
 

 
 

Chapter 2 

The Continuum Equations 

 
2.1 The conservation of mass 

 

In solid mechanics and thermodynamics we keep track of a well defined fluid mass 

and this mass is usually trivially specified, as in the case of the planetary motion of the 

moon, for example. When we are dealing with a continuum it is not so easy to specify the 

mass of individual elements for which we want to write dynamical balances. So, first we 

have to see how to deal with the statement of mass conservation that would be implicit in 

describing the motion of a single solid body. 

Consider a fixed, closed imaginary surface, A, drawn in our imagination in the fluid. 

It encloses a fixed volume, V, whose outward normal at each point on the surface is n̂  as 

shown in Figure 2.1.1 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.1 The control volume to describe the mass budget. 
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The surface of our imaginary volume is infinitely permeable. Fluid flows right through 

the surface with the fluid velocity at the surface.  

At each time, t, the mass enclosed in V by the surface A is 

 

  M (t) = ρdV
V
∫  (2.1.1) 

where ρ is the fluid density at and the integral is over the volume of V. Note that the 

density is generally a function of position within V, that is, ρ = ρ(xi ,t) . 

The mass of fluid flowing out of V across its boundary, A, is  

 

  
 
Flux= ρuin̂dA

A
∫  (2.1.2) 

This can be seen by examining Figure 2.1.2  

 

 

 

 

 

 

 

 

 

Figure 2.1.2 The pillbox crossing a surface element of A in a time dt 

 

In each interval of time  dt a small pillbox of mass whose cross sectional area is dA and 

whose height  dl =
uin̂dt  yields a volume  

uin̂dtdA  leaving the volume in that time. 

Therefore the rate at which fluid mass leaves the volume is given by (2.1.2).  

To conserve mass the rate of change of the mass in the fixed volume must be equal 

to the mass leaving (or entering). Thus, 

 

 
uin̂dt  

dA 
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∂
∂t

ρdV
V
∫ = − ρuin̂dA

A
∫ (2.1.3)

or since the volume is fixed in space,

∂ρ
∂t
dV = − ρuin̂dA

A
∫

V
∫ (2.1.4)

  

 

 

The divergence theorem  states that for any well behaved vector field,  

Q ,  

 

 
 


Qin̂dA

A
∫ = ∇i


QdV

V
∫   (2.1.5) 

 

and so (2.1.4) can be written 

 

 
 

∂ρ
∂t

+∇iρu⎡
⎣⎢

⎤
⎦⎥
dV

V
∫ = 0   (2.1.6) 

 

Now, the volume, V, we have used to keep track of the mass has been chosen 

arbitrarily.  It could be any volume in the fluid. For (2.1.6) to always be true then, the 

integrand itself must vanish everywhere,  since if there were a sub-domain in which it did 

not vanish we could choose V to correspond to that volume and obtain a violation of 

mass conservation. We therefore obtain the differential statement of  mass conservation, 

 

 
 

∂ρ
∂t

+∇iρu = 0   (2.1.7) 

This equation which describes the condition of mass conservation is sometimes referred 

to as the  continuity equation.  

 It might be useful to repeat the derivation in a more elementary but no less 

rigorous manner to emphasize the physical nature of the result. Consider an elementary 

cube with sides, dx, dy, and dz. 
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Figure 2.1.3 An elemental cube used to budget mass. 

The net mass flux leaving the cube  through the face perpendicular to the x axis with area 

dydz  is : 

   

ρu + ∂ρu
∂x

dx⎡
⎣⎢

⎤
⎦⎥
dydz − ρudydz = ∂ρu

∂x
dxdydz   (2.1.8) 

 

A similar calculation for the other four faces of the cube yields the net  mass flux leaving 

the cube as: 

 

 ∂ρu
∂x

+
∂ρv
∂y

+
∂ρw
∂z

⎡

⎣
⎢

⎤

⎦
⎥dxdydz  

and this must be balanced by the decrease in the mass in the cube,  or again (2.1.7) 

  
 

∂ρ
∂t

= −∇iρu  (2.1.7) 

Indeed, this elementary derivation using an infinitesimal cube is nothing more than the 

basis of the proof of the divergence theorem in the first place and so is just as rigorous a 

derivation. Again, the physical statement is that at each point the local decrease of density 

compensates for the local divergence of  the mass flux. If the divergence is negative we 

call it a convergence.  

dz 

dx 

dy 

ρu + ∂
∂x
(ρu )dx  

ρu  

x 

z 

y 
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 In our index notation the mass conservation equation can be written, 

 

  ∂ρ
∂t

+
∂ρuj

∂x j
= 0,   (2.1.9) 

or, expanding the derivative, 

 

   ∂ρ
∂t

+ uj
∂ρ
∂x j

+ ρ
∂uj

∂x j
= 0,   (2.1.10) 

or in vector notation, using our formula for the total derivative, 

 

  
 

dρ
dt

+ ρ∇i
u = 0   (2.1.11) 

