
 

 

 

Chapter 7 

 

Fundamental Theorems: Vorticity and Circulation 

 
7.1 Vorticity and the equations of motion. 

 

In principle, the equations of motion we have painstakingly derived in the first 6 

chapters are sufficient unto themselves to solve any particular problem in fluid 

mechanics. All the information we need is really contained in the mass, momentum and 

thermodynamic equations. However, it is rare that we can exactly solve the equations for 

any real phenomenon of interest. So the question arises as to what general principles we 

can deduce about the dynamics of fluids that is robust and illuminating and that will give 

us insight, a priori about what to expect in particular cases and what relations must hold 

in any consistent approximation to the equations of motion.  

Stated somewhat differently, given certain a priori constraints  what are the general 

consequences? Usually the stronger the constraint the stronger the resulting consequence. 

For example, if we specify a priori that dissipation is not important we can prove an 

energy conservation theorem that will  be generally true in the absence of dissipation for 

all flow configurations.  It is important to bear in mind that all the results we can deduce 

come from the basic equations of motion, i.e. they are derived and not independent and 

hence any consistent approximation to the equations of motion must possess a 

corresponding principle. 

In Geophysical Fluid Dynamics, especially the study of the atmosphere and the 

ocean we are particularly interested in the rotation of the fluid since every fluid element 

is already rotating with the planet. We noted in Chapter 3 that the vorticity (3.4.3) 
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
ω = ∇ × u,
or

ω i = εijk
∂uk
∂x j

  (7.1.1) 

was twice the local rate of rotation of a fluid element. In a Cartesian coordinate frame, 
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= î wy − vz⎡⎣ ⎤⎦ + ĵ uz − wx⎡⎣ ⎤⎦ + k̂ vx − uy⎡⎣ ⎤⎦ (7.1.2) 

where subscripts denote differentiation. 

It is important to distinguish between circular motion, i.e. the motion of a fluid 

particle in a circular orbit and the rotation of the element. The vorticity is defined as the 

local rotation or spin of the fluid element about an axis through the element. Figure 7.1.1 

shows the distinction. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1.1 The  fluid  element moving from A to B on a circular path has no vorticity 

while the fluid element moving from C to D has vorticity. 

 

It is important to keep in mind the distinction between vorticity and the curvature of 

streamlines.  
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7.2 Vortex lines and tubes. 
 

We define a vortex line in analogy to a streamline as a line in the fluid that  at each 

point on the line the vorticity vector is tangent to the line, i.e. the vortex line at each  

point is parallel to the vorticity vector.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2.1 A vortex line 

 

It is important to note that the strength of the vector vorticity is not constant along a 

vortex line in the same way that the velocity is not (necessarily) constant along a 

streamline. 

 

A vortex tube is a cylindrical tube in space whose surface elements are composed of 

vortex lines passing through  the same closed curve,  C, as shown in Figure 7.2.2  
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Figure 7.2.2 A vortex tube consisting of vortex lines each of which pass through the 

closed curve C. 

 

Note that the vorticity vector ω   does not have a component  normal to the tube’s 

bounding surface by the method of construction. The vorticity vector always lies within 

the bounding surface. 

The strength of a vortex tube, Γ,  is defined by the product of the vorticity normal to 

the surface enclosed by the curve C, 

 

 
 
Γ =


ω id

A

A
∫ =


ω in̂dA

A
∫   (7.2.1) 

where the integral is over the surface girdled by the curve C as shown in Figure 

7.2.3. 

 

 

 

 

Figure 7.2.3 The vortex tube strength is the integral of the component of the vorticity 

normal to the surface bounded by the curve C over that surface.   
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Thus the vortex tube strength is equal to the product of  

ω in̂ ( where n̂  is the normal 

to the surface A) integrated over the surface A which is the cross section of the tube. In 

some fluid mechanics literature the vortex tube strength is confusingly called the vortex 

flux but this is misleading because it does not refer to the advection of vorticity but only 

the integral in (7.2.1) in analogy with the mass flux through a  stream tube. 

An important fact  (or theorem) that follows directly from the definition of a vortex 

tube is that the strength of a vortex tube is constant along the tube. Since  

ω = ∇ × u  it 

follows trivially that  

   ∇i

ω = 0   (7.2.2) 

(In our tensor notation, 

 

ω i = εijk
∂uk
∂x j

,

so,

∇i

ω= ∂ω i

∂xi
= εijk

∂2uk
∂xi∂x j

≡ 0
  (7.2.3 a,b) 

 

since the term on the right hand side of (7.2.3b) is the inner product of an antisymmetric 

tensor in the indices  i, j, and a symmetric tensor in the same indices. If we integrate 

(7.2.2) over the area of the volume composed of the vortex tube and two arbitrary cross 

sections, as shown in Figure 7.2.4, 

 

 

 

 

 

 

 

 

 

Figure 7.2.4  The volume composed of the surface of a vortex  tube and two slices 

through the tube forming the areas A1 and  A2. 
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Note that in the figure the normal vector n2  is an inward facing normal to the volume. 

Integrating  (7.2.2) over the volume  

  

  
 
∇i

ω

V
∫ dV =


ω in̂dA

A
∫ =


ω1

A1
∫ in̂1dA1 −


ω2

A2
∫ in̂2dA2 = 0  (7.2.4) 

There is no component o f the vorticity normal to the rest of the volume’s surface since it 

is a vortex tube so the area integral in (7.2.4) is only over the areas of the slices  across 

the tube. It follows directly that, 

 

 
 


ω1

A1
∫ in̂1dA1 =


ω2

A2
∫ in̂2dA2    (7.2.5) 

or since the areas chosen are arbitrary this means that the vortex tube strength, Γ,  is 

constant along the tube. Note that this is a purely kinematic result. It depends only on the 

definition of the vorticity and  its consequent non-divergence . It does not depend on the 

dynamics.  An important implication of the result is that vortex lines, or tubes, cannot just 

end within the fluid. They must either close on themselves (like a smoke ring) or intersect 

a boundary. 

 In a rotating fluid, 

   
ua =
u +

Ω × r   (7.2.6) 

so that the vorticity associated with the velocity in an inertial frame is related to the 

vorticity in a rotating frame by 

 

 

 


ωa =


ω +∇ ×


Ω × r⎡⎣ ⎤⎦

=

ω + 2


Ω

  (7.2.7) 

 

so the vorticity in the inertial frame is equal to the vorticity seen in the rotating frame 

(called the relative vorticity) plus the vorticity of the velocity due to the frame’s rotation 

which is just twice the rotation rate of the frame. 

