
 

 
12. 800: Fluid Dynamics of the Atmosphere and Ocean 

 

Chapter 1 

The continuum hypothesis and kinematics 

 
1.1 Introduction and syllabus. 

 

This course is an introduction to fluid mechanics with special attention paid to 

concepts and applications that are important in oceanography and meteorology. Indeed, 

both meteorology and oceanography are notable for the fact that the explanation of 

fundamental phenomena requires a deep understanding of fluid mechanics. Phenomena 

like the Gulf Stream, coastal upwelling, the polar stratospheric vortex, the Jet Stream can 

all be approached as fundamental problems in fluid mechanics.  

It is, as I hope to persuade you in this course, a beautiful subject dealing with 

compellingly beautiful physical phenomena. Even on the smallest scales accessible in 

everyday life there are lovely things to see and think about. Turn on the faucet in your 

sink and watch the roughly circular wave that surrounds the location where the water hits 

the sink and speeds outward, watch and wonder as the surf nearly always approach the 

beach head-on, see wave patterns in the clouds. Or, watch the smooth flow of water 

moving over a weir and wonder why it is so beautifully smooth. Why does each little 

pebble on the beach have a V-shaped pattern scoured in the sand behind it? Why is there 

weather instead of just tidal repetition? Why does a hurricane resemble a spiral galaxy? 

How can a tsunami move so fast? Why are there tornados, Dorothy,  in Kansas but rarely 

in California? These are only a few questions that lead us to examine the dynamics of 

fluids. My own belief is that equipped with an understanding and sensitivity to the 

dynamics of fluids life can never be boring; there is always something fascinating to see 

and think about all around us. 
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A tentative syllabus (including more than we can probably get to)  for the course 

might be as follows; 

1) Formulation: 

a) Continuum hypothesis 

b) Kinematics, Eulerian and Lagrangian descriptions. (rates of change) 

c) Definitions of streamlines, tubes, trajectories. 

 

2) a) Mass conservation. (For fixed control volume). Careful definition of 

incompressibility and distinction with energy equation for ρ = constant. 

b) Newton’s law 

c) Cartesian tensors, transformations, quotient law for vectors and tensors, 

diagonalization. 

d) Tensor character of surface forces (derivation)Σ i = σ ijnj  

e) Momentum equation for a continuum. 

f) Conservation of angular momentum, symmetry of stress tensor. Trace of stress tensor, 

mechanical definition of pressure in terms of trace. 

g) Stress, rate-of- strain tensor, isotropic fluids. Relation between mechanical and 

thermodynamic pressure. Fluid viscosity, kinematic viscosity. Navier-Stokes equations. 

f) Navier-Stokes equations in a rotating frame, centripetal and Coriolis accelerations. 

g) Boundary conditions, kinematical and dynamical—surface tension. 

3) Examples for a fluid of constant density. 

a) Ekman layer, Ekman spiral, dissipation in boundary layer, spin-down time, Ekman 

pumping. Ekman layer with applied wind-stress. Qualitative discussion of Prandtl 

boundary layer. 

b) The impulsively started flat plate. Diffusion of momentum.  

4) Thermodynamics. 

a)State equation, perfect gas, Internal energy. 

b) First law of thermodynamics. Removal of mechanical contribution and equation for 

internal energy. Dissipation function. 

c) Dissipation due to difference between mechanical and thermodynamic pressure. 
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d) entropy, enthalpy, temperature equation for a perfect gas. Potential temperature. 

Liquids. 

e) temperature change in water for the impulsively started flat plate due to friction. 

5) Fundamental theorems-Vorticity 

a) Vorticity, definition, vortex lines, tubes, non-divergence. Vortex tube strength. 

b) Circulation and relation to vorticity. 

c) Kelvin’s theorem, interpretation. Friction, baroclinicity. Effect of rotation, Induction of 

relative vorticity on the sphere. Rossby waves as an example. 

d) Bathtub vortex. 

e) Vortex lines frozen in fluid. Helmholtz theorem. 

f) The vorticity equation, interpretation. 

g) Enstrophy. 

h) Ertel’s theorem of potential vorticity. Relation to Kelvin’s theorem. PV in a 

homogeneous layer of fluid. The status function. 

i) Thermal wind. Taylor-Proudman theorem. Geostrophy in atmospheric and oceanic 

dynamics. Consequences. 

j) Simple scaling arguments and heuristic derivation of quasi-geostrophic PV equation.  

