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Abstract

Scattered data interpolation and approximation techniques allow for the reconstruction of a scalar field
based upon a finite number of scattered samples of the field. In general, the fidelity of the reconstruction
with respect to the original scalar field tends to deteriorate as the number of samples decreases. For the
situation of very sparse sampling, the results may not be acceptable at all. However, if it is known that the
scalar field of interest is correlated with a known flow field – as is the case when the scalar field represents
the value of an oceanographic tracer that propagates under the influence of the ocean’s flow – then this
knowledge can be exploited to enhance the scattered data reconstruction method. One way to exploit
flow field information is to use it to construct a modified notion of distance between points. Replacing
the standard Euclidean distance metric with a flow-field-aware notion of distance provides a method for
extending standard scattered data interpolation methods into flow-based methods that produce superior
results for very sparse data. The resulting reconstructions typically have lower root-mean-square errors
than reconstructions that do not use the flow information, and qualitatively they often appear physically
more realistic.

1 Introduction

Many physical datasets involve measurements of a
scalar field that are collected at scattered locations
in space. In order to analyze the underlying phe-
nomena, it is generally desirable to know the corre-
sponding scalar field, at least approximately, across
its entire natural domain. Furthermore, in order to
visualize the scalar field using computer graphics, it

is generally necessary to compute values on a regular
grid. For these purposes, scattered data interpola-
tion (or approximation) is typically used in order to
reconstruct the underlying scalar field on the domain
of interest, based upon only the known set of scat-
tered samples.

As an example, consider the problem of re-
constructing scalar fields representing oceanographic
quantities such as 18O/16O and 13C/12C isotope ra-
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tios for the oceans of the distant past. Stable iso-
tope data are obtained from measurements on ben-
thic foraminifera obtained from deep sea core sam-
ples taken from the ocean floor [1] . While these
samples provide valuable data about the past ocean,
they form a very sparse scattered dataset for which
accurate interpolation can be a challenge, as is illus-
trated in Figure 1. In particular, note the existence
of a large region of the South Atlantic for which no
data are available at all.

Many different methods have been proposed for
the reconstruction of scalar fields based on scattered
observations [2, 3, 4, 5, 6, 7, 9]. Regardless of method,
the quality of the results obtained depends upon the
density of scattered samples available. If this den-
sity is sufficiently large, these methods typically work
quite well. On the other hand, if the available sam-
ple set is sparse with respect to the spatial varia-
tion of the scalar field, such as in Figure 1, the fi-
delity of reconstruction may not be acceptable both in
quantitative terms (as measured by root-mean-square
agreement with the original field, for example) and in
qualitative terms (as assessed by whether the recon-
struction preserves significant features of the original
field).

Although in general the sparsity of samples repre-
sents a fundamental limitation on the reconstruction
quality that is possible, in some circumstances addi-
tional information can be used in proper context in
order to obtain an improved result. One example of
such a situation is the case of sparse scattered data
interpolation of a scalar field that is associated with
a flow field. The typical physical situation is that of
a tracer quantity in a fluid; the spatial correlation of
the scalar field representing the tracer concentration
is related to the vector field specifying the fluid flow.
Given this scenario, as an alternative to simply wait-
ing for more data to become available we instead at-
tempt to formulate an enhanced scattered data recon-
struction scheme that can exploit these correlations
in order to obtain a better result for sparse sample
sets than would otherwise be attainable.

This paper describes a new scattered data recon-
struction technique that utilizes a non-Euclidean dis-
tance measure to exploit known or assumed corre-
lations between the scalar field being reconstructed
and another known vector or scalar field. In a typical
setting, the known field is a vector field representing
flow and the scalar field being reconstructed repre-
sents a tracer quantity being transported under the
influence of this flow. The physical characteristics of
such a case lead to the intuitive assumption that con-
centrations of the tracer quantity will be more highly
correlated in the flow direction than perpendicular

to this direction. Hence, the proposed reconstruction
method introduces an alternative, non-Euclidean way
to measure distance between points in the spatial do-
main that is defined in reference to the streamlines of
the flow field. Because this prototypical case serves
as the motivating problem for the development of
the method and because the majority of test cases
described in the paper are of this type, we call the
technique “flow-based.”

We emphasize that although our primary applica-
tion of the method lies in the oceanographic domain,
for which the known vector field represents ocean
flow, the method itself is generally applicable to a
wide variety of problems involving multi-field data
when correlations exist between fields. Many appli-
cations that involve fluid flow fall into this category.
In these cases, correlations between points in a scalar
field typically are stronger along the streamlines of
flow than in other directions, and the particular non-
Euclidean distance measure used reflects this basic
property.

Other situations are possible as well. For example,
if a scalar field is related to a vector field in such a way
that correlations are strongest across its streamlines
instead of along them, then a different non-Euclidean
distance measure would be used. The mathematical
form of the distance function would be similar. Only
the values of the parameters that define the specific
incarnation of the distance function would be differ-
ent.

Moreover, the existence of a physical flow is not
required for the method to be applicable, but rather
just the existence of a correlation between a scalar
field and a vector field. In fact, it is not even neces-
sary to have a vector field at all. The proposed tech-
nique is useful also for cases in which a scalar field
of interest is correlated with another scalar field. In
such cases, the isocontours of the known scalar field
take the place of the streamlines of the vector field.

The layout of the paper is as follows. After de-
scribing some related work from the literature, we
proceed to a discussion of background information
regarding scattered data interpolation and distance
metrics. We then describe our method of combining
non-Euclidean distance measures with existing scat-
tered data interpolation techniques. Next, we present
results that illustrate the usefulness of the method for
performing scattered data interpolation (or approxi-
mation) for data sampled from scalar fields that are
correlated with flow fields. Finally, we describe ideas
for possible future enhancement of the method.
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Figure 1: Core locations in the Atlantic Ocean, from Marchal and Curry, 2008 [1]. Figure 1a shows the scat-
ter of core locations with respect to latitude and longitude, while Figure 1b shows the scatter with respect
to latitude and ocean depth.

2 Related Work

The problem of scattered data interpolation has a
long history, and a large variety of methods have been
proposed for its solution [2]. One of the earliest ap-
proaches, proposed by Shepard [3], used inverse dis-
tance weighting to weight the scattered samples. An-
other approach is to use radial basis functions, such
as in the method proposed by Hardy [4].

Both inverse-distance-weighted methods and
radial-basis-function methods are naturally formu-
lated as global methods. For large data sets, global
methods can be computationally prohibitive in prac-
tice. For this reason, local versions of these methods
have been developed [2]. In addition, hierarchical
methods for scattered data interpolation have been
proposed [5]. These methods seek to combine the
benefits of local and global approaches.

Other methods are fundamentally local in nature.
For example, Sibson’s method of natural-neighbor in-
terpolation [6] employs the concept of Voronoi tes-
sellation to define a weighting in terms of a given
point’s natural neighbors in the sample set. More-
over, this weighting is robust in cases for which many
samples cluster close together, which can lead to re-
construction artifacts in other methods (such as in-
verse distance weighting). Because the construction
of Voronoi tessellations is relatively expensive, the
discrete Sibson method avoids the explicit computa-
tion of the Voronoi diagram [7].

