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So far, we have looked at some of the fundamentals associated with solidification of pure
melts. When we try to solidify a solution of two or more components, salt and water, for
example, the character of the solidification changes considerably. In particular, the presence
of salt can depress the temperature at which ice and salt water can coexist in thermal
equilibrium. This has an important consequence for the growth of sea ice: unless there is
some other mechanism for the transport of the salt field, such as convection, the growth
of the ice is limited by the rate at which excess salt can diffuse away from the interface.
Finally, we will discuss the morphological instability in two-component melts. We shall see
that the solute field is destabilizing and can give rise to morphological instability even when
the liquid phase is not initially supercooled.

1 Two-component melts

1.1 A simple demonstration

We shall begin with a simple demonstration. Crushed ice at 0◦C is placed in a cup with
a thermometer. We add a handful of salt at room temperature and stir briskly. The ice
begins to melt, but what happens to the temperature?

We notice that there is some melt water in the cup, which helps bring the ice and salt into
contact, and see a fairly rapid decrease in the temperature measured by the thermometer:
after a few minutes, it reads almost −10◦C. What’s happening here is not melting. Rather,
we are observing dissolution of the pure ice into the mixture of salt and water. In this lecture,
we will attempt to make more explicit the distinction between melting and dissolution.

1.2 Equilibrium phase diagrams

In Figure 1, we show the equilibrium phase diagram for a simple 2-component mixture, or
binary melt – in this case, salt and water. The equilibrium state of a given mixture of salt
and water at temperature T and composition C (i.e., concentration of salt) and at constant
pressure can be represented on this diagram by the point (T,C). The phase diagram is
divided into regions of different phase; this diagram is “simple” in the sense that there are
only two possible solid phases: pure ice, or solid salt. In Figure 1 these lie along the vertical
axes at 0% and 100% concentration respectively. Apart from these two solid phases, we can
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Figure 1: Equilibrium phase diagram for a solution of salt and water.

also form a liquid solution of the two end members (i.e., salt or water), or some liquid/solid
mixture of the two substances. Other materials have more complicated solid phases and
neccessarily more complicated phase diagrams, which we will examine briefly later.

The curved line in Figure 1 is the liquidus, representing the temperature at which a
binary melt of a given composition C can exist in equilibrium in both the liquid and solid
phase. For 0% salt concentration, the liquidus temperature is simply the melting point of
ice – 0◦C – while for 100% salt it is 801◦C.

When we contaminate pure water at 0◦C with a small amount of salt, the equilibrium
freezing temperature is lowered. Thus, when we added a small amount of salt to the ice in
our experiment, we saw that we still had liquid even at temperatures as low as −10◦C.

Equivalently, one could start with pure molten salt at 801◦C and contaminate it with a
small amount of water to lower the melting point. The two liquidus curves meet at a point
(TE , CE), called the eutectic: this is the minimum temperature at which solid and liquid
saltwater can coexist in thermodynamic equilibrium1.

If we slowly change the temperature or composition, the mixture will trace a trajectory
on the phase diagram, as shown in Figure 1 for the case of seawater. We start by cooling
seawater to −2◦C where it reaches the liquidus curve TL (C) and starts to freeze. Below
this temperature, we start to form pure solid ice in equilibrium with seawater of higher
concentration. As more and more solid ice is formed, less water is available and so the salt
concentration increases steadily. We can invert the liquidus curve T = TL (C) to find the

1According to one popular story, German physicist Gabriel Fahrenheit (1686-1736) chose the triple eu-
tectic temperature of water, salt and ammonium chloride, being the lowest temperature he could achieve in
his laboratory, as the zero of his eponymous scale. Both Fahrenheit and Celsius are centrigrade scales: An-
ders Celsius (1701-1744) chose 100◦C to correspond with the boiling point of water at sea level; Fahrenheit
likewise chose a reliable, easily reproducible, steady temperature for 100◦F – the anal temperature of his
horse. It should be noted, however, that wikipedia.org lists no less than six competing versions of the same
story, so at the risk of punning, one should be advised to take such apocryphal tales with a pinch of salt.
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Figure 2: A more generic phase diagram. See text for details.

composition of the remaining liquid: C = CL (T ).
It is worthwhile to extend the simple phase diagram for salt and water to one more

typical of other binary melts, as shown in Figure 2. In addition to the liquidus, there is a
solidus further subdividing the phase diagram. There are now four distinct phases, which
we describe below.

Region I is a liquid solution of the two end members.
In region II, the mixture is in a solid solution, where the end members are mixed on the

lattice scale. An example of this is the silicate compound olivine, (Fe,Mg)2 SiO4, although
the phase diagram is quite different from the one shown in Figure 2. Iron and magnesium
sit fairly equally in the lattice sites and will occur in different proportions depending upon
the temperature. In contrast, salt and water do not form a solid solution, and will exist in
the solid phase only as pure substances, at least as far as we are concerned in this course.