This is equivalent to (2.1.9), i.e. a statement of mass conservation but  it can be given a 

slightly different interpretation.  This equation describes the rate of change of density 

following a fluid particle and relates it to the local divergence of velocity. To understand 

this more deeply let’s return to Figure 2.1.2 and think about the volume , not as fixed in 

space and perfectly permeable but fixed to the fluid so that it deforms and stretches as the 

fluid composing its surface moves. At each point on the surface the outward movement 

of the fluid leads to a local volume increase so that the volume increase as a whole is 

simply, 

 

 

 

dV
dt

= uin̂dA
A
∫

= ∇i
u

V
∫ dV

  (2.1.12) 

 

Now consider the limit as the volume under consideration gets very small in the limit as 

Và  δVà0. 
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dδV
dt

= δV∇ i
u   (2.1.13) 

 

so that the mass conservation equation in the form (2.1.11) becomes, 

 

 

dρ
dt

+ ρ
δV

dδV
dt

= 0,

⇒
d ρδV( )
dt

= 0.

  (2.1.14) 

which states that the total mass in the moving volume consisting of the same fluid is 

conserved.  As the volume of the fluid element  increases (or decreases) the density must 

increase (or decrease) to compensate in order to conserved total mass. 

 

Let’s estimate  each of the terms in (2.1.11). If δρ is a characteristic  value for the 

density  variation  or density anomaly and ρ is a characteristic value of  the density itself, 

the term 

  ρ∇i
u = O(ρU / L)   (2.1.15) 

 

if U  is a characteristic value of  the velocity and its variation.  On the other hand, 

 

 dρ
dt

= O(δρ /T )   (2.1.16) 

where T is the time scale over which the density anomaly changes. If, as in many 

oceanographic and atmospheric situations the time scale is the same as the advective time, 

L/U (this is the time it takes a disturbance to move a distance L moving with the fluid at a 

rate U) then, 

 

 
 

dρ
dt

ρ∇i
u
= O Uδρ / L

ρU / L
⎛
⎝⎜

⎞
⎠⎟
=
δρ
ρ

  (2.1.17) 
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If δρ / ρ  is small (it is of the order of one part in a thousand in the ocean) then the first 

term in (2.1.11) is utterly negligible compared to each of the three velocity terms in the 

divergence and so  to conserve mass it is necessary, to O(δρ / ρ ) to  conserve volume,  

or, as we see from (2.1.14) that  

  

   ∇i
u = 0  (2.1.18) 

 

Our definition of an incompressible fluid is one that satisfies (2.1.18). In such cases 

the fluid needs to keep the volume of every fluid parcel constant although the volume 

will generally become very distorted by the motion. It is vitally important to realize that if 

(2.1.18) is a valid approximation to the full conservation equation for mass, it does not 

follow that dρ dt = 0 . That it, (2.1.18) does not allow us  to extract a second equation 

constraining the density.  You can’t get two equations from one equation. Keep in mind 

that the variation of density may not be zero, only that its variation is too small to be a 

player in the mass budget if δρ / ρ  is small. 

Even if δρ / ρ  is small,  there are situations where (2.1.18) is not true. For example,  

if the time scale of the motion is not the advective time scale but, say, some period of 

oscillation that is very short compared to the advective scale, the local rate of change of 

density can be of the same order as the divergence. In that case the fluid will not act 

incompressible. Water flowing in a brook is very nearly incompressible in its dynamics 

yet when you click two rocks together underwater, the sound travels as an acoustic wave 

and that depends on the compressibility of the water and the high frequency of the 

generated sound wave. Incompressibility is therefore an approximation that for any fluid 

depends on the process and not just the fluid and must be determined by the nature of the 

dynamics being considered. 

 
2.2 The streamfunction  

 In chapter 1 (see (1.7.12) ) we showed that the velocity field could be represented 

alternatively in terms of three scalars with 
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u = γ∇φ × ∇ψ   (2.2.1) 

If we substitute this representation in the continuity equation,  (2.1.7) we obtain, 

 

 

 

∂ρ
∂t

+∇i ργ∇φ × ∇ψ( ) =

∂ρ
∂t

+ (∇ργ )i ∇φ × ∇ψ( ) = 0.
  (2.2.2) 

since   ∇⋅(∇φ×∇ψ)≡ 0 . 

Consider the case when the flow is steady so that ∂ρ
∂t

is identically zero.  Then the 

equation for mass conservation will be satisfied exactly if we choose the scalar  

 

  γ = 1 / ρ  (2.2.3) 

Note that even if the flow is not steady, but if ∂ρ
∂t

 is negligible,  the result is still true. In 

either case we then have the simpler representation of the velocity in terms of two 

arbitrary scalars, not three, i.e. 

 

   ρ
u = ∇φ × ∇ψ  (2.2.4) 

For a two dimensional flow,  for example if z is constant for each fluid element, φ is just 

z (plus an irrelevant constant)  and the velocity field (or more precisely the mass flux) is 

given in terms of the single scalar ψ,, 

 

   ρ
u = k̂ × ∇ψ  (2.2.5) 

and the two velocity components u and  v  are , 

 

  ρu = −
∂ψ
∂y
, ρv = ∂ψ

∂x
 (2.2.6) 

It follows from (2.2.5) that the two-dimensional velocity vector is always  tangent to lines 

of constant  ψ . The function ψ is called the streamfunction and its contours, at each 
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instant trace the streamlines for the flow (see Figure 2.2.1). Recall that if the flow is 

steady, or can be approximated as steady, these are also the trajectory of fluid elements, 

otherwise not. 