Furthermore, statistical techniques such as Op-
timal Interpolation (OI) can be regarded as scat-

tered data interpolation methods [8, 9]. Like Sibson’s
method, Optimal Interpolation is robust to cluster-
ing of samples. Moreover, it can be used for scattered
data approximation as well as for scattered data in-
terpolation, and it provides a built-in way to specify
error bars on the scattered samples, which can be
quite useful for problems in which the scattered sam-
ples are obtained via physical measurements. Early
attempts to deal with scattered oceanographic data
used statistical methods such as Optimal Interpola-
tion [10].

While Optimal Interpolation is a simple example
of a statistical scattered data interpolation technique,
more sophisticated statistical methods have been ap-
plied to meteorological and oceanographic data as-
similation problems. For example, the 3D-Var [11]
and 4D-Var [12] methods have entered into common
usage. In general, such methods can be viewed as
inverse problems in that they attempt to reconstruct
continuous scalar fields based on a discrete (and often
sparse) set of measurements. A more recent approach
to solving such inverse problems for the specific case
of ocean tracer distributions is a method called Total
Matrix Intercomparison [13], which is related to 4D-
Var. This method assumes multiple scalar fields in a
flow field, but assumes that the flow field is unknown
and attempts to reconstruct it in addition to recon-
structing the various scalar fields themselves. How-
ever, the reconstruction calculation involves a time-
consuming optimization that makes the method more
suited for off-line use than for interactive visualiza-
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tion purposes.

One of the principal contributions of the method
described in this paper is the utilization of non-
Euclidean distance measures for the purpose of scat-
tered data interpolation and approximation. The
use of non-Euclidean distances appears in the lit-
erature in related contexts. For example, Nielson
and Foley have described the use of affine-invariant
norms for the purpose of scattered data approxima-
tion [14]. Moreover, an example of the use of non-
Euclidean distance measures for scattered data ap-
proximation in the meteorological sciences is given
by the so-called “banana scheme” provided as an op-
tion in the PSU/NCAR Mesoscale Modeling System
(MM5) [15].

3 Background

3.1 Scattered Data Interpolation

Many of the existing methods for scattered data
interpolation and approximation are formulated ex-
plicitly in terms of a distance function d(xi,xj) whose
value represents the distance between points xi and
xj in the domain of the scalar function being recon-
structed. For example, inverse distance weighting
methods reconstruct the scalar field at the point x
by interpolating the N samples fi = f(xi) with the
function

f(x) =
∑N

i=0

wi(x)fi∑N
j=0 wj(x)

where wi(x) =
1

d(x,xi)
.

While some reconstruction methods perform in-
terpolation (so that the values at the sample points
are reproduced exactly in the reconstruction), oth-
ers instead perform approximation (where some re-
construction error is allowed at the sample points).
Typically, such methods involve least-squares fitting
of some kind. One reason for preferring approxima-
tion over interpolation is that simple reconstructions
can be fit relatively well to given datasets for cases
in which interpolation might lead to complex, unreal-
istic reconstructions that oscillate wildly in order to
fit all of the data points exactly. Furthermore, be-
cause simpler explanations typically are preferred to
more complex ones (Occam’s razor), using approxi-
mation rather than interpolation leads to reconstruc-
tions that tend to be regarded as better representa-
tions of physical reality.

Some methods can be used to perform either in-
terpolation or approximation. For example, Optimal
Interpolation [9] allows for the specification of errors
for data points. As the specified errors approach
zero, the approximation method approaches the case
of true interpolation. Using approximation instead of
interpolation provides a way to avoid fitting the noise
in observations.

3.2 Distance Metrics

The distance function d(x,y) used for the scattered
data interpolation methods above is typically chosen
to be the familiar Euclidean distance, which for do-
mains of dimension N is given by

d(x,y) =
√∑N

i=1(xi − yi)2

However, other choices are possible. For a func-
tion d(x,y) to be a legitimate distance metric, it need
only satisfy the following conditions [16]:

• d(x,y) ≥ 0

• d(x,x) = 0

• d(x, z) ≤ d(x,y) + d(y, z) (triangle inequality)

• d(x,y) = d(y,x) (symmetry).

Moreover, it is possible to relax one or more of the
conditions above and to still have a function that re-
sembles a distance metric in some ways. For example,
relaxing the triangle inequality leads to a semimet-
ric, while relaxing symmetry leads to a quasimetric
[16]. Such generalized metrics will be used to extend
standard scattered data interpolation schemes to in-
corporate knowledge of flow information.

4 Method

4.1 Flow-Based Distance Metrics

In order to adapt a scattered data interpolation and
approximation scheme (in this case, Optimal Interpo-
lation) to utilize flow information, the scheme’s dis-
tance metric has been generalized so that distances
in directions across streamlines of the flow field are
given more weight than those in directions along the
streamlines. This corresponds to the intuition that
values of the scalar field should be more highly corre-
lated in the direction of the flow than perpendicular
to the flow. This intuition depends upon the assump-
tion that the scalar field represents a tracer quantity
that experiences advection in the presence of the flow
field.
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To understand the motivation for the particular
flow-based non-Euclidean distance measure that we
have adopted, consider first how normal Euclidean
distances are calculated in two dimensions. Two
points xi and xj in the plane are assigned x and y
coordinates in a Cartesian coordinate system. Then,
the Euclidean distance dE(xi,xj) between the two
points is given by

dE(xi,xj) =
√

(xi − xj)
2

+ (yi − yj)
2

where (xi − xj) and (yi − yj) are the measures of the
distances between xi and xj in the x and y directions,
respectively.

Given this basic expression for distance, if we
wanted to give a different degree of emphasis to the
y component of distance than to the x component,
we could pre-process the data by multiplying the y
coordinates of the points by a constant factor. Al-
ternatively, we could use the x and y components of
the points as is, and instead alter the definition of
distance to incorporate the non-uniform treatment of
coordinates. So, to reflect the scaling of the y com-
ponent by a factor of γ, we would define the distance
as

dE2
(xi,xj) =

√
(xi − xj)

2
+ α(yi − yj)

2

where α = γ2.

In analogy with this, we define a generalized dis-
tance function with respect to the streamlines of a
given flow field so that the distance between the
points xi and xj is given by

d(xi,xj) =
√

[d1(xi,xj)]
2

+ α[d2(xi,xj)]
2

(1)

where d1(xi,xj) is a measure of the distance across
streamlines, d2(xi,xj) is a measure of the distance
along streamlines, and α is a factor determining the
relative weight of distances along streamlines to those
across streamlines. If α is chosen to be less than unity,
then this distance measure will give more weight to
distances across streamlines than to distances along
the streamlines.

Note that the distance measure that we have
defined is not only non-Euclidean, but anisotropic
as well. In other words, according to our defini-
tion of distance, the distance between two points de-
pends upon their relative orientation in space. This
anisotropy is inherited from the anisotropy inher-
ent in the notion of a flow field (flow, by definition,
has a direction). Because we have assumed that the
scalar field correlations between points are larger in

the direction of flow than across the flow direction,
we have defined a distance measure that reflects this
anisotropic property of the scalar fields we are at-
tempting to reconstruct.

If streamlines are computed from every point in
the domain and are calculated as far as possible in
both directions (until they leave the domain), then an
exact definition of distance along streamlines and dis-
tance across streamlines can be employed, as shown
in Figure 2a. Note that domain boundaries are some-
what problematic in relation to streamlines that leave
the domain and then return. If a streamline is bro-
ken by a domain boundary, the distance metric will
be affected, and therefore the distance between two
points in a finite domain might be different from the
distance that would be calculated if the domain were
placed into its global context in terms of the flow
field. For this reason, the proposed flow-based recon-
struction method is best employed for closed systems
(such as the entire ocean) or for domains over which
the flow is relatively simple (such that the effect of
broken streamlines is minimized).