In region III, the solid solution and the liquid phase coexist in equilibrium.
Finally, in region IV, we have a mixture of crystals of the two end members: i.e., pure

ice coexisting with pure salt crystals. In addition, there are regions of the equilibrium phase
diagram mirroring region III, where pure crystals of one end members coexist with a solid
solution of both end members. The exact location in the equilibrium phase diagram of
the transition to this region, indicated in Figure 2 by a dashed line, is difficult to measure
experimentally, because the compositional relaxation times below the eutectic are on the
order of geological timescales. We ignore such detailed structure in our analysis.

Thus, the equilibrium phase diagram can tell us a great deal about what proportion of
a mixture is in what phase, and what can coexist in equilibrium. However, it cannot tell
us anything about the geometry of the solid phase formed; whether the ice forms in layers,
or a slurry of ice crystals and salt water, or in the form of a mushy layer of dendritic ice
crystals separated by interstitial seawater, as we shall examine in the next lecture. The
microscopic details of the distribution of the phases depends strongly on how you lower the
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temperature; however, the ratio of the phases will not depend on the history of the mixture.

1.3 A few approximations

Before we conclude this section, let us introduce some terminology and a few approxima-
tions. Firstly, we shall assume (when necessary) that the liquidus can be approximated by
a straight line

TL ≈ Tm − mC (1)

and that the solidus concentration is

CS (T ) ≈ kDCL (T ) (2)

The parameter kD is called the distribution coefficient, and is approximately zero for a
salt and water solution. Thus we will assume that the solution will form only pure cystals
of salt or ice.

2 Solidification of sea ice

2.1 The Stefan problem for a salt water solution

Let us now revisit the Stefan problem2; this time, however, we consider the case of salt

water in contact with a boundary at a temperature below the liquidus temperature of the
solution, as depicted in Figure 3

We denote by Ti and Ci respectively the interfacial temperature and composition of the
salt water, to be determined. We further demand that the ice and the salt water at the
interface are in thermodynamic equilibrium so that Ti is the liquidus temperature and

Ti = TL (Ci) . (3)

This is in contrast to the Stefan problem where the interfacial temperature was simply
the melting temperature of pure ice Tm. Here, however, the temperature at which the salt
water freezes is set by the interfacial concentration of salt, and we shall see that the rate
at which the interface advances is limited by the rate at which we can remove excess salt
from the region near the interface.

The composition of salt inside the ice will be zero, as discussed above; however, we shall
denote it by CS to be a little more general. The far field temperature and composition of
the sea water are T∞ and C0 respectively. The boundary temperature TB will be below the

liquidus temperature of the undisturbed solute field: TB < TL (C0).
The equations to be solved are the diffusion equation in the ice and the sea water

∂T

∂t
= κ

∂2T

∂x2
in x < a and x > a (4)

2Note that in this treatment, we will neglect the effects of both kinetics and surface energy. The latter
case would not arise anyway, as we are dealing only with a planar interface.
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Figure 3: Freezing of salt water.

where, for simplicity, the thermal diffusivity κ is assumed to be the same in both solid and
liquid. In addition, we must solve for the salt field in the liquid region

∂C

∂t
= D∂2C

∂x2
in x > a. (5)

As the composition in the solid region is constant there will be no diffusion of salt there.
The ratio of the solute diffusivity to the thermal diffusivity for seawater is of the order 10−2

and will play the role of a small parameter in our analysis.
In addition to the boundary and interfacial conditions, we have, as before, the Stefan

condition for the interfacial heat flux:

ρLȧ = k

(

∂T

∂x

)

a−

− k

(

∂T

∂x

)

a+

(6)

The final equation in this problem comes from the conservation of solute. The total
quantity of salt must be conserved, so that the area under the composition curve must be
constant:

Csa +

∫ ∞

a(t)
C(x, t)dx = const. (7)

The time derivative of this equation is

Csȧ − Ciȧ +

∫ ∞

a

∂C

∂t
dx = 0 (8)

which, from the solute diffusion equation (5) becomes
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(Cs − Ci) ȧ +

∫ ∞

a
D∂2C

∂x2
dx = 0 (9)

and finally,

(Ci − Cs) ȧ = −D
(

∂C

∂x

)

x=a+

. (10)

Equation (10) has formally the same structure as the Stefan condition: instead of inter-
facial heat flux balancing the difference in heat content (enthalpy), however, equation (10)
represents the balance of the difference in salt concentration with the flux of salt across the
interface.

