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1 Introduction

In previous lectures we considered solidification at a planar boundary, and we found that in
this case there was the possibility of constitutional supercooling in the liquid region ahead of
the solidification front. Such constitutional supercooling causes morphological instability of
the phase boundary, and the interface evolves until a ‘mushy layer’ (region of mixed phase)
is formed. A mushy layer is modeled as a two-component, reactive porous medium. We
have also seen that the growth of a mushy layer is governed by the rate of thermal diffusion.

The morphological instability of the interface, caused by constitutional supercooling,
increases its specific surface area, and thereby enhances the latent heat release, leading
to a temperature that is greater than that obtained for a planar boundary. Increased
specific surface area also enhances the release of solute from the solid, which increases the
concentration of the interstitial fluid; this increase in concentration acts to lower the liquidus
temperature in the mushy layer.

Therefore, if a region of constitutional supercooling is present in a mushy layer, the
liquidus temperature in the interstitial region decreases, due to enhanced release of solute,
and the actual temperature increases, due to the enhanced release of latent heat. These
temperature changes continue until the region of supercooling in the mushy layer has been
eliminated (as shown in Figure 1); the temperature and the liquidus temperature in the
mushy layer evolve until they are equal. We therefore assume that throughout the mushy
layer the temperature is equal to the local liquidus temperature.

Our goal here is to establish the position of the interface between the liquid and the
mushy region (and also the solid and the mushy region), and to do this we treat the mushy
region separately as an inhomogeneous porous medium. We therefore have two unknown
boundaries to determine as part of our solution.

2 Governing equations

From lecture 5, we have that the governing equations describing the evolution of the mean
temperature T (x, t), mean concentration of the liquid phase C(x, t) and solid fraction φ(x, t)
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Figure 1: Schematic representation of the effect of increased specific surface area on a region
of constitutional supercooling in a mushy layer. As the specific surface area increases, en-
hanced latent heat release increases the temperature, while enhanced release of solute lowers
the liquidus temperature. Thus the temperature reaches an equilibrium where T = TL(C);
this equilibrium is shown by the dashed line which lies between the original temperature
and liquidus temperature curves.

in a mushy layer are

∇ · u = (1 − r)
∂φ

∂t
, (1)

ρcp
∂T

∂t
+ ρlu · ∇T = ∇ · (k̄∇T ) + ρsL

∂φ

∂t
, (2)

(1 − φ)
∂C

∂t
+ u · ∇C = ∇ · (D̄∇C) + rC

∂φ

∂t
, (3)

T = TL(C), (4)

µu = = Π(−∇p + ρg), (5)

where r = ρs/ρl and the remaining symbols have their usual meaning (as described in
previous lectures), and we have assumed that the solid phase is pure. Equations (1) – (3)
arise from conserving mass, heat and solute. Equation (4) describes the assumption that
the temperature and concentration of the interstitial liquid lie on the liquidus, and the final
equation (5) is the transport equation for the Darcy velocity u.

If we consider the case in which the solid in the mushy layer (ice) is growing, then noting
that ρs < ρl, equation (1) shows that the velocity field will have a positive divergence. We
have an advection-diffusion equation (2) to solve for the temperature, which is forced by
latent heat release in the mushy layer. We also have an advection-diffusion equation for the
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solute (3), which is modified by a source term to reflect the increase in concentration of the
interstitial fluid as a result of the formation of pure ice crystals.

We are interested in dynamically generated fluid flows, particularly under the action of
gravity, and therefore use Darcy’s law (5), which states that the fluid velocity is proportional
to the negative pressure gradient.

Equations (1)–(5) are solved in the mushy layer; the Navier-Stokes equations coupled
with advection-diffusion equations for heat and solute are solved in the liquid region, while
we consider pure diffusion in the solid phase.

2.1 Internal Disequilibrium

In earlier lectures, we saw that for the kinetically driven solidification of a planar interface,
the normal velocity of the phase boundary could be described by

vn = G(Tm − T ), (6)

where G is the kinetic coefficient, which is assumed constant. In the case of a mushy layer,
equation (6) can be modified to

φ̇ = GA[TL(C) − T ], (7)

where A denotes the specific surface area of the internal phase boundaries in the mushy
layer. Thus if T 6= TL(C) in the interior of the mushy layer, the surface area A increases
and as the product GA becomes large T ' TL(C).