In Figure 2a, the distances d1(xi,xj) and
d1(xj ,xi) represent the distance of point xi from
the streamline passing through point xj and the
distance of point xj from the streamline passing
through point xi, respectively. Likewise, the dis-
tances d2(xi,xj) and d2(xj ,xi) represent the distance
along the streamline passing through point xj and the
distance along the streamline passing through point
xi, respectively. The flow-based non-Euclidean dis-
tance from point xi to point xj is given by d(xi,xj)
according to Eq.(1), and the distance from point xj

to point xi is given by d(xj ,xi), using the same equa-
tion.

In order to obtain a symmetric distance metric, we
can simply take the average of d(xi,xj) and d(xj ,xi).
So, a symmetric distance function dsym(xi,xj) is de-
fined by

dsym(xi,xj) =
d(xi,xj) + d(xj ,xi)

2
(2)

and satisfies dsym(xi,xj) = dsym(xj ,xi).

While symmetry could be obtained in other ways,
in general there is no reason to prefer one of the two
paths from point xi to point xj over the other, and
therefore the simple averaging procedure is appropri-
ate. If the specific physical situation of a particular
application provides a reason for preferring one path
over the other, then this additional domain-specific
knowledge can be utilized when deciding how to en-
force symmetry upon the flow-based distance mea-
sure. For example, in a certain setting, perhaps the
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Figure 2: Two methods for calculating distances from streamlines and distances across streamlines. Figure 2a
depicts the exact method for calculating these distances. The flow-based non-Euclidean distance between
points xi and xj is dsym(xi,xj), which is computed according to Eq.(1) and (2). The across-streamline
distances d1(xi,xj) and d1(xj ,xi) are the lengths of the magenta line segments in the diagram, while the
along-streamline distances d2(xi,xj) and d2(xj ,xi) are the lengths of the green curves. Figure 2b depicts
an approximate method for calculating the distance from and across streamlines. Here, the lines tangent to
the streamlines at the sample points are used to avoid having to compute the streamlines over the entire
domain. The across-streamline distances d1(xi,xj) and d1(xj ,xi) are the lengths of the magenta line seg-
ments in the diagram, while the along-streamline distances d2(xi,xj) and d2(xj ,xi) are the lengths of the
green line segments, which lie on the lines tangent to the streamlines at points xj and xi.
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Figure 3: Two different flow-based distance measures that use the same flow field. The flow field with
respect to which both distance functions are defined is depicted in Figure 3a. The plot in Figure 3b shows a
distance measure that considers only the distance from streamlines (using an α parameter of 0). The color
scale represents the (non-Euclidean) distance of points in the plane from the indicated point that lies on
the streamline shown. The plot in Figure 3c shows the distance function that results for an α value of 0.1,
so that the overall distance measure is influenced by the distance along streamlines but the distance from
streamlines is given more weight. Red curves represent streamlines and black curves represent contours of
the distance function.

shortest path provides the best definition of the dis-
tance between the two points. Furthermore, if sym-
metry is not required for a particular application,
then computational costs can be reduced consider-
ably, as is described in Section 4.4.

Figure 3 shows two examples of distance functions
calculated according to the method illustrated in Fig-
ure 2a. In the first example, the α parameter is 0,
so the overall measure of distance utilizes only the
distance from the streamline and completely ignores
the distance in the streamline direction. As a result,
points close to the streamline that passes through the
specified point all have very small distances when
compared to that point. In the second example, α
is 0.1, so the distance along the streamline has some
influence on the overall distance measure. Neverthe-
less, the distance from the streamline still has greater
influence.

If the calculation of streamlines across the entire
domain is too expensive computationally, an alterna-
tive is to linearize the streamlines about the sample
points xi and xj, as shown in Figure 2b. In this case,
the definitions of the distances d1(xi,xj), d1(xj ,xi),
d2(xi,xj), and d2(xj ,xi) are analogous to those in
the previous case, and the definitions of d(xi,xj) and
dsym(xi,xj) are identical, as specified by Eq.(1) and
(2), respectively. This linearization approach reduces
the computational complexity of the method. How-
ever, there is a cost in terms of accuracy. In particu-
lar, if the points xi and xj are far apart (in terms of

Euclidean distance), then the validity of the resulting
distance metric can be called into question. For this
reason, the linearized streamline approach to defining
a distance metric is best used in combination with a
technique for decaying the degree of anisotropy as the
(Euclidean) distance between points increases.

Figure 4 shows an example of a distance function
calculated using the decaying anisotropy approach.
Local to the point of interest, the distance measure
weights the distance from the streamline much more
heavily than the distance along the streamline. How-
ever, as the (Euclidean) distance from the point of
interest increases, this anisotropy decays.

Based upon the considerations above, it is obvi-
ous that there are many possible ways to generalize
the Euclidean distance to a non-Euclidean measure
of distance that utilizes flow information. Within the
framework above, even if we select one of the two
general approaches for the incorporation of flow infor-
mation (the exact streamline method or the approx-
imate, linearized streamline method), we still have
a large space of alternative non-Euclidean distance
metrics to consider. This family of distance measures
is parametrized by several parameters.

At the very least, we will have the parameter
α that specifies the relative weighting of distances
across and along streamlines. If we are using a de-
caying anisotropy, we will also have one parameter
that specifies the inner radius of the decay region
and another the specifies the outer radius of the de-
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cay region. Moreover, we could introduce additional
parameters in order to expand the size of the family
of distance measures that we can model. For exam-
ple, we could parametrize the exact form of the decay
of anisotropy between the inner and outer radii. We
could also choose to consider not only flow direction,
but flow magnitude as well; this will necessitate the
introduction of one or more additional parameters.
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Figure 4: A distance measure that uses a decaying
anisotropy. For points near the point represented by
the green marker, the flow-based non-Euclidean dis-
tance measure weights distance from the streamline
much more heavily than distance in the streamline
direction (using α = 0.0001, in this case). However,
as the (Euclidean) distance from the point increases,
this anisotropy in the distance measure is decreased,
so that for points far away the distance is approx-
imately Euclidean. The decay of anisotropy occurs
linearly between the inner and outer decay radii in-
dicated by the two circles.

Given such a family of distance measures, the ob-
vious question is what specific one is best for the in-
terpolation problem at hand. The precise answer to
this is problem specific, so the approach that we have
implemented is to optimize the flow-based interpola-
tor distance measure for each problem independently.
Hence, the parameter adjustment process is treated
as an integral part of the interpolation method itself.
The specific parameter adjustment method employed
will be discussed in detail in Section 4.3.

4.2 Streamline Calculations

In order to compute d1(xi,xj) and d2(xi,xj) by refer-
ence to the streamlines of the flow field (or other cor-
related vector field), as described above, we must first

calculate the streamlines themselves. Given the flow
field, this is a fairly straightforward procedure that
involves integrating the flow field from each point of
interest. We perform this integration numerically us-
ing the fourth-order Runge-Kutta method [17]. The
flow field itself is assumed to be an input to the recon-
struction problem that reflects some a priori knowl-
edge about the problem at hand.

