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We describe the automatic analysis of fluorescence tracks of phytoplank-

ton recorded with a fluorescence imaging photometer. The optical

components and construction of the photometer were described in Part

I and Part II of this series in this issue. An algorithm first isolates tracks

corresponding to a single phytoplankter transit in the nominal focal plane

of a flow cell. Then, the fluorescence streaks in the track that correspond

to individual optical elements on the filter wheel are identified. The

fluorescence intensity of each streak is integrated and used to calculate

ratios. This approach was tested using 853 fluorescence measurements of

the coccolithophore Emiliania huxleyi and the diatom Thalassiosira

pseudonana. Average intensity ratios for the two classes closely follow

those predicted in Part I of this series, with a distribution of ratios in each

class that is consistent with the signal-to-noise ratio calculations in Part II

for single cells. No overlap of the two class ratios was observed, yielding

perfect classification.

Index Headings: Phytoplankton; Fluorescence; Multivariate optical

computing; Photometer; Classification.

INTRODUCTION

Historically, it has been challenging to understand the
temporal and spatial variations of oceanic phytoplankton
community structure because the available techniques for
phytoplankton counting and classification have not been suited
to high-frequency open ocean measurements.

The standard for community structure measurement is
traditional microscopy of fixed and stained samples by a
skilled phytoplankton taxonomist who manually counts and
classifies the phytoplankton. This task is both difficult and
time-consuming, as the morphological differences between
some taxonomic classes are minute. Culverhouse et al.1 show
that experts, who are routinely involved in classification, have
accuracies in the range 84–95%. Unfortunately, this method
lacks the high-frequency sampling capacity needed for
community structure monitoring.2,3

Flow cytometry alone, although suited to high-frequency
measurement, has not been reported as an acceptable method
for phytoplankton community structure. Likewise, classifica-
tion methods using solely morphological information are often
confounded by similarities in morphology between phyto-
plankton species. Uhlmann et al.4 were the first to report
automated classification of phytoplankton cells from video
images, but no statistical summary was provided. Since then,
advancements in morphological classification methods have

combined microscopy with flow cytometry and have resulted
in great progress.1,5–8 Using the Video Plankton Recorder,
Davis et al.9 achieved accuracies between 45 and 91% in
identifying individual taxa. Culverhouse et al.10 developed the
Harmful Algal Bloom Buoy for both zooplankton and
phytoplankton identification and report identification rates of
80% for phytoplankton species. Sosik et al.5 have developed
perhaps the most innovative method using cytometry, fluores-
cence, and image analysis with the FlowCytobot, where 88%
accuracy between 22 categories is reported.

CHEMTAX, a high-performance liquid chromatography
method, has been used to identify the relative concentrations of
taxonomic species in bulk monocultures and mixed cultures.11

CHEMTAX is useful in determining pigment concentration in
bulk samples for calibration or validation, but it is not suited to
in situ measurements.12

Remote sensing methods such as satellite imagery of
chlorophyll a and phycoerythrin also have been used for
monitoring phytoplankton.13,14 Satellite images that isolate
chlorophyll a fluorescence at a band around 680 nm are useful
in selectively targeting photosynthetic organisms and estimat-
ing bulk chlorophyll a concentrations over large areas, but they
are limited or unable to discriminate the speciation of the
source of the fluorescence emission.15,16

Despite the advancements described above, a rugged and
deployable method suitable for open ocean monitoring is still
desired.9,17–21 In situ fluorescence excitation spectroscopy
provides an alternative approach. Fluorescence excitation
spectroscopy uses spectral characteristics of a phytoplankton
cell that is independent of morphology.22 Beutler et al.23

developed an in situ method using light-emitting diodes to
selectively excite a bulk sample at five wavelength bands and
recorded the chlorophyll a emission for each, but they provided
no statistical analysis. The potential of this instrument for bulk
in situ fluorometric measurement of phytoplankton community
structure has been described previously.12

We are exploring an approach to phytoplankton classifica-
tion that combines some of the power of imaging with
fluorescence excitation spectroscopy to classify phytoplankton.
In this report, we focus on the automatic analysis of
spectroscopic content in images from a fluorescence imaging
photometer.