3 Interfacial conditions

To generate boundary conditions for the governing equations, we apply the conservation
laws at both interfaces. The first interfacial condition, derived from equation (1) is

[u.n] = −(1 − r)vn[φ]. (8)

In most circumstances, φ is continuous between the mushy layer and the liquid, and therefore
[φ] = 0. At the interface between the solid and the mushy layer, however, there may be a
discontinuity in φ, and we would expect only to be able to impose continuity of φ at one
boundary as there is only one partial derivative of φ in the governing equations.

The second boundary condition is analogous to the Stefan condition, and is given by

ρsL[φ]vn = [k̄n.∇T ]. (9)

Note that there is no advective term in condition (9) as the equations of mass and heat
conservation imply that [T ] = 0 at the interface; it is not obvious, however, that the same
will be true for the mean concentration, C.

The third condition, applied at the interface of the mushy layer and the liquid, is

[(vn − u.n)C]lm + Cmφvn = [−Dn.∇C]lm. (10)

The subscript l denotes evaluation in the liquid; m denotes evaluation in the mushy layer.
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As we have homogenized the mushy layer on some scale, we cannot interrogate it on
a length scale that is smaller than this. In deriving these interfacial conditions we can
therefore no longer consider the interface between the mushy layer and the solid or liquid
phase to be a line; instead, we must consider it to be a region with a thickness that is
comparable to the homogenization scale, δ.

Boundary conditions (8) and (9) are robust in this sense; condition (10) is more contro-
versial, and depends on the relative sizes of the homogenization length scale and the length
scale of diffusion, lD. The choice δ < lD allows the retention of solute diffusion in equa-
tion (3), which means that the mean concentration of the liquid phase, C, is continuous.
Boundary condition (10) may therefore be simplified to

Cmφvn = [−Dn.∇C]lm. (11)

It is also possible to suppose δ ∼ lD and consider the limit where D/κ → 0, but more slowly
than δ → 0. In this case, the term representing diffusion of solute is removed from equation
(3), meaning that we can no longer impose continuity of C. An analogous situation occurs
in fluid mechanics if the viscosity of a fluid tends to zero. In this case it is no longer possible
to enforce continuity of the velocity field, and it is therefore possible to obtain shear layers.

The three boundary conditions (8) – (10) come from the conservation of mass, heat and
solute, equations (1) – (3). However, these must be supplemented due to the presence of the
additional dependent variable φ. Early work imposed φ = 0 at the interface and required
φ to be continuous, but for certain parameter regimes the problem is then mathematically
ill-posed. There is also no good physical justification for this condition; again, it is not
possible to interrogate the system on length scales which are smaller than δ, which implies
that a jump in φ is allowed.

Instead, we return to our earlier descriptions of a solid–liquid interface. In this case,
we saw that there was the possibility of forming a region of constitutional supercooling,
and this drove the morphological instability at the interface and thus the formation of the
mushy layer. The criterion for formation of such a region of constitutional supercooling was

∂T

∂n

∣

∣

∣

∣

l

<
∂TL

∂n

∣

∣

∣

∣

l

, (12)

and as the mushy layer thickens, this inequality tends to an equality. We therefore make the
assumption that the mushy layer grows just quickly enough that any residual supercooling
in the liquid ahead of it is eliminated, which allows us to write the final boundary condition
(assuming the interface is solidifying),

∂T

∂n

∣

∣

∣

∣

l

=
∂TL

∂n

∣

∣

∣

∣

l

. (13)

The final boundary condition consists of a specified temperature at the solid–mushy layer
interface. We now have a complete set of equations (1) – (5) with boundary conditions (8),
(9), (10) and (13). This system has solutions for all parameter values.