 

 

 

 

 

 

 

 

Figure 2.1.1.   The  two streamlines  ψ1 and ψ2. 

 

Of course the flow does not cross the streamlines  and so the two contours shown in the 

figure act as a channel for the fluid. Let’s calculate the mass flux flowing through that 

channel.  From (2.2.5) or (2.2.6) we can calculate the flux across any curve joining the 

two contours as shown in Figure (2.2.2) 

                                                          ψ =ψ2 
 

 

 

 

   ψ =ψ1  

 

                                                                                                  
 

 

Figure 2.2.2 Calculating the flow across the line C between two streamlines  

 

      ψ=ψ1 

ψ =ψ2 
 

 
u 

C  
        u 

A 

B 
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At each location along the line C we can represent the line by a series of infinitesimal 

steps with length dx and dy, as shown in the Figure 2.2.3 where the line C connects any 

two points A and B on each of the streamlines. 

 

 

 

 

 

                                         dx 

 

 

Figure 2.2.3 An element of the line C represented by two infinitesimal elements dx and 

dy.  

 

The mass flux✱ across the element   d
s  of  C  is the same as across the two infinitesimal 

elements dx and dy, namely, 

 

 
 
ρuin̂ds = ρudy − ρvdx = −

∂ψ
∂y

dy −
∂ψ
∂x

dx = −dψ   (2.2.7) 

or integrating  along C  from one streamline to another  yields 

 

 
 
ρuin̂ds

A

B

∫ = − dψ
ψ1

ψ 2

∫ =ψ 1 −ψ 2
   (2.2.8) 

so that the mass flux between two streamlines depends only on the value of the 

streamfunction of those streamlines and is independent of the path used to calculate the 

flux. If the density can be considered constant, i.e. if its variation is slight as in the case of 

an incompressible fluid, the streamfunction ψ  can be introduced for the velocity field 

itself since the condition for incompressibility for a two dimensional flow is just, 

 

                                                
✱ In vector form  

uin̂ds = (k̂ × ∇ψ )in̂ds = −∇ψ i(k̂ × n̂)ds = −∇ψ ids = −dψ where  d
s is 

the line element tangent to C 
❀ This implicitly assumes that only the forces we have already considered can give rise to torques, i.e. that 

dy 

 
uin̂  

 d
s  
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 ∂u
∂x

+
∂v
∂y

= 0  (incompressible and 2-D)  (2.2.9) 

 

and the representation, 

 u = −∂ψ ∂y v = ∂ψ
∂x    (2.2.10) 

satisfies (2.2.9) exactly so that if is the volume flux that is given by the difference in the 

value of ψ from streamline to streamline in that case. 

 

2.3 The momentum equation, Newton’s second law of motion. 
 

In continuum mechanics we  first of all suppose that the forces acting on each fluid 

element  can be separated into two types. 

1) There are long range forces that act directly on the mass of the fluid element.  

For example, gravity, or  electro-magnetic forces (if the fluid is conducting), or  from the 

d’Alembert point of view, accelerations. These forces are distributed over the volume of 

the fluid element. We usually specify the force in terms of a force per unit mass, F(x,t). 

Hence the total volume force on a fixed mass of fluid enclosed in a volume  V is: 

 

 

 

 

 

 

 

Figure 2.3.1 F is the body force per unit mass acting on the fluid element  of volume V. 

   

  
 
Body force = ρ


FdV

V
∫  (2.3.1) 

2) In addition, there are also short range forces, or surface forces, that act only on 

the surface of the fluid element (for example the pressure) and whose total force exerted 

is proportional to the surface area of the fluid element. We denote the surface force per 

V 

F 
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unit surface area as Σ .    Note that Σ  does not necessary have to be perpendicular  to the 

surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.2 The surface force acting on an area  element of the surface of the fluid 

particle. 

 

 

Thus the total surface force on the fluid element is  

  

  
 


ΣdA

A
∫ = total surface force  (2.3.2) 

dA  

Σ  
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The surface force per unit area Σ  is called the stress.  It is a function of the 

orientation of the element al surface dA, i.e., of the direction in the fluid of the normal to 

the surface at each point. That is, in general, 

 

    

Σ =

Σ (x, n̂)  (2.3.3) 

We will have to put considerable effort into finding a relationship between the state 

of the fluid and these surface stresses. Before doing so we should be clear about an 

elementary definition of  the stress. It is defined  so that  

Σ (x, n̂) is the stress exerted by 

the fluid that is on the side of the area into which the normal points on the fluid from 

which the normal points. By Newton’s law of action and reaction it follows that 

 

   

Σ (x, n̂) = −


Σ (x,−n̂)  (2.3.4) 

as shown in the figure below. 

 

 

 

 

 

 

 

 

 

Figure 2.3.3 The stress and its reaction across the surface element. 