In a previous report, we showed that full-spectrum
fluorescence excitation spectroscopy could be used as the
basis for distinguishing at least limited classes of phytoplank-
ton in cultures.24 In Part I25 of this series, we showed that the
full-spectrum information of single phytoplankton cells could
be used to develop special optical elements, enabling rapid
measurements based on fluorescence excitation spectroscopy.
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In Part II,26 we described an instrument capable of supporting
measurements using these special optical elements, called
multivariate optical elements (MOEs). The output of this
instrument consists of images of phytoplankton fluorescence
tracks, with individual streaks whose intensity is related to
fluorescence excitation through particular MOEs, forming a
sort of ‘‘bar code’’ for an individual phytoplankter. Analysis of
the data produced from phytoplankton using the fluorescence
imaging photometer instrument presents a unique situation,
since image analysis is required, but it serves as a proxy for
spectral analysis. This report completes the series by describing
the function and performance of the software developed for
automatic interpretation of phytoplankton data from a fluores-
cence imaging photometer, Streak Integrator for Multivariate
Optical Computing, version 1.0 (SIMOC).

Although the end goal for this instrument lies in field
measurements and studies involving variability of laboratory
cultures, the goal of this study is to evaluate the true
performance of the instrument versus theoretical expectation,
for which known monocultures of phytoplankton are the
closest available samples to instrument standards. We validate
the MOE/fluorescence imaging photometer concept by mea-
suring experimental fluorescence ratios and comparing them to
those calculated from the optical model given in Part I,25 as
well as the classification accuracy and ratio variability for each
class using two similarly pigmented phytoplankton species: the
coccolithophore Emiliania huxleyi and the diatom Thalassio-
sira pseudonana. We found that the measured MOE ratio for E.
huxleyi differed from the theoretical MOE ratio by �3% and
that of T. pseudonana differed byþ0.1%, with a measured ratio
difference of 0.281 versus a theoretical ratio difference of
0.251. The distribution of individual cell ratios was well
explained by the signal-to-noise ratio (S/N) of the instrument
reported in Part II,26 and no misclassifications were seen for
853 cells of two species analyzed.

EXPERIMENTAL

Data Collection. Details of the phytoplankton culture
conditions are found in Part I,25 and instrument details are
found in Part II26 of this series. The fluorescence imaging
photometer consists of a filter wheel with six openings that
rotates counterclockwise as viewed from the lamp. One of the
six positions was blocked with a 2.54 cm (1 in.) diameter black
painted substrate. Using this as a reference, the order in which
filters intersected the light path was MOE1–, MOE1þ,
MOE1þ, MOE1–, ND. The labels on each MOE, 1þ and 1–,
represent MOEs built to mimic the operation of the first linear
discriminant vector in the three-species separation described in
Part I25 of this series, E. huxleyi, T. pseudonana, and
Synechococcus sp. ND represents a 0.3 Newport neutral
density filter. Duplicate MOEs were loaded into the instrument
to improve the S/N of the measurement by repetitive sampling.

In the design of MOEs, performance is characterized by the
ratio of fluorescence intensity when a phytoplankter is excited
through a MOE to fluorescence intensity when excited through
an ND. The difference between MOEs labeled 1þ and 1– is that
the predicted ratio values increase with the scores of each
calibration spectrum on the first linear discriminant for 1þ,
whereas the ratio values decrease with the scores for 1–. Since
the sign of a linear discriminant is arbitrary, the absolute sign of
the MOE has no particular significance. Regardless of the sign

of the linear discriminant, however, MOEs with different signs
have opposite responses.

For these measurements, the filter wheel was rotated at 6.67
Hz. The pump speed was adjusted to give approximately 9–10
streaks during the transit of a phytoplankter across the field of
view. During a set of measurements, files containing 500 16-bit
image frames with integration times of 1 s were acquired. In
total, 20 such files for each organism constituted the complete
sample data set. Additional files characterizing the background,
dark count, and flat field also were acquired.