4 ‘Ideal’ mushy layers

The aim of this section is to simplify the governing equations for the evolution of a mushy
layer while retaining all the necessary interactions. To do this, we make the following
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Figure 2: The trajectory of T and C in the phase diagram for a mushy layer (solid curve)
compared with that when there is a planar solid liquid interface (dashed curve). The
liquidus temperature TL(C) is given by T = Tm − mC for some positive constant m. The
temperature in the mushy layer follows the liquidus curve and thus there is no possibility
of constitutional supercooling. Note that in this case the temperature field in the liquid
region emerges at a tangent to the liquidus. In contrast, the temperature field in the solid–
liquid system has a portion lying below the liquidus and thus constitutional supercooling is
possible.

assumptions. Firstly, we assume that the densities of the solid and liquid phases are equal,
i. e. ρs = ρl. Thus we have that r = 1, and conservation of mass, equation (1), gives that
the velocity is solenoidal.

We next assume that D � κ, which allows us to eliminate the second derivative term in
the conservation of solute equation. Although this may appear to be a singular perturbation,
it is justified because we have a relationship between T and C in the mushy layer (equation
(4)), and we retain the second derivative in the conservation of heat equation (2). Finally,
we make the assumptions that properties are independent of phase and that the system is
above the eutectic temperature.

Using these assumptions, the governing equations (1) – (5) become

∂T

∂t
+ u · ∇T = κ∇2T +

L

cp

∂φ

∂t
, (14)

(1 − φ)
∂C

∂t
+ u · ∇C = C

∂φ

∂t
, (15)

T = TL(C), (16)

µu = Π0(−∇p + ρg), (17)

∇ · u = 0. (18)

Here we assume that κ is constant in the ideal mushy layer and also that ρ is constant; later
we will consider ρ = ρ(T,C).
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Figure 3: Growth of a mushy layer from a cooled boundary at z = 0. The mush–liquid
interface is at z = h(t) and the position of the cooled boundary is at z = 0.

The above assumptions can also be used to simplify the boundary conditions: during
solidification, equations (8), (9) and (10) become

[u.n] = 0, (19)

[φ]lm = 0, (20)

[n.∇T ]lm = 0. (21)

In this case there is no solid layer: only the mushy layer and the liquid region above it.

5 The case of no flow

When there is no pressure gradient in the mushy layer and convection is not possible because
there is a stable density field, the Darcy velocity is zero. In this case there is no flow in
the system and the advective part of the transport equations (14)–(18) can be eliminated
to obtain

∂T

∂t
= κ∇2T +

L

cp

∂φ

∂t
, (22)

(1 − φ)
∂C

∂t
= C

∂φ

∂t
, (23)

T = TL(C). (24)

The second of these equations can be rearranged and integrated as follows

∂

∂t
[C (1 − φ)] ⇒ (1 − φ)C = C̄(x), (25)

implying that the total amount of species C is constant in time but variable in space
according the the function C̄(x). If initially this function is constant in the liquid (C̄(x) =
C0) then equation (25) reduces to

φ = 1 − C0

C
, (26)
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Figure 4: The plot on the left shows the normalized interface position for the solid-liquid
interface, λa and the mush-liquid interface, λb as a function of TL(C0)−TB for experiments
(crosses) and numerics (solid line). The plot on the right shows the solid fraction as a
function of height for numerics (dashed line) and experiments (circles) corresponding to
r = .74.

which effectively constrains the amount of solid by the deviation in concentration from its
initial value. This equation can be differentiated with respect to time to obtain

∂φ

∂t
=

C0

CL(T )2
∂CL(T )

∂t
=

C0

C2
L

dCL

dT

∂T

∂t
, (27)

in which we assume that the concentration follows the liquidus line as a function of tem-
perature. This new relationship for the void fraction provides closure to the temperature
equation (22), which now becomes

[

1 − C0 L

cpC2
L

dCL

dT

]

∂T

∂t
= κ∇2T ⇒ cp,eff

∂T

∂t
= κ∇2T, (28)

where cp,eff is the non-dimensional effective specific heat. This is a nonlinear diffusion
equation for T in which the effective heat capacity is enhanced by the internal release of
latent heat.