 

Thus, if we consider  volume with a fixed mass of fluid in an inertial system for to which 

Newton’s 2nd law of motion applies, we have, 

 

 
 

d
dt

ρudV
v
∫ = ρ


FdV

V
∫ +


ΣdA

A
∫   (2.3.5) 

n 

 

Σ (x,−n̂)
 

 

Σ (x, n̂)  
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and the first question we must answer is whether the second term on the right hand side 

of (2.3.5 can be written as a volume integral so that we can extract,  as we did for mass 

conservation,  a  differential statement  for the momentum equation. This turns out to be a 

rather subtle issue and we are going to have to take a momentary diversion from our 

physical formulation of the equations of motion to discuss some fundamentals about 

vectors and their cousins, tensors. 

 

2.4 Vectors, tensors and their transformations 

 

Our goal is to discover what  fundamental properties of the stress will allow us to 

rewrite the integral balance (2.3.5) as a differential balance, i.e. one for a infinitesimally 

small parcel of fluid. The key difficulty of preceding directly is that as the volume of that 

parcel becomes smaller and smaller it would appear  that the surface term would 

dominate all the volume terms; the volume terms would go like l3 while the surface term 

should go like l2 and dominate in the limit là 0. The fact that this cannot be the case will 

impose an important constraint on the basic structure of Σ .  To begin with, though, we 

have to review some basic facts about vectors. There is a good discussion in Kundu’s 

book, also in the book by Batchelor. There are several excellent books that focus on 

vector and tensor theory appropriate for the fluid mechanics. I have always been fond of 

the book byAris (still available at online vendors) and the slim book by Harold Jeffreys 

(Cartesian Tensors, Cambridge Univ. Press) that is out of print but also available online. 

Consider the position vector x  as described in two orthogonal Cartesian frames with 

the same origin but one is rotated with respect to the other.  

 

 

 

 

 

 

 

 
x1 

x2 

x3 

i1 
i2 

i3 

x'1 

i'1 

x'2 
i'2 

x'3 

i'3 

P 
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Figure 2.4.1 The two Cartesian frames that serve to describe the same position 

vector   x. 

Consider the position vector x  to the point P. The vector x is independent of the 

frame used to describe it but its coordinate  description will be frame dependent. In the 

unprimed coordinate frame, that I will refer to as the “old frame” the vector can be 

described in terms of its coordinates along the three axes, each of which has a unit vector  

ij describing  its direction in space.  

 

 
 

x = îk xk
k
∑ ≡ îk xk    (2.4.1a) 

where we have used our summation convention. Since the unit  vectors are orthogonal, it 

follows that each component of the position vector can be found by taking the dot 

product with each of them, 

 

  xk = îk i
x    (2.4.1b) 

We can also describe the same vector in the “new frame” i.e. , the primed axes. Although 

it is the same vector I will momentarily mark it with a prime to remind us which frame is 

being used to describe its coordinates,  but keep in mind that x = x’. 
 

  
x ' = î ' j x ' j , x 'k = îk 'i

x '    (2.4.2 a,b) 

Keep in mind that the dot product 
 
î j iîk = δ jk =

0, j ≠ k
1 j = k
⎧
⎨
⎩

  (2.4.3) 

 

Next we want to make explicit the relation between the coordinates of the same position 

vector in the two frames. Since the vectors are the same, 
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xi = îi i
x = îi i

x ' = îi iî ' j x ' j

≡ ajix ' j

   (2.4.4) 

 

where the matrix aji is defined by the inner product of the jth  unit vector of the new frame 

with the ith unit vector of the old frame. The aji are just the direction cosines between the 

two axes. Similarly, 

 

  xi ' = îi 'i
x ' = îi 'iî j x j = aij x j    (2.4.5) 

(Note: The above notation differs from that used in Kundu where he uses ajk as the 

direction cosines between the  jth axis of the old frame and kth axis of the new frame). The 

transformation matrix ajk has the following important property.  Since 

 x 'i = aij x j = aijakj x 'k = δ ik x 'k = x 'i    (2.4.6) 

 

for arbitrary position vectors , it follows that, 

 

 aijakj = δ ik    (2.4.7a) 

 

while similarly, 

 

 akmakl = δml    (2.4.7b) 

We define a vector as any quantity whose Cartesian  coordinates transform by the 

same rule as the position vector,  that is, the coordinates of the vector A in the new frame, 

A’i are related to the coordinates of the same vector in the old frame, Aj by the rule 

 

 A 'i = aijAj    (2.4.8) 

It is important to note that there are quantities that satisfy the usually described 

requirement  to be a vector, i.e. having a magnitude and a direction,  that do not satisfy 

the condition (2.4.8) and can not be considered as real vectors. The most important of 

these in fluid mechanics, especially in meteorology and oceanography, is the phase speed 
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of a wave. If its speed in the direction of the wave vector , k  = {kj}, (i.e. in the direction 

perpendicular to the wave crest) is c, the components  along the coordinate axes are 

 ciK / kj  where K is the magnitude of  k and this is not  consistent with the phase speed 

being a vector.   

The importance of the requirement (2.4.8) is that it preserves the invariance of 

properties that should not depend on the coordinate system,  such as the length of the 

vector. Thus, 

 

 A 'i A 'i = aijaikAjAk = δ jkAjAk = AjAj   (2.4.9) 

and similarly,  the dot product of any two vectors is invariant, so that the dot product 

calculated in the two coordinate frames 

 

 A ' j B ' j = ajkajmAkBm = δkmAkBm = AmBm   (2.4.10) 

is the same. 