4.2.1 Using Isocontours as Streamlines

It should also be noted that it is possible to compute
non-Euclidean distance measures with respect to the
isocontours of any given scalar field rather than with
respect to the streamlines of a flow field. The “flow-
based” reconstruction method can then be applied as
if these isocontours were the streamlines of a known
flow field. This mode of operation is useful when it
is known that the scalar field of interest is correlated
with another scalar field which is known on the do-
main of interest, even if actual flow information is not
available.

4.3 Parameter Optimization

The generalized distance metric defined above in
terms of the streamlines of the flow field depends also
on the free parameter α, which determines the rel-
ative weight to give to distances along the stream-
lines versus distances across the streamlines. As
mentioned in Section 4.1, the distance function may
also involve additional parameters besides α (such as
those defining the inner and outer decay radii when a
decaying anisotropy is utilized). If flow magnitude
is considered, or if the distance function is other-
wise modified for the purposes of a specific appli-
cation, further parameters may be introduced. The
values of all these parameters determine the spe-
cific nature of the non-Euclidean distance measure to
be used, and this in turn influences the reconstruc-
tions that are obtained when the flow-based interpo-
lation/approximation method is applied to a given
set of scattered data.

Moreover, the underlying interpolation and ap-
proximation method that we have chosen, Optimal
Interpolation, also involves a free parameter that
must be chosen by the user (the so-called correlation
length, which determines the rate at which the influ-
ence of a given sample point decays as the point of
interest is moved away from it). This method also in-
volves an input parameter that specifies the expected
magnitude of the errors between the input data and
the values of the reconstruction at the corresponding
locations. Although we usually have chosen to set
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this error parameter to some reasonable fixed value,
it also can be considered to be a free parameter of
the method. The effectiveness of the proposed recon-
struction method depends upon the specific choices
made for these parameters, and the optimal values of
the parameters can vary from problem to problem.

While exhaustive parameter studies can be per-
formed on specific cases in order to gain insight into
the dependence of interpolation quality on the param-
eter settings, it is desirable to have a more efficient
way to select the precise parameter values that lead
to the best results. If the exact scalar field is known,
we can use standard optimization techniques to find
the best parameter values for that specific scalar field
in the presence of the specific known flow field. Al-
though gradient descent methods might be applica-
ble here, an easier approach (that avoids having to
calculate gradients) is to employ the direct search
method (also known as compass search or pattern
search) [18, 19]. Furthermore, because it does not
require gradient information, direct search is robust
even when the objective function lacks smoothness or
continuity.

Unfortunately, like any local optimization
method, direct search is susceptible to falling into
a local minimum of the objective function that is
not the global minimum sought. In some cases we
simply assume that either the initial guesses used are
close enough to the global minimum that the local
direct search will find the parameter configuration
corresponding to this optimum value, or that the ob-
jective function in fact has only one local minimum.
However, we have observed that the objective func-
tions that result from most practical reconstruction
problems do involve multiple local minima, so we
have implemented a simple procedure that attempts
to deal with this complication. The procedure is sim-
ply to perform an initial scan of the parameter space
in order to attempt to select an initial guess that is
likely to be close to the global minimum. For appli-
cations for which we are concerned that falling into
a local minimum might lead to substantially inferior
results, we utilize this procedure prior to invoking
the direct search algorithm. While more sophisti-
cated approaches to global optimization are possible,
we have found that this simple approach is adequate
for most cases.

If the scalar field being reconstructed is known
beforehand, the objective function to be optimized is
simply the RMS error between the known values at all
locations considered (for example, on a grid covering
the entire spatial domain) and the the values found
for these locations using the flow-based reconstruc-
tion method with a given parameter configuration.

Of course, in most real scattered data interpolation
problems, we will not have knowledge of the entire
scalar field beforehand. However, by downsampling
the set of available scattered samples and comparing
the interpolation results using these subsamples to
the known values of the scalar field at the omitted
sample locations, we can construct a suitable objec-
tive function for optimization.

Hence, direct search can then be used to approx-
imate the optimal parameter settings for the given
problem, even though we only know the value of the
scalar field at a finite number of points. In practice, a
reasonable approach is to remove one point at a time
and to compute the reconstruction there using the
other points. By doing this for each point in the sam-
ple set and taking the root-mean-square error across
all points, we essentially are utilizing a “leave-one-
out” cross validation scheme. The cross validation is
done during each iteration of the iterative optimiza-
tion algorithm. Note that this method of parameter
optimization using downsampling is closely related to
the well-known “jackknife” method in statistics [20].

4.4 Computational Complexity

The computational complexity of the method de-
scribed above depends on the specific choices made
for its various components. For example, whether or
not streamlines are calculated across the entire do-
main has a big effect on the overall complexity of
the interpolation method. If we intend to compute
a reconstruction on a dense discretization of the en-
tire spatial domain and if we decide to use the exact
method for defining a flow-based non-Euclidean dis-
tance measure depicted in Figure 2a, then we will
have to compute streamlines through every point of
the discretization, which will lead to a large com-
putational overhead just for the computation of the
distance function.

To reduce this overhead, we could decide to em-
ploy the approximate method for defining a flow-
based distance measure (Figure 2b), which does not
require the computation of streamlines. Alterna-
tively, if we are willing to accept a distance function
that is non-symmetric with respect to the sample lo-
cations and also possibly discontinuous at these loca-
tions, then we can substantially reduce the computa-
tional cost in another way. Specifically, because of the
relaxation of the symmetry requirement, we can com-
pute the streamlines that pass through the sample lo-
cations, and then define the flow-based distance mea-
sure using only these streamlines. Because we typi-
cally have a sparse scattered dataset, we will need to
compute far fewer streamlines than if we were to im-
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pose symmetry, which necessitates the computation
of streamlines through every reconstruction point in
addition to through every sample point.

In addition, if parameter optimization is per-
formed to tune the free parameters of the method
(as described in Section 4.3), then the computational
costs are increased. The direct search procedure de-
scribed in Section 4.3 is an iterative method whose
convergence properties contribute to the overall com-
putational complexity of the interpolation scheme.
Furthermore, if this local optimization method is used
along with a global optimization scheme (in order
to deal with the presence of local minima), then the
computational costs are increased even further.

Of course, the computational costs of the un-
derlying interpolation/approximation method must
be considered as well. Optimal Interpolation, like
many interpolation and approximation algorithms,
ultimately involves the numerical solution of a matrix
equation. The matrices involved scale quadratically
with the number of input data points (the scattered
samples), and the cost of solving a matrix equation
of this size must then be multiplied by the number of
points at which the reconstruction is to be computed.

5 Results

5.1 An Analytic Test Case

A simple test case to assess the potential of the flow-
based scattered data interpolation method is pre-
sented next. Because the flow-based distance func-
tions used by the proposed method make the funda-
mental assumption that scalar fields are highly corre-
lated along streamlines, as opposed to across stream-
lines, the method should perform well when this as-
sumption holds exactly. To verify this, the interpola-
tion method can be applied to a scalar field and flow
field for which the isocontours of the scalar field are
exactly coincident with the streamlines of the flow
field.

Figure 5 illustrates such a case. In Figure 5a, an
oscillating scalar field is shown. Superimposed on the
field are representative streamlines of the associated
flow field. As can be seen, these streamlines are also
isocontours of the scalar field.