6. Fundamental Theorems. Bernoulli statements 

a) Energy equation for time dependent dissipative motion. 

b) Bernoulli theorem for steady inviscid flow. The Bernoulli function B. 

c) Crocco’s theorem ( relation of grad B to entropy gradients and vorticity.) 

d) Bernoulli’s theorem for a barotropic fluid. 

e) Shallow water theory and the pv equation and Bernoulli equation. Relation between 

gradB and potential vorticity and stream function. 

f) Potential flow and the Bernoulli theorem. 

APPLICATIONS AND EXAMPLES 

g) Surface gravity waves as an example of (f) 

h) Waves, trajectories, streamlines. 

i) Two streams, internal waves with currents. Kelvin-Helmholtz instability. Richardson 

number Miles-Howard theorem. Effect of surface tension. Physical interpretation of 

instability. 
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j) Brief discussion of baroclinic instability. Wedge of instability, estimate of growth rates. 

 

 

There are quite a number of excellent book on fluid mechanics. Styles vary and 

some people prefer one to another. There is no required text for the course and if you 

choose a text it should be clear from what we discuss in class what the appropriate 

readings might be that are helpful and I will generally leave reading assignments to you.  

 

I list here a few books that I believe are useful. 

1) Kundu, P.K. Fluid Mechanics. Academic Press 1990. pp 638.  

2) Batchelor, G.K. Fluid Dynamics. Cambridge Univ. Press. 1967. pp 615 (This is 

one of my favorites). 

3) Aris, R. Vectors, Tensors and the basic equations  of fluid mechanics. 1962. 

Prentice Hall. pp 286. 

4) Cushman-Roisin, B. Introduction to  Geophysical Fluid Dynamics. 1994. 

Prentice-Hall. pp320 

5) Gill, A.E., Atmospheric-Ocean Dynamics. 1982. Academic Press pp 662. 

6) Pedlosky, J. Geophysical Fluid Dynamics 1987. Springer Verlag pp 710. 

7) Marshal, J. and R. Alan Plumb. Atmosphere, Ocean and Climate Dynamics: An  

Introductory Text. , 2007 Academic Press pp 344 

 

1.2 What is a fluid? 
Naturally, one of the first issues to deal with is getting a clear understanding of 

what we mean by a fluid. It is surprisingly difficult to be rigorous about this but 

fortunately the materials we are mostly interested in, air and water, clearly fall under the 

definition of a fluid we will shortly give. However, in general it is sometimes unclear 

whether a material is always either a fluid or a solid. 

A perfectly elastic solid is defined and recognized to be a material which suffers a 

proportionally small and reversible displacement when acted upon by a small force. If, 

for example, we take a cubic lump of steel and apply a force tangent to the surface of the 

cube as shown in the figure we observe a small displacement of the material. 
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                        F 

    

 

 

 

 

Figure 1.2.1 A small elastic cube subject to a force F suffers a small displacement 

with an angle θ.  

If the solid is elastic the removal of the force will lead to a restoration of the 

original situation. For a fluid the same small tangential force will lead to an unbounded 

displacement. Instead, it is the rate of increase of θ that will be proportional to the force 

(or more precisely, the force per unit area to which it is applied. Hence, for a fluid such 

tangential forces lead to continuous deformations whose rate is proportional to the force. 

Thus a fluid can be defined as a material that can not remain motionless under the action 

of forces that leave its volume unchanged but otherwise act to deform it, as in the 

example above. 

Some materials can act as elastic solids when they are forced on short time scales, 

i.e. when they are sharply struck but deform in a manner like a liquid when the force 

operates over a long time, like silly putty. Or, a less “silly” example is the mantle of the 

Earth which supports elastic (seismic) waves on short time scales (seconds) but deforms 

like a fluid on very long time scales giving rise to mantle convection, sea-floor spreading 

and drifting continents. Air and water both act as fluids and one of the principal 

challenges for fluid dynamics is to obtain a useful mathematical representation of the 

relation between surface forces acting on pieces of fluid and the resulting deformations. 