There is an important fact, called the quotient rule that helps us to identify a 

quantity as a vector. The quotient rule states that: If q is a scalar (hence the same in all 

coordinate frames) and if u is an arbitrary vector and if  

 

 q = vju j   (2.4.11) 

then v must be a vector. This follows from the following simple calculation of  q in the 

two frames, 

 

 q = vkuk = v ' j u ' j = v ' j a jkuk   (2.4.12) 

or 

 

 uk vk − v ' j a jk⎡⎣ ⎤⎦ = 0   (2.4.13) 

But since  the uk are arbitrary the quantity in the square bracket must vanish for each k 

demonstrating the v does, in fact, also transform as a vector. 
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Suppose we take two vectors u and v and multiply their coordinates together, 

uivj (note that no sum is implied), we then obtain a 3X3 matrix 

Wij = uivj   (2.4.14) 

Since u and v are vectors , to transform the entries Wij from one frame to the other. 

 

 W 'ij = aikajmukvm = aikajmWkm   (2.4.15) 

 

We define any square  matrix Wij that transforms according to the rule (2.4.15) as a  

second order tensor and it need not be expressible as the product of two vectors. It need 

only satisfy the basic rule, 

 

 W 'ij = aimajnWmn   (2.4.16) 

 

We are now in a position to discuss the nature of the surface stress and we will show it 

can be expressed in terms of a second order tensor σij. 

 

2.5 The stress tensor. 
 

Consider the tetrahedron shown in the Figure2.5.1. The  outward normal from the 

slant face is n  while the outward normals from the other three faces are (note the minus 

sign)   −î j , j = 1,2,3 . 

 

 

 

 

 

 

 
 

Figure 2.5.1 The tetrahedron used to calculate the force balance due to surface stresses. 

i2 

i1 

     i3 

n Σ  

dA3 

dA2 

dA1 

dA 
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The tetrahedron  is small; each linear dimension is O(l)  and we will be interested in the 

limit là0.  The total surface force on the tetrahedron, S,  is 

 

  

S =

Σ (n̂)dA +


Σ (−î1)dA1 +


Σ (−î2 )dA2 +


Σ (−î3)dA3  (2.5.1) 

 

A little geometry and trigonometry shows that  dAj = n̂iî jdA  where dAj is the area of the  

triangle perpendicular to the jth coordinate axis.  At the same time we know that 

 

Σ (−î j ) = −


Σ (î j )  so that (2.5.1) becomes, 

 

 
 
dA

Σ (n̂) −


Σ (î1)n̂1 −


Σ (î2 )n̂2 −


Σ (î3)n̂3⎡⎣ ⎤⎦ =


S  (2.5.2) 

However,  as là 0 the size of the surface force is of order dA, i.e. of O(l2) while all the 

body forces are  of O(l3) and so in the limit become negligible compared to the surface 

force. Thus, to lowest order, to preserve the force balance for each fluid element, S  must 

vanish, i.e. 

 

  

Σ (n̂) =


Σ (î1)n̂1 +


Σ (î2 )n̂2 +


Σ (î3)n̂3   (2.5.3 a) 

 

or, in component form 

 
Σ i (n̂) = Σ i (î1)n̂1 + Σ i (î2 )n̂2 + Σ i (î3)n̂3

≡ Σ ij n̂ j

 (2.5.3b) 

where Σ ij ≡ Σ i (î j ) . That is, Σ ij is the stress (force per unit area) in the ith direction on the 

face perpendicular to the jth axis. The result in (2.5.3) shows that we can write the stress 

on the surface with any orientation in terms of the quantities  Σ ij and the  normal to that 

surface. 

 We usually use the notation, 
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 σ ij = Σ ij = Σ i (î j )   (2.5.4) 

so that  

 Σ i (n̂) = σ ijn j   (2.5.5) 

where I have dropped the caret from the normal vector’s components.  

A helpful geometrical picture  to keep in mind what the 9 components of σij refer to 

is shown in Figure 2.5.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              

 Figure 2.5.2 The defining figure for the elements of the stress tensor. 

σij is the force per unit area in the ith  direction on the face perpendicular  to the jth 

axis. 

 

Many texts take the relation (2.5.3) as a given but we see that it actually follows 

from the necessity of a force balance to lowest order i.e. at O(l2) in the limit là 0. 

Since Σ i (n̂) is a vector it follows from (2.5.5) and an application of the quotient rule 

that σij must be a second order tensor. This also follows directly since in the “new” frame 

we can write the surface force as 

Σ 'i = σ 'ij n ' j   (2.5.6) 

x2 

x3 
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x1 
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while  we know that 

 

 
Σ i = akiΣ 'k
nj = aljn 'l

  (2.5.7 a,b) 

so that 

 

 Σ i = σ ijn j = akiΣ 'k = akiσ 'km n 'm = akiσ 'km amlnl  (2.5.8) 

or, 

 
σ ijn j = akiσ 'km amjnj ⇒

nj σ ij − akiamjσ 'km⎡⎣ ⎤⎦ = 0

  (2.5.9) 

but since the normal vector can be arbitrary we must have 

 

  σ ij = akiamjσ 'km  (2.5.10) 

which is the transformation rule for tensors. 