Figure 5 shows the result of using the flow-based
scattered data interpolation method to reconstruct
the scalar field based on only two samples (one to-
ward the upper left of the spatial domain and the
other toward the lower right). A visual comparison
of Figures 5a and 5b shows that the method produces
a relatively accurate reconstruction of the original

scalar field even though only two samples of the orig-
inal field are used. The effectiveness of the method
results from its use of knowledge of the associated
flow field (via a flow-based non-Euclidean distance
function), combined with the fact that the flow field
directions exactly specify the isocontours of the scalar
field.

5.2 Tests for Cases Involving Various
Degrees of Diffusivity

5.2.1 Test Cases from an Advection-
Diffusion Model

In order to test the effectiveness of the proposed flow-
based interpolation method for interpolating actual
physical datasets, we need test data that reflect a re-
alistic relationship between a scalar field and an asso-
ciated flow field. A convenient way to construct such
realistic test cases is to employ a physical model. We
have chosen to use steady-state solutions to a simple
2D advection-diffusion model that approximates the
behavior a tracer quantities in the ocean [21].

Defining the tracer concentration at location
(x, y) and time t to be θ(x, y, t) and the x and y
components of the (time-invariant) flow velocity at
location (x, y) to be vx(x, y) and vy(x, y), respec-
tively, the time evolution of the tracer concentration
scalar field is modeled by the partial differential equa-
tion

∂θ

∂t
+vx

∂θ

∂x
+vy

∂θ

∂y
= κx

∂2θ

∂x2
+κy

∂2θ

∂y2
(3)

where the constants κx and κy are diffusivities in the
x and y directions, respectively. For all cases pre-
sented in this paper, we have assumed isotropic diffu-
sion, for which κx = κy. Physically, the diffusivities
κx and κy have dimension length2/time. However,
because we are using this model solely to construct
mathematical functions of x and y to use as test cases
for our reconstruction method, we typically will avoid
the explicit assignment of physical units to κx and κy
(and to x, y, t, vx, vy, and θ, for that matter).

Solving the differential equation of Eq.(3) numer-
ically, we have obtained a collection of test cases for
various values of diffusivity. Figure 6 illustrates the
scalar fields that correspond to three different val-
ues of the diffusivity coefficients κx and κy in Eq.(3)
(with κx = κy for each case). All three cases use
the same flow field (a left-to-right flow field with con-
stant flow magnitude over the entire (x, y) domain)
and boundary conditions (a Dirichlet boundary con-
dition specifying the concentration on the left bound-
ary and no-flux boundary conditions enforced on the
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Figure 5: A simple analytic test case that illustrates the potential of the flow-based interpolation method.
Figure 5a shows an oscillating scalar field f(x, y) whose isocontours are streamlines of the associated flow
field. The flow-based scattered data interpolation method produces an adequate reconstruction r(x, y) of the
oscillating scalar field based on knowledge of the flow field and only two samples of the scalar field (denoted
by the blue markers), as can be seen in Figure 5b.
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Figure 6: Three different 2D scalar fields resulting from the solution of the advection-diffusion equation of
Eq.(3) with a flow field moving from left to right with a constant flow magnitude of unity. Figure 6a shows
the solution θ(x, y) for a diffusivity of 0.5, Figure 6b shows the solution for a diffusivity of 1.0, and Figure 6c
shows the solution for a diffusivity of 2.0. The quoted values for diffusivity refer to the numerical values
used for both κx and κy in Eq.(3). For each case, there is a Dirichlet boundary condition at the left domain
boundary that specifies a time-invariant concentration there. The rest of the scalar field is the steady-state
solution of the advection-diffusion equation.
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other three boundaries). In all cases, we have solved
for the steady state solution, which we call simply
θ(x, y). It is this 2D scalar field θ(x, y) that is de-
picted in each plot of Figure 6.

Clearly, the correlation between scalar field values
at two points on a given streamline is greater when
the ratio of flow field velocity to diffusivity (the Péclet
number) is large. So, for a given flow velocity, the cor-
relation is higher for a low-diffusivity case than for a
high-diffusivity case. The ability to vary the diffusiv-
ity is one of the benefits of testing the interpolation
method using the results of the advection-diffusion
model, as this provides a convenient way to assess the
effect of diffusion and to quantify the rate at which
reconstruction quality degrades as the diffusivity be-
comes large (thereby reducing the usefulness of the
known flow information).

5.2.2 Parameter Study for an Advection-
Diffusion Test Case

In this section, we show how the performance of
the proposed flow-based scattered data interpolation
method depends upon the choice of parameters used
with the method. Figure 7 shows the problem that
will be used to illustrate the dependence of interpola-
tion results on the parameters chosen. The plot shows
the scalar function of interest, which was constructed
using the advection-diffusion model described above.
Overlaid on the plot are the locations of 30 points at
which samples of the scalar field are taken. The inter-
polation task is to use the flow-based scattered data
interpolation method to compute a reconstruction of
the original scalar field based on knowledge of these
30 sample points and the fact that the associated flow
field is that of a left-to-right flow.

Figure 8 shows the results of applying the in-
terpolation method with different parameter config-
urations. The family of non-Euclidean flow-based
distance functions that were used for this case was
parametrized only by the parameter α, which spec-
ifies the relative weight of distances along stream-
lines versus distances across streamlines. In addition
to varying α, the parameter study also considered
various values of the correlation coefficient used with
the underlying Optimal Interpolation method (a large
correlation length corresponds to a greater sphere of
influence for each sample point, while a small cor-
relation length implies that each point’s influence on
the reconstruction is relatively local to the streamline
passing through it).

Each curve in Figure 8a corresponds to a different
value of the α parameter. The horizontal axis repre-
sents the value of the OI correlation length parameter

and the vertical axis represents the root-mean-square
(RMS) error for a point-by-point comparison of the
original scalar function of Figure 7 with the recon-
struction corresponding to the parameter configura-
tion being used. Conversely, each curve in Figure 8b
corresponds to a different value of the OI correla-
tion length parameter, with the horizontal axis cor-
responding to the value of the α parameter. The
red curve in Figure 8a represents the RMS error, as a
function of the correlation length parameter, of recon-
structions computed using the standard OI method
with a Euclidean distance function. In both plots, the
blue line indicates the RMS error of the best recon-
struction computed using standard OI, which serves
as a baseline to assess the effectiveness of the flow-
based method.
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Figure 7: A 2D scalar field θ(x, y) in the presence
of a left-to-right flow field, constructed using the
advection-diffusion model of Eq.(3), with 30 scattered
samples indicated.

The first thing to notice from Figure 8 is that
there are parameter combinations (of the α and cor-
relation length parameters) that lead to RMS errors
that are lower than the lowest error achieved by a
reconstruction using the standard OI method. These
parameter combinations are represented by the por-
tions of the parameter study curves that lie below the
blue lines. The second important observation is that
some of the curves exhibit local minima with respect
to one or both of the parameters. This observation is
pertinent when considering optimization-based auto-
matic procedures for finding a near-optimal parame-
ter configuration.