Similarly, the vortex tube strengths are related by, 
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
ωa in̂

A
∫ dA =


ω in̂dA

A
∫ + 2


Ωin̂dA

A
∫

=

ω in̂dA

A
∫ + 2ΩAn

  (7.2.8) 

 

 

where An is the projection of A onto a plane perpendicular to  

Ω  as shown in Figure 7.2.5. 

 

 

 

 

 

 

Figure 7.2.5 The  projection of the surface  A onto the plane perpendicular  to the rotation 

vector defines the area 
 
An = A

n̂i

Ω
Ω

. 

This shows that the contribution to the strength of a vortex tube of the planetary vorticity 

depends on the orientation of the tube with respect  to the planetary rotation.  The 

maximum contribution occurs when the tube is oriented parallel to the rotation vector. 

There is a zero contribution if the tube is perpendicular to Ω . 

 

7.3 The circulation 

The circulation of any vector  field  

J  around a closed curve C in the fluid is 

defined as: 

 

 
 
Γ J =


J idx

C
∫ = Jidxi

C
∫   (7.3.1) 

where the contour is taken in the counter-clockwise sense. The curve C need not lie in a 

plane and can be a complicated but continuous curve as illustrated in Figure 7.3.1 
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Figure 7.3.1 The contour  C around which the component of J tangent to C is 

integrated. 

 

The circulation involves the component of  J tangent to the curve . If J is the 

velocity vector  the resulting circulation is simply called the circulation and is denoted by 

Γ and is  

 

 
 
Γ = uidx

C
∫   (7.3.2) 

From Stokes theorem ( see appendix to Chapter 7 for an elementary derivation of 

Stokes Theorem), 

 

 
 
Γ = uidx

C
∫ = [∇ × u

A
∫ ]in̂dA =


ω in̂

A
∫ dA  (7.3.3) 

so that the circulation is just vortex tube strength for the tube enclosed by C. 
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Figure 7.3.2 the circulation around C gives the vortex strength of the vortex tube 

with cross sectional area A. 

 

As we know from Stokes theorem, this relationship between the circulation and the 

area integral of the vorticity is only valid if the region enclosed by the contour C is simply 

connected. That is, the region must be such that we can shrink the contour to a point 

without leaving the region.  Simply connected regions are bounded by contours that are 

called reducible. So, a region with a hole (like a bathtub drain) or an island (like Australia 

in the Pacific Ocean) is not  simply connected and the contour is not reducible. 

Nevertheless, we can proceed by the following device. Consider the region with an non-

fluid island whose bounding contour is CI. The original contour ,C, is then supplemented 

as shown in Figure 7.3.3 to form a new contour that does not have a hole. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7.3.3 . The augmented contour to deal with a region with an island in it. 

 

The contour C has been augmented by a contour that travels  to the island on the dashed 

line ca and then travels around the island on its bounding contour in a clockwise sense and 

then rejoins the outer contour along the path cb. We allow the two dashed segment to 

approach one another in the limit. The total contour integral is now, 

 

C 

CI 

ca 
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uidx
C
∫ + uidx

CI
∫ + uidx

ca
∫ + uidx

cb
∫

→0
  

=

ω in̂dA

A
∫  (7.3.4) 

where the area integral on the right hand side of (7.3.4) is over the fluid area between the 

contours C and CI. The integrals on ca and cb cancel since they integrate the same velocity 

field but in opposite directions in the limit where the two segments approach each other. 

Thus,  with attention to the direction of the contour integrals, 

 

 
 
Γ − Γ I =


ω in̂dA

A
∫   (7.3.5) 

where Γ is the circulation on C and ΓI  is the circulation (in the counterclockwise sense)  

around the island. Our general rule is then that the circulation on a contour is equal to the 

vortex strength of the region enclosed plus the  circulation around all the holes enclosed 

by C. 

 
 

uidx
C
∫ =


ω in̂dA

A
∫ + uidx

Cj

∫
j
∑   (7.3.6) 

 

Of course, if the contour around the  island could be shrunk to a point, and if the velocity 

remains finite, the contribution from the circulation around the hole would vanish and 

(7.3.6) would reduce to (7.3.3). These considerations are not just fussy mathematical 

arguments. In dealing with many problems we often find ourselves with “holes” in our 

domain either because of the presence of islands (like Australia) or the presence of 

regions where the dynamics requires different approximate equations than the ones we 

might be using rendering those regions inaccessible within our chosen dynamical 

framework and we might hope to replace the consequences of the generally more 

complex dynamics with some argument about the resulting circulation.  

These considerations become important because of the central dynamical role of the 

circulation. Up to now we have only considered its kinematics but Kelvin’s theorem, 

below, makes is a central dynamical entity. 

 

7.4 Kelvin’s Circulation Theorem 
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Consider a closed contour C that is drawn in the fluid and moves with the fluid so 

that the motion  of the fluid elements on the contour determine its subsequent location 

and shape as shown in Figure 7.4.1. 

 

 

 

 

 

 

 

 

Figure 7.4.1 The contour C and a fluid element A on the contour  moving with the fluid 

velocity at that point. 

 

Think  of the contour as being composed of a “necklace” of fluid elements and the 

contour it moves with the necklace and is defined by the motion of the “pearls” on the 

necklace. We can then calculate the rate of change of the circulation on the contour, 

 

 

dΓ
dt

=
d
dt
uidx

C
∫ =

du
dt

idx
C
∫ + ui

d
dt
dx

C
∫    (7.4.1) 

To calculate the last term we note that for the line element moving with the fluid, 

 

 

 

 

 

Figure 7.4.2 The line element dx stretches and rotates depending on the velocity 

difference between its end points. 