The solutions to the thermal diffusion equation (4) in the solid and liquid regions are,
respectively,

T = TB + (Ti − TB)
erf (η)

erf
(

a
2
√

κt

) in x < a (11)

T = T∞ + (Ti − T∞)
erfc (η)

erfc
(

a
2
√

κt

) in x > a (12)

Equations (11) and (12) are similarity solutions in the dimensionless variable

η =
x

2
√

κt
(13)

A dimensionless interfacial position is µ, which is defined by

a = 2µ
√
Dt (14)

where, in contrast to our previous analysis, a(t) scales with the solute diffusivity D rather
than the thermal diffusivity κ. The dimensionless parameter µ remains to be determined.
We shall show, a posteriori, that µ is O (1). Had we chosen a(t) to scale with κ instead, we
would find µ to be O

(

ε−1
)

, where,

ε =

√

D
κ

(15)

justifying our choice of the D in equation (14) rather than κ.
The solute diffusion equation (5) and boundary conditions yield the solution

C = C0 + (Ci − C0)
erfc (εη)

erfc (εα)
in x > a (16)

where ε appears in the arguments because, in the case of the solute, it is D rather than κ
that should appear in the definitions of the dimensionless variable µ in (14).

In addition to the parameter µ, the interfacial temperature Ti and interfacial concentra-
tion Ci will be determined using the Stefan condition (6), the solute conservation equation
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(10) and the liquidus relation (3). Substituting (11), (12) and (14) into the Stefan condition
yields

L

cp
=

Ti − TB

G (εµ)
− T∞ − Ti

F (εµ)
(17)

where,

G (z) =
√

πzez2

erfz (18)

and

F (z) =
√

πzez2

erfcz (19)

Similarly, the solute conservation equation (10) becomes

Ci − Cs =
Ci − C0

F (µ)
(20)

For salt water, ε is reasonably small, so let us examine the case of ε → 0. The functions
G (z) and F (z) have the asymptotic behaviour

G (z) ≈ 2z2 as z → 0 (21)

F (z) ≈
√

πz as z → 0. (22)

Thus, for small ε, the three terms in the Stefan condition (17) are of order 1 : ε−2 : ε−1

and so, to lowest order, Ti = TB + O (ε). Inverting the liquidus relation (3) now gives us
the interfacial concentration to lowest order: Ci = CB + O (ε) , where CB = CL (TB) is
the liquidus concentration associated with the temperature of the boundary. The solute
conservation equation (20) then gives

F (µ) ≈ CB − C0

CB − CS
≡ C−1 (23)

As shown in Figure 4 , the parameter C is always strictly greater than or equal to one,
with equality only for a pure melt. Thus, unlike the problem of a crystal growing into
a supercooled melt, where we saw that for Stefan numbers of less than one there was no
similarity solution, equation (23) always has a solution.

Furthermore, equation (23) implies that µ = O (1), justifying our choice of the solute
diffusivity D in (14) rather than the thermal diffusivity κ. Thus, the rate of advance of
the planar interface is limited by the rate at which we can remove excess solute. Adjacent

to the interface is a boundary layer of thickness O
(√

Dt
)

, as shown in Figure 5. In fact,

seawater does not behave like this because convection will also act to remove excess solute,
which we have neglected here.
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Figure 4: Proof that C is greater than or equal to unity. C is defined as the ratio of CB −CS

to CB − C0. C0 is the far-field composition and lies above the solid composition CS. CB

is the composition at the boundary and, by assumption, lies on the liquidus curve. As ice
solidifies it leaves behind a residual of higher composition, so that CB must be greater than
that of the solution far from the boundary, C0. Thus, the ordering of Cs, C0 and CB is as
shown in the figure, and C is neccessarily greater than or equal to unity.

Figure 5: Comparison of the actual temperature field and the liquidus temperature as-
sociated with the compositional field. In the region where the TL (C) > T , the liquid is
constitutionally supercooled.
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Figure 6: Cartoon indicating the values of boundary temperature below which supercooling
occurs for a given initial compostion C0.

2.2 Constitutional supercooling

Because the salt field and the temperature field have different scales of relaxation, there
exists the possibility that, beside the interface, the actual temperature is below the local
liquidus temperature. Thus the liquid is supercooled relative to its freezing temperature.
The critical condition for such constitutional supercooling is that the liquidus temperature
increase more rapidly than the actual temperature as we move away from the interface:

(

∂T

∂x

)

a+

<

(

∂TL

∂x

)

a+

. (24)

Approximating the liquidus by a straight line TL (C) ≈ Tm−mC and using our solutions
for the temperature field and salt field in the liquid (12,16) we find that

(

∂T
∂x

)

a+
(

∂TL

∂x

)

a+

=
T∞ − Ti

(Ci − C0) m
ε2 F (µ)

F (εµ)
. (25)

From the asymptotic behaviour of F (z) for small z (19), we can see that the right-hand
side of (25) is typically O (ε). Thus, generically, the critical condition (24) is satisfied, and
the liquid in the boundary layer is constitutionally supercooled.