Data Preprocessing. All algorithms were written in the
MatLabt 7.7 (Mathworks, Inc., Natick, MA) programming
environment on an Apple iMac computer running OS X,
version 10.7.7. Preprocessing was performed as follows. Data
sets of 16-bit binary image files were read using a MatLab
routine. The first sets of data imported included three sets of
500 image frames of a dense culture of E. huxleyi to use for a
flat field correction. Details on how the flat field images are
acquired may be found in the experimental section of Part II.26

A corrected and normalized flat field frame, hfi, was then
obtained by subtracting the average background frame from the
average flat field frame and dividing the result by its average
pixel value. The normalized flat field measures the distribution
of excitation radiation in the image plane.

Sample measurements were typically loaded in 500-frame
image data files, along with a 100-frame file of sample
background images acquired directly before or after each
sample measurement. An average sample background image,
hbi, was calculated from the 100 sample background images.

Each sample frame was then processed according to the
formula

sc ¼
si � bh i

fh i ð1Þ

where sc is a single corrected image, hfi is the normalized
corrected flat field, si is a single uncorrected image, and hbi is
the average sample background frame. Eq. 1 was applied pixel
by pixel for each image.

Data Analysis Algorithm. In the following section, tracks
of fluorescence streaks from a phytoplankter are assumed to be
largely parallel to the column direction of the charge-coupled
device array. After the preprocessing described above, each
corrected 16-bit sample image is initially evaluated for the
presence of measurable tracks that show good modulation by
the spinning filter wheel. In Fig. 1a, for example, although
several tracks are visible, some are clear and sharp and others
are blurred and indistinct.

The average and standard deviation of fluorescence
intensities in each column of the image is first calculated.
Then, a baseline-corrected standard deviation is calculated with
the algorithm described in Part II.26 Figure 1b shows the
column standard deviations plotted along with the baseline-
corrected standard deviations. Next, the ratio of the baseline-
corrected standard deviation to the average intensity along the
central pixel column of each region is calculated.

Potential tracks are then identified. First, tracks centered in
columns 1–10 and 247–256 of the 256 column image are
ignored because optical aberrations can cause these tracks to
curve outside the field of view of the camera at points. Then, a
threshold value in the array of baseline-corrected column
standard deviations is established based on a histogram of the
array.
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The most common value in the histogram is taken to be the
best estimate of the corrected baseline (nominally at zero). The
most negative value in the histogram is taken as the maximum
deviation expected from the baseline that is not related to the
signal (i.e., from noise and baseline correction errors alone).
Three times the absolute value of the difference between the
most negative and most common values, added to the most
common value, was found to serve well as a threshold for
identifying potential tracks. This process is illustrated in Fig. 2.
From the histogram, the most common value in the baseline-
corrected standard deviation array was 4.6. This value occurred
17 times. The lowest measured value was�13.5. The absolute
value of the difference between these values was 18.1. Three
times this value, added to the most common value, gave a
threshold for identifying potential tracks of 54.3 (Fig. 2).

As a first test, each column value of the standard deviation
array was scored against the threshold, assigning a score of 0
for standard deviations below the threshold and 1 for standard
deviations equal to or greater than the threshold. Within a
single image, moving from left to right, the left edge of a track
is indicated by the change from 0 to 1 in the score array,
whereas the right edge is indicated by the change from 1 to 0.
Each contiguous set of 1’s identifies columns containing a
potential track. This identifies all potentially usable tracks.

Tracks that are a few micrometers in diameter near the plane
of focus of the imaging system show discrete streaks that are
fully modulated (returning to baseline or near baseline between
different filter wheel elements). In profile, these tracks

approximate a square-wave pattern in which the base is near
0 and the top is at some finite positive value. For a perfect
square wave with its base at 0, the ratio of the standard
deviation to the average fluorescence intensity is exactly unity.
In practice, it was found that a ratio of standard deviation to
average intensity above 0.6 discriminates well between streaks
that would be visually judged ‘‘good’’ versus those that appear
indistinct or overlapped to the eye.

This ratio threshold is applied to each track identified by the
first test. The column at the center of each potential
phytoplankton track is identified, and the ratio of the standard
deviation for that column to the average intensity in that
column is calculated. Potential tracks with ratios above 0.6 are
retained, whereas those with ratios below 0.6 are deleted,
forming a second test. Take, for example, Fig. 1b. Although
there are two phytoplankton tracks present, only one track has a
ratio above 0.6. The track located near column 64 would be
retained for further analysis, and the other track near column
125 would be ignored.