 
 

d
dt
δ x = δ u    (7.4.2) 

so that as the distance dx goes to zero, (7.4.1) can be written, 
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dΓ
dt

=
d
dt
uidx

C
∫ =

du
dt

idx
C
∫ + uidu

C
∫ ,

=
du
dt

idx
C
∫ + d u 2 / 2

C
∫

  (7.4.3) 

since the last term is the integral of a perfect differential around a closed path. Thus, 

(7.4.3) becomes,  

 

 
 

dΓ
dt

=
du
dt

idx
C
∫  

    (7.4.4) 

We have not specified which  velocity we are using to define the circulation in (7.4.4). It 

is convenient for  what follows to use the absolute velocity  
ua , i.e. the velocity seen in 

the inertial frame. Then, 

 

 
 

dΓ a

dt
=

dua
dt

idx
C
∫    (7.4.5) 

 

The momentum equation, (for simplicity let’s take the viscosity coefficients to be 

constants) 

 

 
 
ρ d
ua
dt

= −∇p + ρ

F + µ∇2 u + (µ + λ)∇ ∇i

u( )   (7.4.6) 

allows us to evaluate the  right hand side of (7.4.5). First, we assume that the body force 

per unit mass,   F , can be derived from a potential as in the case of gravity,  so that, 

 

  

F = −∇Φg    (7.4.7) 

( we have put the label g on the potential to distinguish it from the dissipation function, 

6.1.15). It follows from (7.4.7) that, 

 

0 
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
Fidx

C
∫ = 0    (7.4.8) 

and hence (7.4.5) becomes, 

 

 
 

dΓ a

dt
= −

∇p
ρC

∫ idx + ν ∇2 uidx
C
∫    (7.4.9) 

 

Since, 

  

  ∇pid
x = dp,    (7.4.10) 

and 

 

  ∇
2 ua = ∇(∇i

ua ) − ∇ ×

ωa    (7.4.11) 

 

(this is easy to prove using the alternating tensor and using tensor notation), it follows 

that 

    (7.4.12) 

    

 

 

 

The statement of Kelvin’s circulation theorem ,  

If , for any circuit, C,  moving with the fluid 

 

a) ρ = ρ(p) . That is, the density is a function only of pressure  so that surfaces of 

constant density and pressure coincide ( a so-called barotropic fluid, the simplest 

example being  a fluid of constant density) and this makes the integrand of the first term 

on the right hand side a perfect differential whose contour integral vanishes, 

and 

b) ν =0. That is, friction can be neglected, 

 

 

dΓ a

dt
= −

dp
ρC
∫ − ν∇ ×


ω idx

C
∫
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then, 

The circulation is a conservative property.  Note that the evaluation of the circulation Γa 

depends on knowledge of the position of the contour. Note too, that the conditions (a) and 

(b) need only be true on the contour. 

Before discussing the consequences of the conservation of circulation let’s examine 

the terms on the right hand side of (7.4.12) that would be responsible for the production 

or  destruction of circulation.  

The first term is the baroclinic term  

 
−

∇p
ρC

∫ idx =
∇ρ × ∇p

ρ2A
∫ in̂dA   (7.4.13) 

will be different from zero whenever the surface of density and pressure do not coincide.  

Consider Figure 7.4.3 

 

 

 

 

 

Figure 7.4.3 The circuit C, the density and pressure gradient and an indication of the 

sense of the circulation induced by the baroclinic term (7.4.13) 

 

If we think of the pressure gradient  and its direction as being imposed by a gravity, just 

to make things intuitive, and if the density gradient is increasing to the left, it seems 

intuitive that the heavier fluid on the left would sink, the lighter fluid on the right would 

rise and the circulation would tend to increase as shown in the figure. 

We emphasize this  in the figure shown below, 
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dΓ a
dt  



Chapter 7                                                       15 

 

 

 

 

 

 

 

 

 

 

Figure 7.4. 4 The density and pressure surfaces. It should be clear that the tendency is for 

the density surfaces to slump to the horizontal producing circulation in the counter 

clockwise sense. 

 

Another way of looking at the effect is to examine a fluid parcel whose center of gravity 

is displaced to the left by the presence of the density gradient. 

 

 

 

 

 

 

 

 

 

Figure 7.4.5 The displaced center of gravity, the pressure gradient and the pressure force 

on the fluid element.   

 

Taking torques around the center of gravity shows that the fluid will start to spin  

counter-clockwise producing positive circulation. 
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The second term on the right hands side of (7.4.12) represents the tendency of vorticity to 

diffuse through the fluid and so it can diffuse across the contour C without regard to the 

motion of the fluid. If the circulation measures the total vorticity contained within C the 

diffusion of vorticity, which we discussed in Section 5.3, permits the vorticity to diffuse 

across C. Indeed, using the identity (7.4.11) for the vorticity instead of the velocity, 

 

 ∇ × (∇ ×

ω ) = −∇2 ω +∇ ∇i


ω( )   (7.4.14) 

 

 
−ν ∇ ×


ω idx = ν ∇2 ω in̂

A
∫∫ dA   (7.4.15) 

 

which emphasizes the diffusive character of the term. Note, however, that it is really the 

spatial variation of the vorticity on the contour that counts in (7.4.12) 

 

For example, suppose the only component of the vorticity  in the vicinity of an element of 

the contour is in the vertical direction,  i.e.  

ω =ω 3k̂  and suppose we consider an element 

of the contour parallel to the x axis so that  d
x = î dx . Then the term, - ν∇ ×


ω idx  is just 

−νdx1
∂ω 3

∂x2
. Figure 7.4.6 demonstrates the diffusive effect. 

 

 

 

 

 

 

 

Figure 7.4.6 The line element dx1 forms part of the contour C.  

 

As shown there is a increase of ω3 in the x2 direction perpendicular to the element 

dx1. With our expectation of the nature of diffusion, i.e. that the property should diffuse 

down the gradient, we expect the vorticity to cross the line element and leave the domain 

0 
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x2 

x3 
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encircled by C. This diffusive effect then lowers the circulation in the region enclosed by 

C even though no fluid crosses C (by definition). 

 

7.5 Kelvin’s theorem in a rotating frame. 
To examine the form of Kelvin’s theorem for a rotating frame we need only recall 

the relation between the velocity as seen in an inertial frame and that seen in the rotating 

frame, namely, 

 

  
ua =
u +Ω × x   (7.5.1) 

so that the circulations in each frame are related as, 

 

 

Γ a = Γ +

Ω × xidx

C
∫

= Γ + 2

Ωin̂dA

A
∫

= Γ + 2ΩAn

  (7.5.2) 

as in (7.2.8). 

Since the circulation is a scalar the rates of change are the same in each frame so we 

can just substitute (7.5.2) into (7.4.12) to obtain for the circulation observed in a rotating 

frame, 

 

 
 

dΓ
dt

= −2Ω dAn
dt

+
∇ρ × ∇p

ρ2
in̂dA

A
∫ + ν ∇2ω in̂dA

A
∫  (7.5.3) 

Consider the situation where viscosity can be neglected and where the fluid is barotropic. 