 

1.3 The continuum hypothesis 

One of the pleasures of watching a moving fluid lies in the sinuous character of the 

motion. The continuity of the water in a cascade, the slow rise of the smoke from a 

burning cigarette (please don’t smoke) that turns more complex but remains continuous 

as it rises and the rippling of the sea surface under a light wind are all examples of the 

tapestry-like patterns of fluid motion. We intuitively think of the fluid involved as a 

θ 
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continuum even though we are aware, intellectually, that the material is composed of 

atoms with large open spaces between them. Nevertheless, there are so many atoms on 

the scale of the motion that is of interest to us, from fractions of a centimeter to thousands 

of kilometers that an average over scales large compared to the inter atomic distances but 

small compared to the macroscopic scales of interest, allows us to establish a clear 

continuum with properties that vary continuously on the scales we use to measure. So, for 

example, if we consider a property like the temperature, T, we can define an averaging 

scale l, that is much larger than inter atomic or molecular distances but still small 

compared to the scale of our measuring instruments. 

 

 

 

   

 

 

 

 

 

 

 

Figure 1.3.1 The scale L is typical of our macroscopic measuring scale. The scale l 

is a scale used to produce a stable average of fluid properties like the temperature, T. 

Batchelor points out that even on scales for l of order 10-3 cm, and a volume 10-9 

cm3, such a tiny volume would contain on the order of 3 1010 air molecules in the 

atmosphere and this is more than enough to establish a thermodynamically stable 

definition of temperature or any other such property.  

This allows us to consider fields like the temperature field as continuous functions 

of space and time, e.g. T=T(x, t) {here we introduce the  bold face notation for vectors—

sometimes we will use arrows over the variable instead}. Further, we will usually assume 

that such functions are differentiable to whatever order we feel is necessary. If there are 

discontinuities in our description of the fluid we consider them to be idealizations and 

L 

l 
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simplifications of rapid variations in the continuum and such variations are to be thought 

of as occurring on scales much less than L but still large compared to the molecular scale. 

An important consequence of this approach is that although it is a great 

simplification to ignore the atomic nature of matter and treat the fluid as a continuous 

medium, certain properties of the fluid like its viscosity, or thermal conductivity can not 

be predicted from within the theory but must be specified as given properties of the fluid. 

And, they can be complicated thermodynamic functions of temperature and pressure and 

that behavior must, as well, be specified external to the theory. 

 

1.4 The fluid element. 

We will often speak of a fluid element or particle. What we will mean is an 

arbitrary and arbitrarily small piece of the continuum that is a tagged piece of that fluid. 

Its volume is so small that its properties are uniform and it moves under the influence of 

the surrounding fluid. In principle, we mentally isolate it from its surroundings. Most 

important, we usually attribute to it a fixed mass.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4.1 The gray blob is a fluid element of fixed mass that deforms as it moves 

 

We introduce this notion primarily because Newton’s Law of motion is most easily 

written in terms of force balances on a “particle” of fixed mass although, as we shall see 

this is not necessary. It does allow us to consider the nature of many phenomena in an 

A fluid 
element 
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intuitive way if we can picture the dynamics of an isolated element. Like all 

simplifications it has to be used with care. 

 

1.5 Kinematics  

Before discussing the dynamics of fluids we must first consider and agree how to 

describe the fluid’s motion. This is the subject of kinematics. For a small solid object, 

like a stone, the description is usually quite simple. We just describe the trajectory, say of 

the center of mass as a function X =X(t) in three dimensions and relate the forces to the 

velocity and acceleration determined from our knowledge of X(t). In dealing with a fluid 

it is clearly not so simple. To paraphrase Gertrude Stein, there is no there there. We are 

clearly not interested in the center of gravity of the ocean, or not only in that, but in a 

description of the whole moving continuum, an infinitude of fluid elements. We have 

found two methods of description that are useful and illuminating. One is called the 

Eulerian method, the other is the Lagrangian method although both are probably due to 

Euler and later exploited by Lagrange. 

1.5.a The Eulerian approach 

The fluid extends over some three-dimensional space and exists in time. Consider 

any property, P, for example the temperature. If x  is the position vector with components 

{xj : j= 1,2,3)♦ then we can describe P as P(xi,t). This gives us  P at each location and at 

each time without specifying which fluid element occupies that position at that time. In 

this description we do not keep track of individual fluid elements. This is a field 

description of the fluid and the absence of information about the identity of the occupier 

of a position may seem a loose way to proceed but it has many advantages, principle 

among them that it does not require us to keep track of the extra information about the 

individual fate of particular elements. A fixed current meter, or a fixed anemometer all 

measure in an Eulerian context. 