As can be seen from Figure 8, parameter combi-
nations exist that result in better reconstructions (in
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Figure 8: A parameter study showing the RMS error of reconstructions of the scalar field of Figure 7 com-
pared to the known values for the scalar field. Figure 8a shows the RMS error as a function of the OI
correlation length. Each curve corresponds to a different value of the α parameter. Figure 8b shows the
RMS error as a function of α for curves representing different values of the correlation length. The parameter
study results indicate that local minima of RMS error can exist with respect to both the correlation length
and the α parameter. In Figure 8a, the red line represents the RMS error obtained by using the standard
Optimal Interpolation algorithm for various values of the OI correlation length parameter. In both plots,
the blue line represents the best possible reconstruction (for any correlation length) obtained using OI. As
can be seen, there are parameter combinations for which the flow-based method yields a lower RMS error
than the regular OI algorithm.

terms of having a lower RMS error) than the stan-
dard OI method applied to the same problem. How-
ever, how to find these parameter combinations is un-
clear. The parameter study indicates what the near-
optimal parameter combinations are, but the study
was performed with a priori knowledge of the actual
scalar field being reconstructed. In other words, the
only way we were able to compute the RMS errors
displayed in Figure 8 was by comparing the recon-
structions obtained to the known ground truth shown
in Figure 7. In practice, the ground truth will not
be known, so identifying the near-optimal parameter
combination is not straightforward.

Our solution to this problem is to utilize leave-
one-out cross validation, as described in Section 4.3.
Instead of computing the RMS error by comparing
the reconstruction to the ground truth at every point
in the spatial domain, we compute an alternative
RMS error that is defined in terms of the values of the
scalar field only at the known sample locations. For
each of the n known sample points, we run a separate
reconstruction using the other n− 1 points, and then
compute the error at the withheld point. Combining
the errors obtained for each of the n points leads to
the alternative RMS error. Notably, this error mea-
sure can be used for the typical situation in which the

ground truth scalar field is not actually known.

Figure 9 shows the results of a parameter study
conducted using the leave-one-out cross validation
definition of RMS error. The results shown paral-
lel those shown in Figure 8. As for the previous case,
we observe local minima with respect to both α and
the correlation length parameter (with potential con-
sequences for any optimization method applied to the
RMS error function). Most importantly, though, we
note that the near-optimal parameter combinations
for this alternative RMS error function appear to be
a reasonable proxy for those for the RMS error func-
tion that was computed with respect to the known
ground truth scalar field. In other words, the values
of α and correlation length that lead to the lowest
RMS errors in Figure 9 correspond to relatively low
RMS error values in Figure 8 as well. While the opti-
mum configuration for Figure 9 does not correspond
exactly to the optimum configuration for Figure 8,
we see that it at least leads to an RMS error below
the blue lines in Figure 8 (the OI baseline). There-
fore, we have demonstrated the potential value of the
leave-one-out cross validation approach for identify-
ing near-optimal parameter combinations for a given
problem, or at least ones that will lead to reconstruc-
tions superior to those computed using the standard
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Figure 9: A parameter study showing the RMS error of reconstructions of the scalar field of Figure 7 with
respect to the known values at the sample points only (in other words, using the information that is usually
available in practice). The RMS errors shown correspond to the alternative definition of RMS error using
leave-one-out cross validation. Figure 9a shows the RMS error as a function of the OI correlation length.
Each curve corresponds to a different value of the α parameter. Figure 9b shows the RMS error as a func-
tion of α for curves representing different values of the correlation length. As with the results presented
in Figure 8, the parameter study results presented here indicate that local minima of RMS error can exist
with respect to both the correlation length and the α parameter (in this case, for the RMS error computed
using leave-one-out cross validation). In Figure 9a, the red line represents the cross-validation-based RMS
error obtained by using the standard Optimal Interpolation algorithm for various values of the OI correlation
length parameter. In both plots, the blue line represents the best possible cross-validation-based RMS error
(for any correlation length) obtained using OI. Note that the parameter combinations leading to low cross-
validation-based RMS error values in Figure 9 are a reasonable proxy for parameter combinations leading to
low RMS errors for the reconstructions represented in Figure 8.

14



OI method.

The comparison of the parameter study results
shown in Figures 8 and 9 has shown that leave-one-
out cross validation provides a way around the prob-
lem of how to calculate RMS error when the ground
truth is not known. However, even so, performing an
exhaustive parameter study such as the one shown in
Figure 9 in order to find the best parameter config-
uration is too expensive to be practical for interac-
tive visualization purposes. In order to find a good
combination of parameters without having to perform
a full parameter study, the parameter optimization
approach described in Section 4.3 has been imple-
mented. The results obtained using this approach
are presented next.

5.2.3 Results Using Dynamically Optimized
Method

The parameter study results above illustrate the typ-
ical behavior of the RMS error with respect to the
choice of parameters used with the flow-based recon-
struction method. In order to find the near-optimal
choice of parameters without having to run a full
parameter study, a dynamic parameter optimization
can be performed during the interpolation process it-
self. Such a parameter adjustment can be made us-
ing any nonlinear optimization method, but as has
already been described in Section 4.3, the method
we have implemented uses a simple direct search to
perform the optimization.

Figure 10 shows an alternative presentation of the
data shown in Figures 8 and 9 for our flow-based re-
construction method. Here, the RMS error functions
are shown explicitly as functions of both α and the OI
correlation length parameter. These functions are the
objective functions that are to be minimized using the
dynamic parameter optimization method. Figure 10a
shows the RMS error calculated with respect to the
ground truth of Figure 7. Because the ground truth
is known for this case, we can perform a 2D direct
search directly on this objective function in order to
find the best possible parameter combination for the
problem (the point indicated by the green marker in
Figure 10a).

In practice, however, we usually do not know the
ground truth scalar field a priori. So, instead of opti-
mizing using the objective function of Figure 10a), we
instead will typically optimize with respect to an ob-
jective function defined in terms of the leave-one-out
cross-validation-based RMS error. Figure 10b shows
this alternative RMS error surface, which was calcu-
lated by applying leave-one-out cross validation us-
ing the 30 available sample points depicted in Fig-

ure 7. Notice that the surface has two local minima
in the parameter range shown. Which of these min-
ima is found during the direct search procedure de-
pends upon the initial guess used at the start of this
iterative algorithm.

Because the objective functions encountered for
typical reconstruction problems often exhibit local
minima, like in the case of Figure 10b, our imple-
mentation of the flow-based reconstruction method
includes the option to first do an initial scan of the
parameter space (at some user-defined resolution) in
order to select a good initial guess. The initial guess
used for the direct search algorithm is then selected to
be the parameter combination corresponding to the
lowest RMS error encountered during the initial scan.
In this way, we attempt to find the global minimum
of the objective function.

In Figure 10b, the cyan marker represents the lo-
cation of the global minimum, so if a fine enough ini-
tial scan is performed, the subsequent direct search
will find this minimum rather than the local mini-
mum represented by the black marker (at which the
cross-validation-based RMS error is only very slightly
greater). Note from Figure 10a that this parameter
configuration is nearby the one that leads to the min-
imum RMS error with respect to the ground truth.
Hence, when using the parameters found during the
dynamic parameter optimization phase of the algo-
rithm (which depends only on knowledge of the scalar
field values at the sample points), our method yields
a reconstruction that is close to the optimal one for
the problem. Also, note that even if the other local
minimum of the function of Figure 10b were found
during the parameter optimization (or if the surface
were slightly different, so that the black marker rep-
resented the global minimum of that function), the
reconstruction obtained would still be a good one. In
particular, the contour lines in Figure 10a indicate
that even though the black marker is further from
the best possible configuration in the parameter space
(the green marker), the RMS error obtained is similar
to that obtained using the configuration represented
by the cyan marker.