Then  

 dΓ
dt

= −2Ω dAn
dt

  (7.5.4) 

which just tells us that the total circulation is conserved. However, the implications are 

striking. As the projected area An changes the circulation in the rotating frame must 

change to compensate.  

Example a. The Rossby wave 
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For example, suppose we have a flow in the atmosphere that we idealize as being 

two dimensional and horizontally non divergent. Then the horizontal area  of any patch of 

fluid will be constant with time. If, though, the area slides on the surface of the sphere so 

that, moving northward, it is penetrated by more of the lines of vorticity associated with 

the Earth’s rotation, An will increase; see Figure 7.5.1. 

 

 

 

 

 

Ω  
 

 

 

 

 

 

 

 

Figure 7.5.1 A zone of constant area A tangent to the sphere changes its projected area on 
the planetary vorticity by moving northward. The area is shown in the figure and is also 
shown in profile with the planetary vorticity piercing the area at an angle. 
 
 
The projected area satisfies the relation, 
 
 An = Asinθ    (7.5.5) 
For a barotropic, inviscid  fluid Kelvin’s theorem then becomes, 
 

 dΓ
dt

= −2ΩAcosθ dθ
dt

  (7.5.6) 

 
Now,   
 

 dθ
dt

=
u
r
∂θ
∂φ

+
v
r
∂θ
∂θ

=
v
r

  (7.5.7) 
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where r is the Earth’s radius. At the same time the left hand side of (7.5.6)  is just 
 

 d
dt

ςdA
A
∫ = A dς

dt
  (7.5.8) 

 
where ς is the mean value over the area A, of the vertical component of vorticity (normal 

to the Earth’s surface). If we consider infinitesimally small surface areas, that mean value 

will equal the value of the vorticity itself. Again, using the constancy of A this leads to 

the equation, 

 

  dς
dt

= −
2Ω cosθ

r
⎡
⎣⎢

⎤
⎦⎥
v  (7.5.9) 

 

which is a differential statement of the vorticity induction effect. A fluid element moving 

northward will produce a decrease in the vorticity of the fluid (relative to the earth). If the 

vorticity is originally zero, northward motion will yield clockwise vorticity (clockwise 

circulation).  

The vertical component of vorticity is, 

 

 ς =
∂v
∂x

−
∂u
∂y

   (7.5.10) 

where x is a coordinate measuring distance eastward and y northward. We are using a 

locally Cartesian coordinate frame assuming that the scales of motion are large enough 

for Ω to be important but small enough to allow the geometrical convenience of the 

Cartesian system. Since the motion is two dimensional and nondivergent in our simple  

model, the velocities can be represented in terms of a streamfunction,  

 

 u = −
∂ψ
∂y
, v =

∂ψ
∂x

  (7.5.11) 

 

(check that this automatically satisfies the condition of zero horizontal divergence). The 

vorticity itself is, 

 ζ = vx − uy =ψ xx +ψ yy = ∇2ψ  (7.5.12) 
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The differential statement of Kelvin’s theorem (7.5.6) becomes, 

 

 ∂
∂t
∇2ψ +

∂ψ
∂x

∂∇2ψ
∂y

−
∂ψ
∂y

∂∇2ψ
∂x

+ β ∂ψ
∂x

= 0  (7.5.13) 

where we have defined the parameter, 

 

 β =
2Ω cosθ

r
=
1
r
∂2Ω sinθ

∂θ
≡
df
dy

 (7.5.14) 

The local normal component of the Earth’s planetary vorticity, 2Ω sinθ  is conventionally 

denoted as f, the Coriolis parameter. It varies from a minimum at the south pole, passes 

through zero at the equator and reaches a maximum at the north pole. Its variation is 

important but relatively slow compared with the length scale over which atmospheric and 

oceanic motions vary and so it is possible to consider it nearly constant locally. Its 

variation with latitude, i.e. its northward gradient is given by β and the presence of this 

term in (7.5.13) is the so-called beta effect. The motion of fluid in the gradient of the 

planetary vorticity produces relative vorticity. This manifestation of the sphericity of the 

Earth in an otherwise flat, Cartesian geometry is the beta plane approximation. You will 

see a more rigorous and systematic justification in later courses (or see Chapter 3 of 

GFD) . This approximation was introduced in this heuristic manner by Rossby in his 

famous 1939 paper where he derived the vorticity wave that now bears his name. 

Indeed, let’s follow his example and search for a plane wave solution of the 

nonlinear equation (7.5.13) in the form, 

 

 ψ = Acos(kx + ly − σ t)   (7.5.15) 

If this is substituted into (7.5.13) we note first that the nonlinear terms identically vanish. 

This is because, for a solution like (7.5.15) the relative vorticity 

 ζ = ∇2ψ = −(k2 + l2 )ψ   (7.5.16) 

 

so that the nonlinear term, i.e. the advection of the vorticity of the fluid by its own 

motion, and which is the Jacobian of the streamfunction with the vorticity, is zero. 

Thus, (7.5.13) yields, 
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 Asin(kx + ly − σ t) −σ (k2 + l2 ) + βk⎡⎣ ⎤⎦ = 0  (7.5.17) 

 

The only non trivial solution to (7.5.17) gives the dispersion relation, that is, the relation 

between the frequency and the wavenumber, namely, 

 

 σ = −
βk

k2 + l2
   (7.5.18) 

 

The frequency σ as a function of the x wavenumber k is plotted in Figure 7.5.2 and has 

several interesting and rather strange properties. 

 

 
Figure 7.5.2 The frequency of the Rossby wave scaled with β/l plotted as a function of 

k/l. 
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The phase of the wave, (think about a particular crest )  is given by the argument of the 

trigonometric function in (7.5.15). The phase is 

 phase = kx + ly − σ t    (7.5.19) 

The rate at which a point of constant phase moves in the x direction is 

 

 ∂x
∂t
⎞
⎠⎟ phase

= −
∂phase / ∂t
∂phase / ∂x

= σ / k ≡ c = −
β

k2 + l2
 (7.5.20) 

This phase speed in the x direction is always negative. That is, crests and troughs in the 

wave always move westward! As you will see in 12.802 the energy in the wave does not 

move at the phase speed but at a different speed, the group velocity♦, but this is beyond 

the point we will go now. Also, notice that there is a maximum (in terms of magnitude) 

Rossby wave frequency that depends on β and on the y wavenumber the latter of which 

will usually be set by the meridional extent of the domain. 