In summary we have the setup shown in figure 3 with the following governing equations

∂T

∂t
= κ

∂2 T

∂ z2
, (29)

cp,eff
∂T

∂t
= κ

∂2 T

∂ z2
, (30)

for the temperature evolution in the liquid and mushy layers respectively. In the far field
liquid we use the constant boundary condition T (t,∞) = T∞ and at the base of the mushy
layer we use T (t, 0) = TB . As described previously we have the following interface conditions

T = TL(C0),

[

∂T

∂z

]L

M

= 0, [T ]LM = 0, (31)
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Cooled from below Cooled from above
stable Temperature unstable Temperature

C∞ < CE

2. No convection 6. Mushy layer
Mushy Layer Thermal and

Heavy fluid released compositional convection

C = A,CE , B
1. Planar 3. Planar

no convection thermal convection
No compositional effects

C∞ > CE

5. Compositional convection 4. Mushy layer
in liquid and thermal convection

light fluid released mushy layer in the liquid

Table 1: Organization of the different convective regimes as explained thoroughly in the
text. In all cases we assume that the density of the fluid increases with the concentration,
C and increases with a decrease in the temperature, T . Here CE is the eutectic concentration
and C∞ is the concentration far from the phase boundary.

at z = h.
In general these equations have a similarity solution with the similarity variable η =

z/2
√

κt and interface position h = 2λ
√

κt. Figure 4 shows the numerical solutions and
experimental results for the normalized interface position λ as a function of TL(C0) − TB

and the solid fraction as a function of height scaled with the moving interface.

6 Solidification and convection

During the solidification of a binary melt there are some interesting physical features, such
as the formation of mushy layers and the onset of convection, that depend on the properties
of the released fluid and the solidification boundary. In table 6 we organize these features
according to the location of the solidification boundary and the concentration, which in-
creases with density, of the rejected fluid in comparison to the far field concentration, C∞.
We now discuss each of these cases in turn.

1. In this case there is no excess solute produced by the solidifying front and the compo-
sitional density field remains uniform. Since the temperature is lowest at the bottom,
and thus the density decreases with height the temperature field is stable as well. As
a result convection will not occur and the growth rate will proceed as in the Stefan
problem.

2. Here the concentration of the melt is less than that of the solid and in general a
mushy layer will form. Since the rejected solute makes the fluid adjacent to the
moving boundary denser the compositional density field is stable. In addition the
thermal density field is stable, owing to the cold lower boundary, and convection will
not occur.

3. Similar to case 1 except that now the temperature is higher at the top and therefore
the density increases with height. The thermal density field is unstable and may lead
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Figure 5: Schematic illustration of a solid growing into a binary melt, cooled from above.
Since the density is larger at the top due to a lower temperature, there is thermal convection.
Here F is the flux of heat by thermal convection in the liquid.

to convection if the Rayleigh number is large enough.

4. In this case the residual melt adjacent to the phase boundary is lighter than the melt in
the far field, resulting in a stable compositional density field. On the other hand, the
thermal density field is unstable and thermal convection can occur. This convection
will occur in the liquid only; the mush will remain stagnant.

5. In this case the thermal density field is stable, whereas the compositional density field
is unstably stratified. Double-diffusive convection can occur in the liquid in the form
of fingers but will not occur in the mushy layer as the temperature and concentration
are constrained by the liquidus relationship and are therefore not independent. There
may be convection in the mushy layer leading to the formation of dissolution channels.

6. Here the melt is cooled from above and heavy fluid is released from the phase boundary.
The thermal and compositional density fields are both unstable and will act together
to produce convection. In addition, convection will occur in the mushy layer, which
may alter the micro-structure of this porous medium. This is the regime for the
formation of sea ice.

Cases 3 and 4

For cases 3 and 4 of table 6 the convection generated in the liquid acts to transport heat
from the bottom to the solidifying interface as illustrated in figure 5. The Rayleigh number
for this situation was assumed to be large (Ra � 1) and therefore the interior of the liquid
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is well mixed up to the thermal boundary layer. The Stefan condition will have the form

ρs L ȧ = −k
∂T

∂z

∣

∣

∣

∣

s

− F, (32)

where F is the heat flux from the liquid to the solid. Naturally this heat flux will be a
function of the temperature difference between the interface and far field liquid temperature
and the strength of the fluid advection, given by

F = B
(αg

κν

)
1

3

[T − TL(Co)]
4

3 . (33)

Here B is an experimentally determined number, ν is the kinematic viscosity, α is the
coefficient of thermal expansion and g is the acceleration due to gravity. Since we must
conserve energy, the liquid will cool down according to

