This pressure force can be integrated
to give the value of the lubrication induced adhesion between the disk and the ice:

Fadh =

∫ R

0

2πrp(r) dr = −
3πµV R4

2h3
. (19)

Balancing the three forces acting on the disk we have

0 = πpT R2 − W + Fadh, (20)

which can be rearranged to give the velocity of interface advance V in terms of the gap
thickness, h:

V =
A

9πµR2
−

2h3W

3πµR4
. (21)

Of course in an experiment V is likely to be the control parameter, rather than h. In this
case (21) can be rearranged to give h(V ). However, the form in (21) is more convenient
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for our purposes since it demonstrates immediately that the steady state we have supposed
can exist only if

V −
A

9πµR2
< 0, (22)

so that

V < Vmax ≡
A

9πµR2
. (23)

If V > Vmax this equilibrium configuration no longer exists and we conclude that the disk
is engulfed by the ice.

It is interesting to calculate the temperature of the ice–water interface beneath the disc,
Ti. From (11) we have that

A

6πh3
=

ρsL(Tm − Ti)

Tm
. (24)

Using this expression to eliminate h from (21) and rearranging we find that

Tm − Ti =
A

6π

Tm

ρsL

2

3πµR4

(

A

9πµR2
− V

)

−1

(25)

so that as V → Vmax, Ti → −∞. In other words the disk is well below the undisturbed
phase boundary.
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