1.5b The Lagrangian approach 

As in particle mechanics, the Lagrangian approach keeps track of individual fluid 

elements as they move  and describes the property P as a function of which particle it 

refers to and at each time. In this description each particle is given a name, i.e. a label, 
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and this serves to identify the fluid particle at all subsequent times. A convenient label is 

the  position xi that the particle had a some initial instant, t=tO. Suppose we call that 

position Xi so that Xi=xi at t=tO. Each fluid element then changes its position as it moves 

but its label X  remains fixed. 

 

1.5c The fluid trajectory 

 

A simple way to define the trajectory of a fluid element is to specify 

xi = xi (t,Xj ), where
xi (0,Xj ) = Xi

  (1.5. 1 a,b) 

This is the trajectory equation for a particular element. It tells us where, at time t, is the 

fluid element that initially (i.e. tO has been taken to be zero)  was at position X. For all t > 

0 there is an inverse to this relation, 

 

Xi = Xi (t, x j )   (1.5.2) 

which tells us which particle is at position xi at time t. So, we can equally well describe 

any property P in terms of the Lagrangian variables, P =P (X,t) and using (1.5.1) and 

(1.5.2) we can go back and forth  between the descriptions. Floats and radiosondes are 

essentially Lagrangian measuring tools. 

In actual observational situations the description of any property field is usually 

incompletely sampled. There are only a finite number of floats that can be available,  

current meter arrays are sparsely distributed, etc, so it is often a challenge to go back and 

forth from one kinematic description to another. 

 

1.6 Rates of change. 
Consider a property P(xi, t) in the Eulerian description. Its rate of change with 

respect to time is central to the description of the fluid’s dynamics. We must keep in 

mind that there are several  natural rates of change and they are all different. For 

example, when you are traveling on the way to Woods Hole from Boston you might 

                                                                                                                                            
♦ the coordinates (x1,x2,x3) are equivalent to (x,y,z) 
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detect a change in the weather, e.g. the temperature as you go along. You might detect  

that change not because the temperature is changing with time at each location but 

because the temperature is changing with distance and you are traveling in that 

temperature gradient. We need to distinguish between these rates of change. 

1)  A rate of change at a fixed point is: 

 the local time derivative = ∂P
∂t

⎞
⎠⎟ xi

 (1.6.1) 

This yields the rate of change with time at a fixed point of the property P. We shall 

usually suppress the subscript xi as understood.  You can think of this as the change in P 

as a series of fluid elements move through the point xi and so it is possible that this rate of 

change can be different from zero even if the property P is constant for each fluid element 

along its trajectory. 

2) In general consider the rate of change of P for a moving observer  (perhaps in a 

convertible on Route 3). The observer moves with a velocity  

  
v = vi{ }  

such that for the observer 

 dxi
dt

= vi  

It is important to keep in mind that  vi  is not the fluid velocity.  Thus, following the 

observer the total rate of change as seen by the observer is: 

 

 dP
dt

=
∂P
∂t

+
∂P
∂xii=1

∑ dxi
dt

  (1.6.2) 

ASIDE: 

We now introduce the summation convention or sometimes it is called the Einstein  

summation convention. When we have a product sum as in (1.6.2) where a dummy index 

(in this case i) is summed over we  understand that the sum is implied over the index 

without explicitly writing the summation sign. Thus, for example, the inner product of 

vectors A and B can be written: 
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
Ai

B = AiBi

i=1

3

∑ ≡ AiBi  

 

The rate of change of P given by (1.6.2) is then 

 

 

  

 

dP
dt

=
∂P
∂t

+
∂P
∂x j

dx j
dt

=
∂P
∂t

+ vi∇P
the  rate of change of P seen by the observer
due to the observers motion in the gradient of P

 (1.6.3) 

 

For example,  a child on a slide whose elevation above the ground is h(x) will change 

his/her height off the ground at a rate dh / dt = u∂h ∂x < 0. 

 

 

 

 

 

Figure 1.6.1 A child going down a slide reduces her/his height  at a rate that is the 

product of the forward velocity and the slope of the slide. 