2 . 6   An example 

To get a feeling for the relationship between the elements  of the stress tensor and 

the forces on fluid elements let’s consider a simple two dimensional example.   Let’s 

consider the stress tensor 

 

 σ ij =
σ11 σ12

σ 21 σ 22

⎡

⎣
⎢

⎤

⎦
⎥   (2.6.1) 

and consider the surface element in projected in the x-y plane as shown in Figure 2.6.1. 

 

 

 

 

 

 

 

x1 

x2 

n t 

θ 
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Figure 2.6.1 The heavy line is a (2-d version) of a surface element whose normal is n and 

whose tangent vector is t. The normal  vector makes an angle θ with the x1 axis. 

 

The components of the vectors n and t  are : 

 

 
n̂ = {cosθ,sinθ}.
t̂ = {− sinθ, cosθ}

  (2.6.2 a,b) 

 

The stress Σ  is 

 

 Σ i = σ ijn j = σ i1 cosθ +σ i2 sinθ   (2.6.3) 

So, the stress in the direction of the normal  is 

 

 
 


Σ in̂ = Σ ini = σ11 cos

2θ +σ 22 sin
2θ +

σ12 +σ 21

2
sin2θ.  (2.6.4) 

while the stress in the direction of the tangent vector t is, 

 

 
 


Σ it̂ = Σ iti = σ 22 − σ11( ) sin2θ

2
+σ 21 cos

2θ − σ12 sin
2θ  (2.6.5) 

 

Consider the following special  cases: 

 

 σ11 = σ12 = σ 21 = 0,   (2.6.6) 

 

Then the normal stress is 

 

 Σ ini = σ 22 sin
2θ,   (2.6.7) 
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while the tangential stress is  

 Σ iti = σ 22
sin2θ
2

  (2.6.8) 

 

Therefore,  for a material under tension , i.e. σ22 > 0 there will be a shear stress, parallel  

the plane of surface in Figure 2.6.1 that is a maximum when θ is 45O. Materials that are 

weak in shearing will tend to shear along this axis as you may have noticed with a piece 

of chalk. At 45O the normal and shear stresses are equal and you can rationalize that by 

examining the force balance on the small triangle  as shown in Figure 2.6.2. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6.2 the force balance  on a small wedge of material. 

 

Of course, this force balance is just a special case of the force balance that let us  arrive at 

the expression (2.6.3) in the first place. 

 Suppose, on the other  hand that  

  
σ11 = σ 22 = 0,
σ12 = σ 21

 (2.6.9 a, b) 

(We shall shortly see that (2.6.9 b) must be true. In this case the tangent component of the 

stress along the element at 45O  is 

  

 Σ iti = σ12 cos2θ = 0   (2.6.10) 

dx 

σ22 

σ22/2 
ds=21/2 dx 

σ22/2 
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so that there is no tangent stress component. Again note that the stress is a function of the 

orientation of the area under consideration as well as the magnitude of  the  elementary 

stresses σij.  

 A single example when this not the case is when the stress tensor is diagonal, 

so that  

 

σ ij = 0, i ≠ j,
σ ij = σ o ,i = j

  (2.6.11 a,b) 

so that all off diagonal components are zero and the diagonal components are all the 

same. Looking at our expression for the normal and tangential stresses (2.6.4) and (2.6.5) 

we see that the normal stress would be the same, σO, for all angles,  and the tangential 

stress would be always zero. This follows from the general transformation rule. Thus if  

 σ ij = σ oδ ij   (2.6.12) 

 

then in any rotated frame 

 

 σ 'ij = aikajlσ kl = aikajlσ oδkl = σ oaikajk = σ oδ ij  (2.6.13) 

the stress tensor remains diagonal and has only normal stresses in each rotated frame. 

On the other hand if the stresses are normal in one frame, but the normal stresses are not 

equal, in a rotated frame there will be tangential stresses as well as our example has 

shown. This becomes an important consideration when we will define the fluid pressure. 

 

2.7 The momentum equation in differential form 

 

We are now in a position to turn the statement of Newton’s second law of motion 

from the integral statement (2.3.5) to a more useful differential statement.  We first must 

note the following important fact. If we consider any integral of the form, 

 

I = d
dt

ρϑdV
V
∫   (2.7.1) 
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where ϑ is any scalar (and so, for example, it could be a component  of velocity) and 

where V is a volume enclosing a fixed mass of fluid. We can think of that volume as 

consisting of an infinite number of small, fixed mass volumes, each with a mass ρdV . 