Equation (25) can be solved to find the critical curve for constitutional supercooling on
the equilibrium phase diagram, as depicted in Figure 6. Notice that the region of constitu-
tional supercooling sits very close to the liquidus (for small ε), so that we do not have to
lower the temperature much below the liquidus temperature for constitutional supercool-
ing to be prevalent. Note also that it is possible to avoid constitutional supercooling in a
region close to 0% composition. This is of relevance to the semiconductor industry, where
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Figure 7: Temperature and compositional field on the equilibrium phase diagram.

constitutional supercooling is undesirable as it can give rise to morphological instabilty of
a semiconductor crystal.

Finally, we show in Figure 7 how the temperature and composition change as we move
from the boundary at x = 0, through the interface at x = a (t), to the far-field position
at x → ∞. Within the ice (0 < x < a−), the temperature changes smoothly while the
composition is identically zero. As we move across the boundary, the composition and
temperature change discontinuously to the liquidus curve at (Ci, Ti). From the interface,
the two fields change differently until they reach their far-field values. Because the thermal
and compositional diffusivities are different, the solute field changes more rapidly than the
thermal field, and so the (C, T )-curve dips below the liquidus, indicating constitutional
supercooling.

2.3 Morphological instability of sea-ice growth

As we have already seen in this lecture series, ice growing into a supercooled melt is uncondi-
tionally unstable to small perturbtions of the interface. When the liquid is constitutionally
supercooled, the morphological instablity takes on some new characteristics, which we dis-
cuss here in broad terms.

1. As in the case of the Stefan problem, the thermal field has a stablilizing influence
on the interface (Figure 8a). Isotherms are compressed near peaks in the interface,
enhancing the heat flux at those points, and rarefracted near troughs, suppressing the
heat flux. The heat flux inhibits the growth of ice at the peaks, while reinforcing it
at the troughs, stabilizing the interface.

2. The compositional field, which was not present in our original Stefan problem, is
destabilizing (Figure 8b). Like isotherms, surfaces of constant concentration are com-
pressed near peaks, enhancing the flux of solute away from the interface. Thus, the
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ice can grow more quickly at peaks because the solute, which inhibits growth, can
diffuse away more quickly, leading to instability.

3. As we saw in the problem of crystal growth into a supercooled liquid, surface energy is
stabilizing (Figure 8c) A divergent normal on a curved interface lowers the equilibrium
temperature near peaks and raises it at troughs, giving rise to a heat flux from the
troughs to the peaks. As in the case of the thermal field, this stabilizes the interface.

Figure 8: Mechanisms contributing to the morphological instability in sea ice.

These three mechanisms operate on three different lengthscales: in decreasing order
they are the thermal diffusion lengthscale, the compositional diffusion lengthscale, and the
capillary lengthscale. Thus, the interface is conditionally unstable: the interface may be
unstable, marginally stable, or completely unstable, depending upon the precise lengthscales
involved.

The condition for instability can be translated into a critical solidification rate, as shown
in the neutral stability curve in Figure 9. Likewise, we can plot the critical solidification
rate VC as a funtion of the initial composition of the melt C0(Figure 10). For a given
value of C0, the interface is stable for sufficiently low solidification rates (typically around
1µms−1), but as we increase the solidification rate, the interface can go unstable. If we
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increase the solidification rate more, to say 1ms−1, the interface can be stable again. Such
rapid solidification is generally not of interest in ice studies, but is relevent to spot welding.

Figure 9: Neutral stability curve for the morphological instability. Here, V is the solidifi-
cation rate and α is the wavenumber.

Figure 10: Critical solidification rate versus initial concentration of the melt.

Student Problem

Consider a lump of sea ice floating in the ocean. Both the ice and the sea water are at
uniform temperature T0 = −2◦C, say, such that, T0 is greater than the liquidus temperature
of the far field concentration C0. There is no gravity, so convection does not play a role.
What happens, and how quickly?
Solution:
By solving the diffusion equation for the concentration field, we get

C = C0 + (Ci − C0)
erfc(x/2

√
Dt)

erfc(a/2
√

Dt)
(x > a), (26)
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where D is the diffusion coefficient of the concentration field. On the other hand, we have
the concentration conservation:

−Ciȧ = D
∂C

∂x
|a+0

(27)

Therefore,

ȧ =
Ci − C0

Ci

√

D

πt

1

erfc(a/2
√

Dt)
e−a2/4Dt (28)

Because C0 > Ci, ȧ < 0: the ice is dissolving. Because of the absorption of the latent heat,
the system cannot be isothermal: the temperature is depressed at the phase boundary.
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