 

However,  of particular interest is the rate of change of a property when the observer is 

the fluid itself, i.e. , the rate of change of a fluid property following  a fluid element, or 

simply the rate of change of the property for the fluid element.  In that case 

 dxi
dt

= ui (xi ,t)   (1.6.4) 

where ui are the 3 components of the fluid velocity.  (An integration in time  of the   

above equation also yields the trajectory of the fluid elements.) Thus, for the fluid, the 

rate of change of a property  P following each fluid element is: 

 

 
 

dP
dt

=
∂P
∂t

+ ui
∂P
∂xi

=
∂P
∂t

+ ui∇P   (1.6.5) 

u 

h 
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This derivative is the rate of change of P for the fluid particle that is occupying  the 

position xi at time t. This Eulerian representation of  the derivative is variously called the 

total derivative or the material derivative and is also sometimes written as DP
Dt

to 

distinguish this derivative from that following a different  observers rate of change. We 

will generally use the notation in (1.6.5). The total derivative consists of two parts. The 

first term on the right hand side of (1.6.5) is the local time derivative. The second term 

involving the motion of the fluid in the gradient of the property P is called the advective 

derivative and the total derivative is the sum of the local and advective parts. 

The total derivative is central to fluid mechanics and please note that we need to 

know the fluid velocity as well as the space and time behavior of P to calculate the 

material derivative of P.  If both P and ui are unknown the material derivative involves 

the product of two unknowns and the fundamental nonlinearity of fluid mechanics and all 

the phenomena, like turbulence, weather, eddies, chaos etc. follow from this simple fact. 

Suppose that the property P is conserved for each fluid element  so that its total 

derivative is zero. It follows that at each spatial location: 

 

  
 

∂P
∂t

= − ui∇P  (1.6.6) 

So, at a fixed location an observer would see a change in the property as a parade of 

fluid elements with different P pass that point. Think of  a file of people of different 

heights, arranged in order of increasing height to the right. If the column moves to the 

right shorter and shorter people will occupy a given location and an observer will see 

constantly decreasing heights occupy the observation position even  though each person 

maintains  his/her total height (no beheadings allowed!) 

 

 

 

 

 

u 
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Figure 1.6.2 A file of people moving to the right. If the people are arranged with 

increasing height a fixed observer with see  the height  of people increasing at a fixed 

point. The height of each person is fixed. 

 

Suppose the property P is given by the relation: 

 

P = Po cosωt sin kx    (1.6.7) 

where ω is the frequency 2π /T  where T is the period and k is the wavenumber 2π / λ  

where λ is the wavelength.  Suppose the velocity in the x direction is U. Then the total 

derivative of P is 

 

 

 

dP
dt

= −Poω sinωt sin kx
∂P
∂t
(local )

   +UkPo cosωt coskx

u i∇P(advective)  

=
Po
2
(Uk +ω )cos(kx +ωt) + (Uk −ω )cos(kx −ωt)[ ]

  (1.6.7) 

The ratio of the local  part of the time derivative to the advective  part is of the order 

 
 

∂P
∂tui∇P

= O ω
Uk

⎛
⎝⎜

⎞
⎠⎟
=
c
U

   (1.6.8) 

 

where c is the phase speed of the wave so the ratio measures the phase speed of the wave 

with respect  to the speed of the fluid. If the ratio c/U is large, the advective derivative 

can be  ignored to lowest order and the system will be linear. Note that if the Eulerian 

velocity field is given, the trajectory of each fluid element can be found integrating 

grad (h) > 0 
Observer 
location 
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(1.6.4) with xi (0) = Xi  as initial condition. It is important to note that even for simple 

velocity fields (1.6.4) is usually very nonlinear, and if the motion is time dependent the 

resulting trajectories can be unexpectedly complex and even chaotic. 

In the Lagrangian framework the total derivative following a fluid particle is simply 

 

 dP
dt

=
∂P
∂t

⎞
⎠⎟ Xi

  (1.6.9) 

For simplicity suppose that U is a constant.  Then the x-component of (1.6.4) yields, 

 dx
dt

=U ⇒ x =Ut + X   (1.6.10) 

so that P  in (1.6.7) can be written, with a few algebraic identities and using (1.6.10) 

 

 P =
Po
2
sin (kU +ω )t + kX{ } + sin (kU −ω{ }t + kX[ ]  (1.6.11) 

so that the total derivative (1.6.9) yields, 

 

dP
dt Lagrangian

=
Po
2

Uk +ω( )cos{(kU +ω )t + kX} + (Uk −ω )cos{(kU −ω )t + kX⎡⎣ ⎤⎦  (1.6.12) 

 

It is easy to see that the transformation (1.6.10) shows the equivalence of (1.6.7) and 

(1.6.12). 