Although the example just discussed illustrates
the parameter adjustment process using a family of
distance functions parametrized by the single param-
eter α, the same procedure can be used for more
complicated families of distance functions that are
parametrized by more than one parameter. For ex-
ample, when using distance functions with decay-
ing anisotropy, the direct search optimization would
search in two additional directions to find the near-
optimal values of the inner and outer radii for the
decay region to be used. Although computational
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Figure 10: Illustration of RMS error as a function of the correlation length and the α parameter. Figure 10a
shows the RMS error of reconstructions compared against the known ground truth. Figure 10b shows the
leave-one-out cross-validation-based RMS error. The latter serves as the objective function for a dynamic
direct search optimization of the parameter space. The green marker shows the location of the minimum
of the RMS error surface (the best reconstruction over the entire parameter space). The cyan and black
markers show the local minima of the cross-validation-based RMS error surface. The cyan marker happens
to be the global optimum, so the cross validation procedure leads to choosing a parameter combination that
is close to the global minimum of the reconstruction error surface in Figure 10a.
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complexity is increased as additional variables are in-
cluded within the optimization loop, the computa-
tional costs are mitigated by the fact that for prob-
lems involving sparse scattered samples there are rel-
atively few RMS error values to be computed during
each iteration of the optimization.

In order to demonstrate the utility of our pro-
posed flow-based reconstruction method as compared
to standard methods, we now present results from
applying the method to a collection of test cases sim-
ilar to the one just described (whose error surfaces
are illustrated in Figure 10). Each case uses the
same 30 sample locations depicted in Figure 7 and
involves a scalar field that has been generated us-
ing the advection-diffusion model of Eq.(3) with the
same boundary conditions and flow field as for the
case shown in Figure 7 but with a different value for
the diffusivities κx and κy (with κx = κy for each
case, as before). For each case, we have used the
direct-search-based dynamic parameter optimization
procedure, and have attempted to avoid local min-
ima of the objective functions by first performing an
initial scan of the parameter space to determine a
reasonable initial guess for each problem.

Figure 11 shows RMS errors for a range of diffu-
sivities. For comparison purposes, results are shown
both for the standard Optimal Interpolation method
and for our flow-based reconstruction method. For
the former, the OI correlation length parameter was
optimized for each case, and for the latter both the
correlation length and the α parameter of the flow-
based distance measure were optimized simultane-
ously.

Moreover, two curves are plotted for both for the
OI method and the flow-based method. The curves
labeled“optimal” plot the RMS errors (with respect
to the ground truth) for reconstructions whose pa-
rameter configurations were found using dynamic pa-
rameter optimization with respect the the ground-
truth-based objective functions themselves (e.g., the
surface depicted in Figure 10a). These curves illus-
trate the lowest possible RMS errors for each method
when applied to the problem corresponding to the
diffusivity indicated (ignoring the fact that we don’t
have a way to find the optimal parameters when the
ground truth is not known). As can be seen in the
plot, for test cases constructed using a wide range
of diffusivities, the flow-based method always has a
better optimal reconstruction than the standard OI
method.

On the other hand, the curves labeled “using
cross validation” plot the RMS errors for reconstruc-
tions computed using the parameters found by the
dynamic parameter optimization process applied to

leave-one-out cross-validation-based objective func-
tions constructed with reference only to the scattered
samples themselves (e.g., the surface depicted in Fig-
ure 10b). Note that while cross-validation was used
to actually find the parameter configurations to use
for each case, the RMS errors shown are those of
the final reconstruction with respect to the ground
truth. These curves illustrate the the lowest RMS
errors achievable by each method in practice, using
our parameter optimization procedure and only the
data typically available. As can be seen from Fig-
ure 11, when using cross validation, the flow-based
method yields superior results over a large range of
diffusivities.
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Figure 11: Comparison of the RMS errors for re-
constructions computed using the flow-based method
and using the standard Optimal Interpolation algo-
rithm. Reconstructions were computed using the
sample locations shown in Figure 7 and for the same
flow field, but for a range of different diffusivities.
Comparing the curves for the two methods when op-
timized against the ground truth, we see that the flow
based method offers the possibility for superior re-
sults as long as the free parameters can be chosen ap-
propriately. When these parameters are chosen using
leave-one-out cross validation (using only the avail-
able sample points to construct the objective func-
tion to be minimized), the flow-based method does
in fact achieve superior results compared to OI. If
the parameter adjustment process can be improved
even further, even better results may be possible.

Furthermore, considering the gap between the
curve for the optimal flow-based method and the
curve for the flow-based method using cross valida-
tion (especially for higher diffusivities), we see that
even better results may be possible. If the cross-
validation-based parameter adjustment process can
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be improved upon, then the low-RMS-error recon-
structions that evidently are possible with use of flow-
based distance measures (with the appropriate pa-
rameter settings) may possibly be achievable in prac-
tice. It remains as future work to explore how to en-
hance the process to get closer to the optimal param-
eter configuration using only the sparsely distributed
samples that are known.

5.3 Application to Oceanographic
Problems

5.3.1 Effectiveness for Water Mass Bound-
aries

While the proposed method for flow-based scattered
data interpolation (and approximation) does not ex-
plicitly consider boundaries between separate regions
of the interpolation domain, it nevertheless results
in reasonable reconstructions in the vicinity of such
boundaries. One example of such a situation involves
the different water masses that are present in the
ocean. Large gradients of tracer values tend to ex-
ist across the boundary between one water mass and
another. Because the direction of water flow tends to
be approximately parallel to a water mass boundary,
using a relatively low value of α with our flow-based
interpolator provides a way to ensure that interpo-
lated values at a given point near a boundary are
constructed in such a way that greater weight is given
to the values at sample points on the same side of
the boundary. Hence, even though the method does
not reconstruct the boundary explicitly, the recon-
structed scalar field can be better aligned with the
boundary than would be possible using a non-flow-
based reconstruction method.

For example, Figure 12 illustrates a simple case
for which the scalar field takes the value 0.8 above
a horizontal boundary and the value 0.2 below it (as
depicted in Figure 12a). The flow direction is to the
right in the region above the boundary and to the
left in the region below the boundary, and 40 sample
points are available to be used as input to a scattered
data interpolation algorithm. When standard Opti-
mal Interpolation is used as the algorithm (optimiz-
ing for the best value of the correlation length param-
eter), the shape of the water mass boundary is not
well-represented in the resulting reconstruction (Fig-
ure 12b). However, as shown in Figure 12c, the flow-
based method – optimized simultaneously for both
the weighting factor α and the correlation length –
produces a reconstruction that more faithfully repre-
sents the boundary between the two regions.

Note that the reconstruction would be identical if

the flow were in the same direction in both regions
(because the streamlines would be the same). Hence,
it should be clear that the flow-based method’s effec-
tiveness at boundaries is related to how it weights
sample points in relation to flow direction, rather
than to any explicit identification of boundaries. Be-
cause flow is parallel to boundaries, using a value of
α less than one will tend to preserve any preexist-
ing difference in the average tracer value above the
boundary compared to below it. While this ideal-
ized problem may not seem to be a very difficult one,
given the information present in the flow field and the
clear separation of scalar field values above and be-
low the boundary, the example nevertheless serves to
illustrate how the flow-based reconstruction method
is able to exploit known information in a way not
possible with a non-flow-based method.