Example b. The ocean circulation 

We saw in chapter 5 that a wind stress acting on the surface of the ocean would 

produce a stress-driven transport in a frictional boundary layer, the Ekman layer, near the 

upper surface of the fluid and the divergence of that transport would yield a vertical 

velocity at the base of the boundary layer given by (5.2.6), namely, 

 

 
 
wE = k̂i∇ ×


τ
ρ f

⎛
⎝⎜

⎞
⎠⎟

  (7.5.21) 

Suppose we consider an idealized model of the ocean circulation in which the fluid is 

considered to have constant density and a flat bottom. Then the fluid pumped down (or 

up) from the Ekman layer will force a compensating divergence of fluid below and an 

increase or decrease in the cross-sectional area of fluid columns beneath the frictional 

boundary layer as shown in Figure 7.5.3. 

 
                                                
♦ The group velocity in the ithdirection is defined as 

  
cgi =

∂ω
∂ki

,i=1,2,3 . Try calculating the group 

velocity in the x (or 1) direction,
  

∂ω
∂k

. 
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Figure 7.5.3 A fluid column in the ocean has a horizontal divergence due to Ekman pumping. 

 

 In this case a simple mass balance for the fluid column yields, 
 

  1
A
dA
dt

= −
wE

D
  (7.5.22) 

 
so that now (7.5.4) becomes, 
 

 dς A
dt

= −βvA − f dA
dt

  (7.5.23) 

 
For the large scale circulation of the ocean, away from strong boundary currents like the 

Gulf Stream, the term on the left hand side is negligible. If U is a typical horizontal 

velocity and L  is a typical horizontal length scale, then the left hand side can be 

estimated as, 

 

 dζ A
dt

≈
U
L
U
L
A    (7.5.24) 

 

Ekman layer 
wE 

D 



Chapter 7                                                       24 

while the first term on the right hand side is of order βUA so that the ratio of the former 

to the latter is, U
βL2

. If we use U= 5 cm/sec, L = 1,000 km and β =2 10-13cm-1sec-1 this 

ratio is 2.5 10-3, i.e. entirely negligible. Using (7.5.22) in (7.5.23) yields 

 

 v = f
β
we

D
   (7.5.25) 

 

so that in the region of the subtropical gyre of the North Atlantic, for example, where the 

Ekman velocity is negative and of the order of 2 x10-4 cm/sec this yields a meridional 

velocity, taking D to be the thermocline depth of 1 km, of v = 1 cm/sec which is about 

right for a mid-ocean velocity when averaged over the thermocline. Note that this would 

yield a southward flow everywhere and unless we expect the oceans to drain, there must 

be a return flow in which the constraint (7.5.25), the Sverdrup relation, is broken. This 

can occur in narrow, swift boundary currents for which the left hand side of (7.5.24) is 

not negligible. We can estimate the width of such currents by asking for what value of L 

will the ratio U/βL2 be order unity. For U of order 5 cm/sec this yields a width of 50 km, 

i.e. just about the width of the Gulf Stream, the narrow boundary current that returns the 

flow that moves southward under the influence of the winds as described by (7.5.25) 

Example c. The bathtub vortex. 

Probably no  aspect of Geophysical Fluid Dynamics is more fixed in the mind of the 

lay person than the “fact” that in the northern hemisphere water circulates 

counterclockwise as it goes down the bathtub drain and clockwise in the southern 

hemisphere. Let’s see if that is a reasonable conclusion to draw from our circulation 

arguments; then you can check it during your next shower or bath ( which I assume will 

be soon!). 

We consider a theoretician’s bathtub, one that is very large, circular and with the 

drain in the center. 

 

 

 

drain 

C 
r 
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Figure 7.5.4a A circular tub with a drain in the center. The contour C is a distance r 

from the center. 

 

 

 

 

 

 

 

 

Figure 7.5.4b The layer of water in the tub has a depth d and it flows towards the 

drain. 

 

Our simple model of the process will assume : 

1) that the flow is 2-dimensional, i.e. independent of the azimuth around the drain. 

2) The depth remains constant. (this is probably ok until the very end of the 

draining of the water). 

Suppose a volume flux Q goes down the drain each instant and let u be the radial, 

outward velocity, then, 

 

 Q = −u2πrd    (7.5.26) 

and is independent of r where we can think of r as the radius of the contour we will 

consider for Kelvin’s theorem. Thus, 

 

 u = −
Q
2πrd

   (7.5.27) 

From the Lagrangian point of view u = dr dt  and so  

 

d 
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r
dr
dt

= −
Q
2πd

⇒ r2 = ro
2 −

Qt
πd

  (7.5.28 a,b) 

where r0 is the radius of the contour at t =0. 

 

The circulation theorem, ignoring friction for now, is, (v is the azimuthal velocity) 

 

 

d
dt
uidx

C
∫ =

d
dt
2πrv = −2Ω dAn

dt
= −2Ω sinθ d

dt
πr2  (7.5.29) 

 

or, integrating in time, 

 

v2πr + fπr2 = vo2πro + fπro
2   (7.5.30) 

where the zero subscript denotes the value of the quantity on the contour when it was at 

radius r0. Note that vo = vo(ro ) , that is, the original velocity is a function of radius. 

Solving for the azimuthal velocity, 

 

 v =
f / 2(ro

2 − r2 ) + voro
r

  (7.5.31) 

or using (7.5.28) 

 

 v =
( f / 2)Qt /πd + voro
{ro

2 −Qt /πd}1/2
  (7.5.32) 

This is a completely Lagrangian description of the velocity. It is given in terms of the 

time t and the original position of the contour at r=r0. The Eulerian description is  

 

v(r,t) =
( f / 2)Qt /πd + r2 +Qt /πd{ }1/2 vo( r2 +Qt /πd]1/2⎡⎣ ⎤⎦

r
 (7.5.33) 
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For large time, the contour C which started far from the drain, is about ready to disappear 

forever down the drain. Then, the radius of the contour is much smaller than its starting 

radius and the azimuthal velocity will be approximately given by (7.5.31) with r << ro , 

 

 v ≈
f
2
ro
2

r
+
voro
r

  (7.5.34) 

If the first term on the right hand side dominates then, certainly, the direction of the 

swirling flow as the water goes down the drain will depend on the sign of θ and be 

positive in the northern hemisphere and negative in the southern hemisphere. Let’s 

estimate the size of that term with respect to the second term which gives us a measure of 

how much velocity we have put into the tub by swishing around or even by just pulling 

the plug. The ratio of the first to second term is, foro
2vo

. Now in mid latitudes f is of the 

order of 10-4 sec-1. Suppose we have a rather sumptuous bathtub and let r0 be a meter . 