 

 

 

1.7 Streamlines 

 

We define a streamline  as a line in the fluid that is, at each instant,  parallel to the 

velocity.  If  d
x  is a vector element along the streamline,  this implies 

 

 d
x = λ u    (1.7.1) 

where λ is an arbitrary constant.  In component form it follows that, 
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 dx
u

=
dy
v

=
dz
w

= λ    (1.7.2) 

 

which can be thought of as two differential equations, 

 

 dz
dx

=
w
u
, dy

dx
=
v
u

   ((1.7.3) 

which with initial conditions  yields a curve in space. This is the streamline. 

 

 

 

 

 

 

 

 

 

 

Figure 1.7.1 A streamline. At every point of the streamline the velocity vector is tangent 

to the line. (x,y,z) are the Cartesian coordinates and (u, v, w) are the corresponding 

velocity components. 

An equivalent representation can be used in which the arbitrary scalar λ is replaced 

by the differential parameter  ds so that the condition (1.7.1) is written as 3 ordinary 

differential equations , 

 

dx
ds

= u,

dy
ds

= v,

dz
ds

= w.

  (1.7.4 a,b,c) 

x, u 

y, v 

z, 
w 

 
u  
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and so avoids the apparent singularity that occurs where u is zero.  s is simply a 

parameter  along the streamline.  Since the streamline is constructed at an arbitrary fixed 

time  (and so will change its geometry  if the velocity field is time dependent) it is frozen 

in place, like an imaginary highway for the flow,  and gives the direction the fluid 

element on it would  move if the velocity field were steady.  So, we could interpret s as 

the time-like variable for the motion of the fluid along the streamline if the flow were 

steady. Of course, if the flow is not steady the streamlines constructed this way give a 

clear picture of the direction of the flow at this instant but do not give the trajectory or 

path of the fluid element on it. The highway, so to speak, can keep changing direction 

with time and so the path of the particle will diverge from the streamline. 

For example, consider the two-dimensional flow (w=0) for which, 

 

u =Uo,

v = Vo cosk(x − ct)
  (1.7.5 a, b) 

 

and for simplicity,  Uo,Vo are constants. To find the fluid element trajectory we need to 

integrate the Lagrangian trajectory equations (1.6.4), 

 

 

dx
dt

=Uo,⇒ x =Uot + X

⇒
dy
dt

= Vo cos[k(Uo − c)t + kX],

or

y =
Vo / k
Uo − c

sin k(x − ct) − sin kX{ }.

  (1.7.6 a,b,c) 

 

Since  t is related to x by (1.7.6 a) the path of the fluid element is: 

 y =
Vo / k
Uo − c

sin k Uo − c{ } (x − X)
Uo

+ kX
⎡

⎣
⎢

⎤

⎦
⎥ − sin kX

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  (1.7.7) 
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On the other hand the stream line passing through the point x=X, y=0 at t=0, is 

determined from the streamline equation, 

 

 

dy
dx

=
Vo
Uo

cosk(x − ct),

⇒ y =
Vo / k
Uo

{sin(k[x − ct]) − sin kX}

  (1.7.8 a,b) 

 

 
Figure 1.7.2 The trajectory (solid line) and the streamline in the x-y plane for the velocity 

field given by (1.7.5) 

 

Figure (1.7.2) shows the trajectory for the particle that a t=0 is at x=X=0,  y=0 as the 

solid line for Vo=1, Uo=2, and c =1 for k=π. The streamline at t=0 is shown passing 

through the same initial point. Note that the streamline , while giving the direction of the 

velocity all along the x axis at t=0 is not the subsequent path of the fluid element . The 

wavelength of the trajectory and its amplitude are quite different. An extreme case is 

shown in Figure 1.7.3 when Uo-c is very small. 

 

 

 



Chapter 1 18 

 

 
Figure 1.7.3 As in the previous figure except that now c=1.95 

 

The departure of the trajectory from the streamline is dramatic. As c approaches Uo the 

fluid element, which moves in x with velocity Uo, remains fixed to the same phase of the 

wave, which moves with c, and so always sees the same value  of v. This leads to an 

increasing divergence of the trajectory from the streamline.  In fact, and it is left to you as 

an exercise, in the limit as cà Uo the trajectory is just a straight line whose slope, y/x, is 

just Vo/Uo. This has implications for the motion of individual air particles or water 

particles in the generally time dependent, turbulent atmosphere and oceans.  Even very 

orderly streamlines, usually coincident with isobars, can mask significantly more extreme 

particle transports over  greater  distances than is evident from the streamline pattern. 