5.3.2 Effectiveness for Domain Boundaries

In addition to its advantageous properties with re-
spect to water mass boundaries, our method also
is naturally well-suited to handling domain bound-
aries. In the oceanographic application domain, these
boundaries are defined by the ocean surface and the
ocean bathymetry. Because the bathymetry involves
a considerable amount of structure imparted by such
things as ocean ridges, the reconstruction problem
has an added complexity not present when recon-
structing fields on a simple rectangular domain.

For example, when using a typical interpolation
method (with a Euclidean distance metric), the dis-
tance between two points on opposite sides of a ridge
will be measured straight through the ridge, and
therefore the correlation between the scalar field val-
ues these points will be computed to be stronger than
it should be. The result is an unphysical bleeding
through of the reconstructed scalar field from one side
of the ridge to the other. In order to prevent this, one
of several largely ad hoc procedures would have to be
implemented.

On the other hand, because streamlines of a flow
field cannot pass through such a ridge, the flow-
based reconstruction method we have proposed han-
dles such complexities in a natural way, without the
need for significant ad hoc modifications. For two
points on opposite sides of a ridge, if the streamlines
passing through the two points both pass over the
ridge, then the flow-based method yields good results
essentially for free. If one or both of the streamlines
do not extend to both side of the ridge, a naive im-
plementation will exhibit unphysical artifacts in the
vicinity of the ridge. However, the flow-based method
provides a natural way to handle this case as well,
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Figure 12: Using the flow-based interpolation technique to better capture tracer values on either side of an
idealized water mass boundary. Figure 12a illustrates the scalar function of interest, f(x, y), which involves
one constant value (0.8) above the boundary and a different constant value (0.2) below it. Flow is in the
rightward direction above the boundary and in the leftward direction below the boundary. The markers
indicate the location of each of the 40 samples of the scalar field that are available as inputs to a scat-
tered data interpolation algorithm. Figure 12b illustrates the reconstruction r1(x, y) obtained using Optimal
Interpolation as the scattered data interpolation algorithm, optimizing for the best correlation length. Fig-
ure 12c shows the reconstruction r2(x, y) obtained using our flow-based scattered data interpolation method,
optimizing both for the weighting factor α and for the correlation length simultaneously.

requiring only a fairly simple modification to the im-
plementation.

Namely, if the shortest straight line from one
point to the streamline passing through the other
point crosses a domain boundary, we define the com-
ponents of the distance as follows. The across-
streamline distance is defined to be the length of
the shortest line segment between the two stream-
lines that is entirely within the spatial domain, and
the distance in the streamline direction is defined to
be the sum of the streamline lengths from each of
the two points to the endpoint of the aforementioned
line segment that is on its own streamline. In this
way, all distance measurements are performed within
the spatial domain, and therefore the resulting recon-
struction is well-behaved with respect to the domain
boundaries.

5.3.3 Approximating a Tracer Field from
Oceanographic Core Data

As a final example we show (in Figure 13) the result
of applying our flow-based approximation method to
scattered carbon isotope data. The dataset consists
of measurements of 13C/12C (here referred to as δ13C,
which is the typical oceanographic term for this quan-
tity). The locations of these measurements corre-
spond to the core locations specified in Figure 1. The
flow field used was a simple one representing a coarse

approximation of the flow observed in the modern At-
lantic Ocean. As can be seen, our method leads to a
relatively smooth approximation. Furthermore, the
reconstruction appears to respect the δ13C values at
the core locations fairly well considering the level of
smoothness exhibited (and considering that for this
example, data from all longitudes have been mapped
onto a single latitude/depth plane).

While the reconstruction depicted in Figure 13
appears physically realistic in the interior of the do-
main, the existence of extrapolation artifacts toward
the boundaries (in particular, toward the left side and
in the bottom right corner) leads to a unrealistic re-
construction in these regions. To handle this prob-
lem, extrapolation is handled explicitly via a second
pass through the reconstruction algorithm. A set of
boundary points are assigned values based upon a lin-
ear extrapolation from the convex hull of the sample
points (Figure 14). These points are added to the
original set of points for a second pass through the
flow-based reconstruction algorithm. The result is
a continuous reconstruction, depicted in Figure 15,
that is better behaved toward the domain bound-
aries and therefore physically more realistic across
the entire domain. To reduce extrapolation excur-
sions even further, the same two-pass procedure can
be employed, but with the values at the boundary
points computed using constant extrapolation from
the convex hull rather than linear extrapolation.
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Figure 13: Reconstruction of the δ13C scalar field generated using the flow-based approximation technique
applied to δ13C data at the core locations depicted in Figure 1. The δ13C values at the core locations are
indicated by the colors inside the plotted circles. The lines in the plot depict isocontours of the reconstruc-
tion.
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Figure 14: In order to reduce extrapolation excursions toward the boundaries of the domain, a convex hull
is formed around the sample points and values are assigned at the boundary of the domain using linear
extrapolation from the initial reconstruction inside the convex hull.

20



 0

 1

 2

 3

 4

 5

-60° -40° -20° 0° 20° 40° 60°

D
e
p
th

 (
k
m

)

Latitude

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

δ
1

3
C

 (
‰

)

Figure 15: The final reconstruction is computed using a second pass through the flow-based approximation
algorithm, using the same parameters as for the initial reconstruction but adding the boundary points from
Figure 14 to the original set of sample points. This process leads to a continuous reconstruction that exhibits
fewer excursions in the extrapolation region, and therefore is more physically realistic.

6 Conclusions and Future
Work

The results presented have shown that the proposed
method for scattered data interpolation and approx-
imation is more effective than the corresponding
non-flow-based method. Specifically, for a relatively
sparse set of samples of a scalar field, using flow-
field motivated generalized distance metrics with the
Optimal Interpolation method of reconstruction typ-
ically leads to better fidelity with the true scalar field
than is obtained by using the standard (Euclidean-
distance-based) Optimal Interpolation method. Also,
we have noted that proper optimization of the free pa-
rameters of the interpolation method is critical to ob-
taining good reconstruction results. Toward this end,
we have demonstrated a cross-validation-based ap-
proach to searching for near-optimal parameter con-
figurations.

The flow-based scattered data interpolation and
approximation method described in this paper can
be enhanced in several ways, and these will be in-
vestigated in future work. For example, while the
current method exploits correlations with flow only
via the streamlines of the flow field, a straightfor-
ward extension would be to generalize this so that
flow magnitudes are considered explicitly. Another
possible generalization is to allow the tunable α pa-

rameter to vary locally in space rather than being a
global parameter for each reconstruction problem.

With regard to parameter optimization, a more
sophisticated approach to global optimization would
lead to fewer instances of falling into local minima of
the objective function, which in turn might result in
the identification of parameter configurations closer
to the optimal ones. In addition, a more careful anal-
ysis of the relationship between objective functions
constructed with respect to the ground truth and
those constructed using leave-one-out cross validation
might lead to improved methods for parameter se-
lection. Furthermore, the cross-validation-based ob-
jective function itself could be refined to include en-
hancements such as weighting the individual terms
to adjust for the relative proximity of sample points
(perhaps using a Voronoi tessellation).

Also, while this paper considered the method only
in its 2D incarnation, the generalization to 3D will
allow the method to be used directly for 3D ocean
reconstruction problems. Likewise, the extension to
4D would allow treatment of time-varying problems.
Finally, while the current method exploits a known
flow field to enhance the fidelity of reconstruction of a
related scalar field, it would be of interest to explore
the degree to which an unknown flow field could be
inferred based only on scattered samples of the scalar
field.
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