Then the initial velocity v0 would have to be less than  0.1 mm/sec to have the first term 

be even as large as the second term . I dare say most of us produce a greater disturbance 

in the tub ourselves so the expectation that we will know the hemisphere we are in by 

taking a bath is wildly unrealistic.  However, very careful experiments have been done, 

requiring special care to have the fluid originally motionless and have the tub’s plug 

pulled without producing relative circulation and in these experiments the hemispheric 

effect can be observed. 

 

  

7.6 Further consequences of Kelvin’s theorem: Frozen vortex lines. 

 

Suppose, again, that we may neglect friction and that the baroclinic term is also zero. 

Then   

 

 dΓ a

dt
= 0    (7.6.1) 
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but, of course, Γ, the relative circulation will not be conserved. Note that (7.6.1) only 

requires that the baroclinic vector be zero in the surface containing the contour although 

here we have used the stronger condition that it vanish in the whole field of motion. 

Now, consider a surface S which moves with the fluid and suppose that at t=0 it is 

composed of vortex lines as shown in Figure 7.6.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6.1 A surface S composed of vortex lines. The contour C lies in the surface. 

 

On S we draw the contour C. At t=0 there are no vortex lines that penetrate the contour 

since they all lie on the surface. Hence, at t=0 the circulation Γa is zero. But if S, as 

defined, moves with the fluid and C moves with the fluid the circulation on C must 

remain zero since the circulation is conserved. Hence as S moves it remains composed of 

vortex lines. 

Consider now two such surfaces that intersect. Each surface is composed of vortex 

lines and each surface remains composed of vortex lines. The intersection of the two 

surfaces clearly is a vortex line as seen in Figure 7.6.2. 

 

 

 

 

S 
C 
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Figure 7.6.2 The intersection of two surfaces composed of vortex lines is a vortex 

line. If each surface moves with the fluid the  intersection also must. 

 

Since each surface moves with the fluid the intersection moves with the fluid and 

hence it follows that vortex lines move with the fluid if circulation is conserved. More 

precisely: 

 

If dΓ a

dt
= 0  any line of material elements in the fluid that was once a vortex line 

remains a vortex line. Or, more arrestingly, vortex lines then move with the fluid as if 

they were frozen into the fluid.  

 

ωa 
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The vortex line may become contorted but nevertheless it remains a vortex line. 

Note, this generally does not apply to the relative vortex lines. 

A natural extension of the argument shows that it must also be true for vortex tubes, 

i.e. if circulation is conserved vortex tubes move with the fluid and from our kinematic 

argument the vortex tube strength remains fixed with time. As the fluid moves the tube 

may become stretched as shown in Figure 7.6.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6.3 A vortex tube stretched by the fluid motion 

 

 

If the column is stretched and its cross sectional area decreases (as would be the case if 

the fluid is nearly incompressible) the vorticity in the tube must increase to keep the 

vortex tube strength (or equivalently the circulation around C) fixed. Thus if 
 


ω in̂dA

A
∫  is 

fixed and the cross sectional area decreases the vorticity normal to the tube axis must 

increase. Hence, vortex tube stretching can increase the vorticity if circulation is 

conserved. In a rotating system  

ωa =


ω + 2


Ω  and we can imagine the following scenario. 

Suppose the tube stretches. If originally there is no relative vorticity (or a trivial amount) 

C 

ω1 

ω2 

with time 

C 
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stretching of the tube will be stretching planetary vorticity filaments. Since the vorticity 

increases and the planetary vorticity is fixed (assuming constant Earth rotation rate) there 

must be an increase of relative vorticity. Hence the planetary vorticity is a possible source 

of relative vorticity that can be realized by stretching tubes in the presence of the 

planetary vorticity. For this reason large scale atmospheric and oceanic flows have 

currents that are full of vorticity that has come from vortex tube stretching in the presence 

of  planetary vorticity. 

 

 

7.7 The vorticity equation 

 

The vorticity is a vector. Kelvin’s theorem, or the general equation for the rate of 

change of circulation (7.5.3), gives us only a scalar equation. Hence much of the vectorial 

character of the vorticity dynamics is not revealed (this is why the result is so simple and 

elegant). To look into this further we will consider developing an equation for the 

vorticity. Again, we consider the case where the viscosity coefficients are constant. As a 

preliminary, we once again use our alternating tensors to prove the following identity, 

 

 
 

ui∇u =

ω × u +∇

u 2

2
  (7.7.1) 

Consider the ith component  
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
ω × u( )i = εijkω juk = εijkε jlmuk

∂um
∂xl

= −ε jikε jlmuk
∂um
∂xl

= − δ ilδkm − δ imδkl[ ]uk ∂um∂xl

= −uk
∂uk
∂xi

+ uk
∂ui
∂xk

 (7.7.2) 

which when restoring vector notation yields (7.7.1).  

Thus, the Navier-Stokes equations can be written, 

 

 

∂u
∂t

+ 2

Ω +

ω( )

ωa

  
× u = −

∇p
ρ

−
1
2
∇ u 2 + g + ν∇2 u + ν + λ / ρ( )∇(∇i

u)  (7.7.3) 

 

Note that a part of the acceleration term provides a gradient force, similar to the 

pressure gradient while another part alters the Coriolis acceleration so that it is 

proportional to the absolute vorticity. To obtain an equation for the vorticity we take the 

curl of the equations which yields, 

 

 
 

∂

ω
∂t

+∇ ×

ωa ×

u( ) = 1
ρ2

∇ρ × ∇p + ν∇2 ω  (7.7.4) 

The second term on the left hand side is the curl of a cross product and, again, it is easiest 

to figure it out using our tensor notation and the simple rules following from the use of 

the alternating tensor, so, (using a superscript a to denote the absolute vorticity to avoid 

confusion with the coordinate indices), 
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∇ ×

ωa ×

u( )⎡⎣ ⎤⎦i = εijk
∂
∂x j

εklmω
a
lum = εkijεklm

∂ω a
lum

∂x j

= δ ilδ jm − δ imδ jl( ) ∂ω
a
lum

∂x j

=ω a
i

∂uj

∂x j
+ uj

∂ω a
i

∂x j
− ui

∂ω a
j

∂x j
−ω a

j
∂ui
∂x j

(7.7.5) 

or, in vector notation and using the fact that the vorticity is always non-divergent, we 

obtain for (7.7.4) 