 

Of course, if the flow is steady or nearly steady, the streamlines are a good image of 

the trajectories. Even when the flow is unsteady the streamlines accurately portray the 

direction of the motion at that instant over the whole flow field.  

 

It is possible to construct  a solution of (1.7.2) that consists of a surface composed of 

streamlines.  Let’s call that surface ψ(x,y,z) =C (suppressing the dependence on t which 

is understood). 
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Figure 1.7.4 A portion of the surface ψ=constant showing the streamlines (the 

stripes), one streamline extending beyond the surface and the direction normal to the 

surface. 

 

By definition of the surface, 

 

   
ui∇ψ = 0.   (1.7.9) 

In fact, this is consistent with (1.7.1) and the condition that  

 

  ∂ψ
∂x

dx +
∂ψ
∂y

dy +
∂ψ
∂z

dz = dψ = 0   (1.7.10) 

 

Note that if the flow is steady and so that the streamlines are also trajectories, (1.7.9) 

would be equivalent to the statement that the property ψ is conserved  for each fluid 

element. Now, if we can construct one such surface composed of streamlines we can 

construct others. Consider a surface φ= D which is independent  of ψ so that  

   
ui∇φ = 0.   (1.7.11) 

The two surfaces intersect in a line that  is necessarily a streamline since both (1.7.9) and 

(1.7.11) must be simultaneously satisfied as shown in Figure 1.7.5. 

 

 

 

 

ψ=C 

 
u  

∇ψ
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Figure 1.7.5  The intersection of the two surfaces ψ and φ. The intersection line, by 

construction is a streamline. 

 

Since the velocity vector is perpendicular to both ∇ψ  and ∇φ  it follows that the 

velocity at any location can be represented as, 

 

  
u = γ∇φ × ∇ψ    (1.7.12) 

where, for now, γ is an arbitrary scalar function.  At first sight this does not seem to be 

much of an advance since we have replaced as unknowns the three scalar components of 

velocity for the three unknown scalars γ,ψ and φ. But when we combine (1.7.12) with the 

statement of mass conservation , which follows in the next chapter, this representation 

becomes much more useful and when the motion is in two dimensions this representation 

reduces immediately to the common streamfunction you may have met before. If the 

motion is two dimensional, i.e. if say, w=0, then φ can be chosen to be z+zo , for zo 

arbitrary, in which case (1.7.12) becomes, 

 

  
u = γ k̂ × ∇ψ    (1.7.13) 

 

ψ =const. 

φ=const. 

 
u  
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where  k̂  is a unit vector in the z direction. 

 

 

 

1.8 The stream tube, streak lines 

 

Consider a cylinder composed of all streamlines passing through a closed curve in 

space, as shown in Figure 1.8.1. The resulting surface is a tube whose walls are 

composed of streamlines. This is a stream tube and by definition no flow exits the tube 

across its walls. 

 

 

 

 

 

 

 

 

Figure 1.8.1 A stream tube composed  of streamlines that form the cylindrical  wall of the 

tube. By construction there is no component of fluid velocity that cross that wall. 

 

We have defined fluid trajectories and fluid streamlines and we have seen that when 

the flow is unsteady they are not the same. There is a third kinematic concept that is often 

used, the streakline. This is the line traced out in time by all the fluid particles that pass a 

particular point as a time goes on. It is left as an exercise for you to work out the 

streakline for the flow (1.7.5 a, b) that passes goes through the point x=0, y=0. The  

results can be quite  surprising. For example,  figure 1.8.2 shows the streamlines, 

trajectories and the streaklines  for fluid emanating from x=0,y=0. 

The streakline would be the line of dye released at the point (0,0) as observed at 

some later time downstream. From the figure it appears  as if some kind of instability has 

These are streamlines 

 
u  
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occurred but looking at the generating velocity (1.7.5) that is clearly not the case. Can 

you explain it? It is a good test of your understanding of the kinematics we have 

discussed so far. Note that all the curves in figure (1.8.2) would coincide if c were zero. 

 

 
 

Figure 1.8.2 The streamline (dashed), the trajectory (solid) and the streakline (dot-

dashed) emanating from (x,y) = (0,0). 

 