Information about phytoplankton tracks in each image is
compiled in the corresponding cell of a cell array in MATLAB.
One such array, te, is created to hold the left/beginning and
right/ending boundaries, cb and ce respectively, of each track.
This array has two columns, with cb in the first column and ce

in the second column. The number of rows in the array is equal
to the number of tracks identified in a given image frame.

For each track identified in an image, the rows within the
track are summed to form a first representation of the track.
These are placed in a single column of a separate cell array.
The array in a given cell has a size determined by the number
of rows in the image (256 in all cases reported here) and the
number of tracks passing the first two tests. This array contains
the average intensities of the width of each streak and is
automatically baseline corrected. A row threshold is deter-
mined for the 256 row sums of each track using the histogram
method described above to help locate the individual streaks in
each track.

The pixel intensity in each row i of this track array (Fig. 3,
solid black line) is compared to its row threshold (solid gray
line) using the same approach described above to assign scores

FIG. 1. (a) Preprocessed data image. There are two tracks of the
coccolithophore Emiliania huxleyi visible in this image; however, only the
track near column 64 is well modulated and therefore considered ‘‘good.’’ (b)
Plot of the standard deviation and corrected standard deviation along the rows
for each column of the image in panel a. The gray dashed line corresponds to
the uncorrected column standard deviation, and the solid black line corresponds
to the baseline-corrected column standard deviation.

FIG. 2. Histogram of the column standard deviations shows the highest
frequency standard deviation to be 4.6, a value that corresponds to the baseline
value. The lowest value measured (error = �13.5) is considered 1 standard
deviation from the baseline. The threshold for the image is 3*(base-error) or
54.3, labeled as ‘‘tc’’.

642 Volume 67, Number 6, 2013



to each row. Working from bottom to top in the image, a
change from 0 to 1 indicates the bottom edge, rb, of a
fluorescence streak, whereas the change from 1 to 0 indicates
the top edge, re, of the same streak. Figure 3 shows the
fluorescence intensity of the streaks in the track (dashed
rectangle regions).

The length of each streak produced by a single MOE is
determined by the filter wheel rotation frequency and the pump
speed and is therefore nominally the same for all streaks in all
image frames. For this study, streaks occupy at least 8 pixels.
This length does vary slightly due to the position of a
phytoplankter relative to the level of focus in the image.
Lengths less than 8 pixels, however, represent partial filter
elements, extremes of noise, or serious baseline errors. For the
purpose of this analysis, only complete filter elements and full
filter wheel rotations have been used. Therefore, if re – rb is less
than 8 or the total number of filter elements detected is less than
5 (the number of filters in the filter wheel), all data referring to
a given track is deleted from the corresponding cell arrays,
representing a third test used to reject potential tracks.

Another cell array, fe, is created to contain the vertical (row)
boundaries of each streak in a given track. This array, for each
track, contains two columns of numbers, the first column
holding rb for each streak and the second column holding re.
The number of rows in the fe cell arrays corresponds to the
number of filter elements detected in tracks passing the first
three tests, but is not less than 5.

We then refine the horizontal (column) boundaries of each
streak in each track. These boundaries were originally
determined by testing all columns above a threshold, as
described above. Because of track slope and curvature, the

horizontal boundaries of the individual streaks can be refined as
follows.

A cell array is created, hb, with one data cell per image in the
data set. Inside each cell is placed another cell array with one
data cell per track. Inside the cells of the track cell array, an
array is placed in which each column contains a cross section
for each streak in the track. These cross sections are sums of
the rows between the vertical boundaries of the streak (rb and
re, in the fe array), computed from 15 columns to the left of the
horizontal boundary cb to 15 columns to the right of the
boundary ce. The extensions to the sides of the original track
boundaries were used so more of the baseline could be
considered: baseline correction for each streak cross section
was the first step in refinement.