 

 

∂

ω
∂t

+ ui∇

ωa − (


ωa i∇)

ua +

ωa∇i

u =
1
ρ2

∇ρ × ∇p + ν∇2 ω  (7.7.6) 

or noting that the planetary rotation is constant (the next step would be correct even if it 

were to be changing with time—that is left as an exercise for you), 

 

 

 

d ωa

dt
= ( ωa i∇)

u − ωa∇i
u + 1

ρ2
∇ρ × ∇p + ν∇2 ω ,

where

ωa =


ω + 2


Ω

 (7.7.7a,b) 

 

The last two terms on the right hand side of the equation are already familiar to us from 

the discussion of the Kelvin’s circulation theorem. The new terms  that require 

interpretation are the first two terms on the right hand side that contribute to the rate of 

change of the absolute vorticity  

ωa . Those new terms,  (


ωa i∇)

u − ωa∇i
u , can be thought 

about more simply if, at any arbitrary point we construct a coordinate frame whose z axis 

is tangent to the vortex line at a point, the origin of the frame,  as shown in Figure 7.7.1 

so that at the origin the vorticity vector is  

ωa = k̂ωa  where ωa is the magnitude of the 

vector. 

 

 
z 

ωa 
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Figure 7.7.1 A vortex line, shown as the heavy line with an arrow, and the coordinate 

frame constructed so that at the origin the z axis is tangent to the vortex line. 

 

Then the terms under consideration can be written in component form as 

 

 

( ωa i∇)
u −

ωa∇i

u =ωa
∂
∂z

î u + ĵ v + k̂ w( ) −ωak̂
∂u
∂x

+
∂v
∂y

+
∂w
∂z

⎛
⎝⎜

⎞
⎠⎟

= îωa
∂u
∂z

+ ĵωa
∂v
∂z

− k̂ωa
∂u
∂x

+
∂v
∂y

⎛
⎝⎜

⎞
⎠⎟

 (7.7.8) 

There are three components that contribute to the rate of change of the absolute vorticity. 

 

1) In the x-direction  ωa increases as the shear ∂u / ∂z tips the vorticity vector in the x 

direction, just as if the vortex line moves with the fluid. In a infinitesimal interval Δt the 

change in the vorticity vector in the x direction from these terms alone would be, from 

(7.7.7) 

 Δω a
x

ωa

=
∂u
∂z

Δt    (7.7.9) 

 

Note that a line element that moves with the fluid and which is originally parallel to the z 

axis would be tipped over so that, as shown in Figure 7.7.2, 

 

 

 

 

x 

y 

l 

x 

Δx 

Δx = ∂u
∂z
lΔt  
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Figure 7.7.2 A line element of length l is tilted by the shear and produces a displacement 

Δx parallel to the x axis. 

 

Note that  

 

 Δx
l

=
∂u
∂z

Δt    (7.7.10) 

and comparing with (7.7.9) confirms that the production of vorticity parallel to the x axis 

can be interpreted as a simple tilting of the vorticity vector, originally parallel to the z 

axis, in the x direction by the shear. Obviously, the same occurs in the y direction as 

described by the second term on the right hand side of 7.7.8.   Thus, the vortex change in 

the direction perpendicular to the vortex line is due to vortex line tilting by the shear in 

the direction perpendicular to the vortex line. 

In the direction parallel to the vortex line, i.e. in the z direction, the rate of change of  

ωa  

is given by, 

 

 −ωa
∂u
∂x

+
∂v
∂y

⎛
⎝⎜

⎞
⎠⎟
= −

ωa

A
dA
dt

  (7.7.11) 

where A is the area perpendicular to the vortex line. A reduction of A will concentrate the 

vortex lines and increase the vorticity and this is the familiar effect of vortex tube 

stretching. If this effect were the only one operating, the vorticity equation in the z 

direction would simply be, 

 

 dωa

dt
= −

ωa

A
dA
dt

⇒
d
dt

ωaA( ) = 0  (7.7.12) 

which we recognize from the circulation theorem. 

Thus, following a fluid element: 

The rate of change of absolute vorticity is due to: 

1) vortex tube stretching 
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2) vortex tube tilting 

3) baroclinic production of vorticity 

4) viscous diffusion of vorticity. 

 

7. 8 The enstrophy 

Another useful  measure of the intensity of the vorticity is the enstrophy. The 

absolute enstrophy is the defined as the square magnitude of the absolute vorticity vector, 

 

 
 
Za ≡


ωa i

ωa

2
=
ωa jωa j

2
  (7.8.1) 

From the vorticity equation, (7.7.7) in component form, 

 

 dωai

dt
=ωaj

∂ui
∂x j

−ωai

∂uj

∂x j
+
1
ρ2

εijk
∂ρ
∂x j

∂p
∂xk

+ ν ∂2ωai

∂x j∂x j
 (7.8.2) 

and taking the inner  product with the vorticity, yields, 

 

d
dt

Za( ) =ωaiωaj
∂ui
∂x j

− 2Za

∂uj

∂x j
+
ωai

ρ2
εijk

∂ρ
∂x j

∂p
∂xk

+ νωai
∂2ωai

∂x j∂x j
,

=ωaiωaj
∂ui
∂x j

+ 2 Za

ρ
dρ
dt

+
ωai

ρ2
εijk

∂ρ
∂x j

∂p
∂xk

+ νωai
∂2ωai

∂x j∂x j
,

 (7.8.3) 

The second step in (7.8.3) uses the mass conservation equation. Multiplying the equation 

by 1 / ρ2  allows it to be rewritten, 

 

 

d
dt

ωaiωai

2ρ2
⎛
⎝⎜

⎞
⎠⎟
=
ωaiωaj

ρ2
∂ui
∂x j

+
ωai

ρ3
εijk

∂ρ
∂x j

∂p
∂xk

+
ν
ρ2

ωai
∂2ωai

∂x j∂x j
,

=
ωaiωaj

ρ2
eij +

ωai

ρ4
εijk

∂ρ
∂x j

∂p
∂xk

+
ν
ρ2

∂
∂x j

ωai
∂ωai

∂x j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

ν
ρ2

∂ωai

∂x j

∂ωai

∂x j

⎛

⎝⎜
⎞

⎠⎟

(7.8.4) 
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The appearance of the rate of strain tensor eij  follows from the symmetry of the term 

ωaiωaj that allows the inner product of the first term on the right hand side to be written in 

terms of the symmetric part alone of the deformation tensor. Note that if the density were 

constant (or if we were considering only the change of Za due to friction) the effect of 

friction can be written as a divergence term whose integral represents a diffusive flux of 

enstrophy across the boundary and an negative definite term that represents the viscous 

dissipation of enstrophy. The most interesting term is really the first term, the production 

of enstrophy by the rate of strain in the fluid. To consider the term further, let’s evaluate 

it in the principal axis frame of eij i.e. the frame in which it is a diagonal tensor. 