ρcp (H − a)
∂T

∂t
= −F, (34)

due to the transfer of heat from the liquid to solid.
The position of the phase boundary as a function of time is shown in figure 6 with some

distinct, quantitatively different regimes due to the onset and development of convection.
We can make the quasi-stationary approximation

k
TL − TB

a
= ρLȧ + F. (35)

At early time, labeled 1 in figure 6, the solid thickness is small (a � 1), the growth rate
is large (ȧ � 1) and the convective flux is negligible. The dominant balance is between
the first and second terms in equation (35) and the solution proceeds as in the planar case
with a ∝

√
t. Eventually buoyancy forces due to the unstable thermal gradient dominate

viscous dissipation and convection ensues (region 2 in figure 6). At early times the advective
transport of thermal energy from the bottom to the top is enough to balance the transfer of
heat away into the solid and the growth rate slows. Later on, the liquid cools down, reducing
the convective heat transfer in the liquid, according to equation (34) and the growth rate
proceeds according to equation (35). At long time, indicated by region 3 in figure 6, the
temperature of the liquid has cooled down sufficiently so that the convective heat transfer
is much smaller than conduction in the solid. The dominant balance is again between the
first and second terms in equation (35) and the solution proceeds as in the planar case with
a ∝

√
t.

7 Student problem 6

Determine the position of the interface between the mushy layer and liquid for the constant
solidification rate shown in figure 7. The governing equations and appropriate boundary
conditions in the liquid region and the mushy layer respectively, are as follows

∂T

∂t
= κ

∂2T

∂ z2
, T (t,∞) = T∞, T (t, h) = TL(C0) z > h, (36)

∂T

∂t
= C(T )κ

∂2T

∂ z2
, T (t, 0) = TE , T (t, h) = TL(C0) 0 < z < h, (37)
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Figure 6: Interface position of a solidifying binary melt as a function of time. There are
three distinct regimes, labeled 1,2 and 3, which are distinguished by the relative strength
of convection occurring in the liquid region.

where C(T ) = 1 − LC ′

LC0/cpC
2
L. Along the liquidus line we have the linear expression

CL = C0 + mT , where m = (C0 −CE)/ (TL(C0) − Te) is the slope. In addition we have the
following interfacial condition

∂T

∂z

∣

∣

∣

∣

liquid

=
∂T

∂z

∣

∣

∣

∣

mushy layer

, (38)

at z = h.

Answer

The non-dimensional version of the specific heat can be expressed as

C(T ) = 1 −
S
ξ

(

1 + 1
ξ

T
TL(Co)−TE

)2 , (39)

where S is the Stefan number and ξ = C0/(C0 − CE) is a concentration ratio. In the limit
ξ � 1 and S � 1, while S/ξ = O(1) we obtain C(T ) = 1 − S/ξ = Ω. Note that Ω > 0.

For a constant growth rate V we can move the coordinate system by making a Galilean
transformation so that we are in a steady reference frame. Mathematically this is written
as, x̄ = z − V t, so that ∂

∂t
= −V ∂

∂z
. In addition it is convenient to non-dimensionalize the

equations using the following scales

θ =
T − TL

TE − TL

, ẑ = z
κ

V
, (40)

so that equations (36)–(37) become

θ′′ + θ′ = 0, θ(∞) = θ∞, θ(ĥ) = 0 z > h, (41)

θ′′ + Ωθ′ = 0, θ(0) = −1, θ(ĥ) = 0 0 < z < h. (42)
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Figure 7: Setup for the student problem, showing the growth of a mushy layer into a liquid
from a cooled boundary at z = 0. The apparatus is being pulled at a constant velocity
through heat exchangers such that we are in a steady frame of reference.

The solutions of these equations are

θ = θ∞ − θ∞eĥ−ẑ z > h, (43)

θ =
1

1 − eΩĥ

[

eΩ(ĥ−ẑ) − 1
]

0 < z < h. (44)

The position of the interface is calculated by using the flux condition (38) θ ′|liquid =
θ′|mushy layer to obtain

ĥ =
1

Ω
ln

[

1 +
Ω

θ∞

]

. (45)
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