Since the mass of each is conserved following the fluid motion (2.1.14) it follows that the 

integral in (2.7.1) can be rewritten as 

 I = ρ dϑ
dt
dV

V
∫   (2.7.2) 

At the same time we will use our result on the representation of the surface stress to write 

the surface integral in (2.3.5) in terms  of the stress tensor. Thus, for each velocity 

component we have, 

 

 ρ dui
dt

dV
V
∫ = ρFidV

V
∫ + σ ijn jdA

A
∫   (2.7.3) 

Although the second  term on the right hand side looks like an area integral it can be 

written as a volume integral  for the divergence of the vector (for each i ), σ (i ) j  dotted 

with the normal vector nj . This allows us to use the divergence theorem to write each 

term in the same volume integral , 

 

 dV ρ dui
dt

− ρFi −
∂σ ij

∂x j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥V

∫ = 0   (2.7.4) 

 

The fact that the surface integral of the stress is really a volume integral is a direct 

consequence of   the earlier  application of  our force balance.  That argument determined 

the structure of Σ   in terms of the stress tensor σij so our ability to write (2.7.3) entirely as 

a volume integral is not a coincidence but rather a result of our basic physical formulation 

of the dynamics. 

Now we use the usual argument about  integral statements. The volume chosen in 

(2.7.4) is entirely arbitrary so for the integral to vanish for an arbitrarily chosen V it must 

be true that  the integrand vanishes  so we obtain our fundamental result.  
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                                                                                                          (2.7.5) 

 

We should emphasize  that this equation is valid  for any continuum whether it is a fluid 

or a solid. 

We could write (2.7.5) in more familiar vector form except for the last term. It is 

hard to squeeze what is a fundamentally tensorial quantity into vector clothing. It can be 

done by the use of what are called dyads but it adds little to and understanding of what  

the equation  means.  

Expanding the total derivative on the left hand side of (2.7.5) we have, 

 

 ρ ∂ui
∂t

+ ρuj
∂ui
∂x j

= ρFi +
∂σ ij

∂x j
  (2.7.6) 

and when  combined with the mass conservation equation (2.1.9)  we obtain 

 

 ∂ρui
∂t

+
∂ρujui
∂x j

= ρFi +
∂σ ij

∂x j
  (2.7.7) 

 

or equivalently, 

 

 ∂ρui
∂t

= ρFi +
∂(σ ij − ρujui )

∂x j
  (2.7.8) 

If (2.7.8) is integrated over a fixed , stationary and perfectly permeable volume, as in our 

derivation of the mass conservation equation ,  we obtain, 

 

 ∂
∂t

ρuidV
V
∫ = ρFidV

V
∫ + σ ij − ρuiu j⎡⎣ ⎤⎦njdA

A
∫  (2.7.9) 

 

ρ dui
dt

= ρFi +
∂σ ij

∂x j  
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The flux of the ith component of momentum ρui across the face of the volume 

perpendicular to the jth axis is ρuiu j (see Figure 2.7.1). 

 

 

 

 

 

 

 

 

Figure 2.7.1 The velocity component uj carries  a flux  of momentum in the i  direction  

across the face perpendicular to the jth axis equal to ρuiu j . 

 

By transferring the divergence of this momentum flux to the right hand side of the 

equation it appears as if it were equivalent to a stress acting on the fluid within the 

volume. A divergence of the momentum flux (more momentum leaving than entering) 

will reduce  the momentum within the volume. This equivalence between the momentum 

flux and the stress tensor σij is fundamental. You may recall from kinetic theory of gases 

that the viscosity of a gas is due to just this kind of momentum flux on the molecular 

level. Here we see the macroscopic analogue. Indeed, when people try to find 

representations of the turbulent “stresses” which is nothing more than the momentum flux 

by motions on smaller space scales and faster time scales than we can hope to calculated 

directly,  an appeal by analogy is often made to represent the turbulent  stresses in terms 

of the large scale flow in the same way the molecular stresses are related to the 

macroscopic flow.  Of course, at this stage we have done neither. 

 

2.8 The symmetry of the stress tensor 

 

xj 
ui 

uj 

xi 
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In principle, the stress tensor has nine independent components.  We will show now 

that only 6 of these  are independent because the off diagonal elements must  satisfy a 

symmetry condition, 

 σ ij = σ ji   (2.8.1) 

Before proving this result we need  to establish some preliminary notation.  

Consider the  cross product between two vectors  A and B, 

 

  

C =

A ×

B,   (2.8.2a) 

or in component form 

 
C1 = A2B3 − A3B2
C2 = A3B1 − A1B3
C3 = A1B2 − A2B1

  (2.8.2 b,c,d) 

Notice the cyclic nature of the result (i.e. 1à2à3à1 …)  to go from one component  of 

the cross product to the next. This can  be written in economical form using the so-called  

alternating tensor , εijk 

 

1 if (i,j,k) are in the order (1,2,3) or any cyclic permutation (2,3,1),(3,1,2)
εijk =−1     if (i,j,k) are in the order (2,1,3) or any cyclic permutation(3,2,1),(1,3,2)

= 0 if any two indices are equal
 

Note that if any two indices are interchanged    i j  the tensor changes sign.  It follows 

that  the cross product  of the vectors  A and B  can be written compactly as 

 

 Ci = εijkAiBj   (2.8.3) 

 

For example,  for C1 the only non zero terms on the right hand side from the sum over j 

and k are 

 
C1 = ε123A2B3 + ε132A3B2

= A2B3 − A3B2

  (2.8.4) 
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with the other components following cyclically.  The alternating tensor is extremely 

useful and allows one, after a small effort at keeping its definition in mind, to no longer 

have to remember or look up all those vector identities that vector notation seems to hide.  