 

 eij =
e1 0 0
0 e2 0
0 0 e3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= e(i )δ ij   (7.8.5) 

and let’s write the absolute vorticity vector as, 

  

ωa =ωa


λ    (7.8.6) 

 

where λ  is a unit vector in the direction of the vorticity. Then the inner product, 

 

 
ωaiωaj

ρ2
eij =

ωa
2

ρ2
λ1
2e1 + λ2

2e2 + λ3
2e3⎡⎣ ⎤⎦  (7.8.7) 

 

so that the enstrophy equation (7.9.4) becomes, 

 

d
dt

ωaiωai

2ρ2
⎛
⎝⎜

⎞
⎠⎟
=
ωa

2

ρ2
λ1
2e1 + λ2

2e2 + λ3
2e3⎡⎣ ⎤⎦

+
ωai

ρ4
εijk

∂ρ
∂x j

∂p
∂xk

+
ν
ρ2

∂
∂x j

ωai
∂ωai

∂x j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

ν
ρ2

∂ωai

∂x j

∂ωai

∂x j

⎛

⎝⎜
⎞

⎠⎟

 (7.8.8) 
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Note that if the vorticity has a component along a principal axis corresponding to 

extension ( e( j ) > 0 ) this will lead to an increase of enstrophy and that can balance the 

dissipation of enstrophy by friction.  

Suppose the motion is strictly two dimensional. For example, the velocity lies in the 

x , y plane and u and v are independent of z. The only component of vorticity is then in 

the z direction so that only λ3 is different from zero. But then e3 which is just ∂w / dz is 

identically zero. It is also true that all the vortex tilting terms are zero, and so, if 

baroclinicity and friction are negligible the enstrophy for two dimensional motions would 

be conserved.  

On the other hand for three dimensional motions, especially for turbulent motions, 

during intervals of time for which the vorticity is acted upon by the rate of strain tensor 

leading to extensions, the vorticity can become very intense and the vortex tilting 

mechanism can make the field of vorticity increasingly complex and entangled. So, we 

must expect a big difference between strictly or nearly two dimensional motion and three 

dimensional motion.  

Suppose K is the largest rate of strain along the principal axes. 

 

K = max e1,e2 ,e3[ ]    (7.8.9) 

then ignoring friction and baroclinicity, (7.8.9) implies that, 

 

 d
dt

ωaiωai

2ρ2
⎡

⎣
⎢

⎤

⎦
⎥ ≤ 2K

ωaiωai

2ρ2
⎡

⎣
⎢

⎤

⎦
⎥   (7.8.10) 

or, 

 

 Za

ρ2
(t) ≤ Za

ρ2
(0)e2K (t− to )   (7.8.11) 

This implies that if the enstrophy (note the absolute enstrophy) is zero at some initial time  

it will remain zero in the absence of baroclinic and frictional effects. So, if the flow 

initially has no vorticity, i.e. if it is irrotational, it will remain so (this is sometimes called 

the persistence of irrotationality--- it sounds like a painting by Salvador Dali). Given the 

presence of the planetary vorticity, this is a situation that rarely arises for large scale 
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flows. For small scale motions for which the planetary vorticity can be neglected it is, 

rather, a useful constraint to keep in mind as we shall later see. 

Returning for  a moment to (7.7.7), note that for two dimensional flows for which, 

 

 

 

u = îu + ĵ v,


ωa = k̂ζa = k̂ ζ + 2Ω( )

  (7.8.12 a,b) 

the vorticity equation becomes 

 

 
 

d
dt

ζa
ρ

⎛
⎝⎜

⎞
⎠⎟
=
1
ρ3
k̂i∇ρ × ∇p + ν

ρ
∇2ζ  (7.8.13) 

so that in the absence of baroclinicity and friction, for 2-dimensional flow, the 

ratioζa / ρ is conserved following the fluid motion. This is a rather special case of only 

marginal interest in meteorology and oceanography. However, in the next chapter we will 

generalize this result to three dimensional motions including baroclinic fluids. 

 

Appendix: Elementary derivation of Stokes Theorem 
 

To understand Stokes theorem think about the simple case where the area, as in 

Figure A.7.1 is a differential rectangle in the x-y plane. The component of the vorticity 

normal to that surface is 
  
ω3 = ζ =

∂v
∂x
−
∂u
∂y

. 

 

 

 

 

 

 

 

 

x2, y2 

x2, y1 
x1,y1 

x1,y2 
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Figure A.6.1 The rectangle used to calculate the area integral of the vorticity normal 

to the x,y plane. 

 

Now let’s calculate the integral over the area, 

 

  

∂v
∂x
−
∂u
∂y

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟dxdy

x1

x2

∫
y1

y2

∫ = v(x2, y)−v(x1, y)[ ]dy
y1

y2

∫ − u x, y2( )−u x, y1( )⎡⎣ ⎤⎦dx
x1

x2

∫

=

u ⋅d

x

C
∫ (A 7.1) 

Note that the contour integral for the circulation is given by the right hand side of 

the first line in (A. 6.1) and this is the basic content of the theorem. If we add to the area 

by putting two such tiles together as in Figure A.7.2, 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.7.2 The sum of two tiles for the Stokes integral 

 

 

and then do the same step for each area. When summed together the contribution of the 

line integrals around each tile will cancel for the side they share in common, indicated by 
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the stippled arrow in which the velocities on the same side are equal and opposite. That 

shows that the area integral of the vorticity of the two tiles together is given by the 

circulation integral of the velocity along the periphery of the total area. For an arbitrary 

shape the theorem follows when the area is divided into infinitesimal tiles and the sum of 

those tiny tiles yields the integral around their outer periphery in the same manner. Some 

work needs to be done to prove that the limit is what we imagine it would be but that’s a 

job for the mathematician; the basic idea is as shown above. 

 

 

 

  

  

 

   