A further identity of great utility that is easily memorized and completely eliminates 

the need to recall any vector identity is the identity for the inner product of two 

alternating tensors, 

 εijkεlmk = δ ilδ jm − δ imδ jl   (2.8.5) 

(this can easily be remembered by noting that the first index of each  alternating tensor 

forms the indices of the first delta function and the second index of each alternating 

tensor forms the indices of second delta while in the second product on the right hand 

side these are reversed.  

 Now let’s consider the torques on any fluid element around an arbitrary origin. 

(See Figure 2.8.1) 

 

 

 

 

 

Figure 2.8.1 A fluid element of fixed mass, where  
x is the distance vector from an 

arbitrary origin. 

The rate of change of the total angular momentum of the element around the origin is 

given in terms of the torques on the element  from the body forces and the surface force❀, 

 

 
 

d
dt

ρx × udV
V
∫ = ρx ×


FdV +

V
∫ x ×


ΣdA

A
∫  (2.8.6) 

or using (2.7.1), (2.7.2) the term on the left hand side can be written, 

 

 
 
(ρx × d

u
dtV

∫ + ρ d
x
dt

× u)dV = (ρx × d
u
dtV

∫ )dV  (2.8.7) 

                                                
❀ This implicitly assumes that only the forces we have already considered can give rise to torques, i.e. that 
there are no other “intrinsic” sources of angular momentum. 

 
x

 

O 
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since the second  term on the left  hand side is the cross product of the velocity with itself 

and so is identically zero. In component form then, (2.8.6) can be written 

 

 

 

ρ εijk x j (
duk
dt

− Fk
⎡
⎣⎢

⎤
⎦⎥V

∫ dV = εijk x jΣ kdA
A
∫

= εijk x jσ klnldA
A
∫

= εijk
∂
∂xlV

∫ x jσ kl⎡⎣ ⎤⎦dV

 (2.8.8) 

 

Note that since the coordinate axes are independent  

  
∂x j
∂xl

= δ jl  (2.8.9) 

 

so that  

 

ρ εijk x j (
duk
dt

− Fk )
⎡
⎣⎢

⎤
⎦⎥V

∫ dV = εijk
∂
∂xlV

∫ x jσ kl⎡⎣ ⎤⎦dV

= εijk δ jlσ kl + x j
∂σ kl

∂xl

⎧
⎨
⎩

⎫
⎬
⎭V

∫ dV

 (2.8.10) 

 

so that  finally, 

εijk x j (ρ
duk
dt

− ρFk −
∂σ kl

∂xl
)

⎡

⎣
⎢

⎤

⎦
⎥

V
∫ dV = εijk σ kj{ }

V
∫ dV  (2.8.11) 

 

The left hand side of (2.8.11) is zero because the term in the  bracket is just the 

momentum equation that is automatically zero.  Again, since the volume of the fluid 
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element that we have chosen is arbitrary,  in order that the right hand side vanish the 

integrand must vanish, or, 

 

 εijkσ jk = 0   (2.8.12) 

 

Let’s examine this for i=1. The sum over j and k yields, 

 
0 = ε123σ 23 + ε132σ 32

= σ 23 − σ 32

  (2.8.13) 

Therefore  σ 23 = σ 32 and this holds true for the other diagonal components of the  stress 

tensor by a cyclic  permutation of the indices. The stress tensor is symmetric and so has 

only  six independent entries. 

 An elementary derivation o f the result follows by considering a cube of fluid 

and examining the torques around the center of gravity of the cube. Around the 3 axis we 

have (see Figure 2.8.2) 

 

 

 

 

 

 

 

 

Figure 2.8.2 The calculation of the torque around the center of gravity of a fluid element. 

 

Since the torque of the body forces (including the inertial acceleration) go through the 

center of gravity and since the variations of the stresses from one side of the cube to the 

other are of higher order in the cube distances  dxi, the only way a torque balance can be 

achieved is if σ12 = σ 21 . (Note the change of direction of the stress from one face to the 

other and be sure you understand why . 

Let’s count unknowns and equations: 

σ11 

σ21 

σ22 σ12 

σ21 

σ11 

σ22 
σ12 

cg 
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Unknowns: 

 

ui, ρ,σij =(3+1+6)= 10 unknowns. 

 

Equations: 

(Mass conservation, momentum) = (1+3) =4 equations. 

So, clearly, we do not have enough to close our dynamical  description.  In particular, we 

need to discover more about the stress tensor. Indeed,  up to now the equations we have 

derived apply equally well to steel as to any fluid. What is required is some description of 

the stress tensor that reflects the basic definition of a fluid and the properties of fluids, 

like water and air that are of principal interest to us. 

 Also, note that the diagonal elements of the stress tensor represent normal 

stresses, i.e. perpendicular to the surface of a fluid element and the off-diagonal elements 

represent tangent  or  shear stresses.  In the next chapter we take up the constitutive 

relations for the stress tensor, i.e. the relation between the stress tensor and the state of 

the fluid flow. 

 