Two new thresholds are then calculated based on the
individual streak cross section. The lower threshold, tl, is set at
2.5 times the standard deviation of the baseline residuals in the
region outside the streak. This approach is possible because of
the generally flatter baseline for single streaks, and it includes
more of the actual streak intensity than the histogram method,
the latter of which performs better when the baseline is not very
flat. An upper threshold, tu, was then selected to be the average
of the two highest histogram levels with multiple observations.
This unusual construction for the upper threshold gives a level
that was near the top of the highest peak in the cross section. It
is used to specify the dominant fluorescence peak in a cross
section, a specification that generally does not matter, but
becomes important when a neighboring track starts to bleed
fluorescence into the edges of the track being quantified.

The cross section of each filter element is first compared to
tu. Rows in hb that contain pixel intensities above tu are scored
with a 1 in a corresponding score array, whose size is equal to
hb. The cross section is then compared to tl and rows in hb that
contain intensities above tl have their entries in the corre-
sponding score array incremented by 1. The score array now
contains values of 0 for pixels below both tu and tl, 1 for pixels
between tl and tu, and 2 for pixels above tu.

Because the original horizontal boundaries chosen were
extended by 15 pixels in each direction, some cases arise where
the cross section impinges on a streak from a nearby track. In
these cases, 2’s in the score array indicate the dominant peak.
All rows holding a score of 1 and that are immediately
preceding or following rows containing a value of 2 are then
incremented to 2, whereas those that are not are decremented to
0. The score array for a streak cross section is then divided by
two to change the 2’s to 1’s. Transitions from 0 to 1 and 1 to 0
then precisely define the horizontal boundaries of the proper
filter element streaks. Because hb contains the sums within the
row boundaries, the scalar product of hb with the score array
yields a single value representing the integrated intensity of
each filter element streak. The cross section of a single streak
and score results are shown in Fig. 4. This streak has an
integrated intensity of 6.207 3 104 counts.

A new cell array, rec, is used as a record of these integrated
intensities for each streak in each track. Intensities are not
entered in this array in the order they occur in the track.
Instead, the distances between streaks are used to identify the
blocked aperture in the filter wheel. This position represents
row 1 in the intensity array, where a defined 0 is entered. Streak
identities are defined by their positions relative to a blocked
position in the filter wheel rotation in a track. Five non-zero
values are entered for the integrated intensities of the five open

FIG. 3. Example analysis of fluorescence intensities of streaks with in a
phytoplankter cell. The solid black line is a plot of the sums of the column
intensities along each row in the image. The threshold determined by the
histogram method for this streak is tr = 54.8 counts (solid gray line). Rows with
pixel values above tr are scored with a 1, whereas pixel values below tr are
scored with a 0. The rows that contain 1 in the score array (as indicated by the
dashed line and open circles) are row numbers that are identified to contain
streaks. The names of the filters corresponding to each streak are listed above
for a reference, the labels a and b indicate replicates of the same MOE located
in two positions in the filter wheel. Rows 1–8 contain a portion of a streak, but
because there is no transition in the score array from a 0 to a 1, the streak is not
used.
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positions in the filter wheel, and they are assigned to rows 2–6
in order of their positions around the filter wheel. The cell array
is thus converted into a conventional array for ease of analysis.

The critical measurement for classification of E. huxleyi and
T. pseudonana is the ratio of fluorescence intensity recorded
when the excitation beam passes through MOE 1þ to that
recorded when the beam passes through MOE 1–. Two of each
of these MOEs are loaded into the filter wheel. The
fluorescence responses for each MOE of the same type are
averaged and then the ratio is calculated. In the example image
shown in Fig. 1a, the integrated intensities for each streak (as in
Fig. 3) are shown in Table I.

RESULTS AND DISCUSSION

Species Classification. Images containing fluorescence
streaks of E. huxleyi and T. pseudonana were recorded and
analyzed using the approach described above. This automated
analysis resulted in 565 E. huxleyi ratios and 382 T.
pseudonana ratios. The mean ratio of fluorescence intensities
for excitation through (MOE1þ/MOE1–) for E. huxleyi was
0.9081 6 0.0072, whereas T. pseudonana had a mean ratio of
1.1788 6 0.0040 (Table II). Figure 5 shows a plot of the
measured ratios for each species. An examination of this plot
shows the ratios for each prediction are centered on their
respective means, but with outliers. With few exceptions, these
outliers were found to result from defects in analysis by
SIMOC.

An outlier was defined as having a ratio outside two standard
deviations of the sample population. The images that contained
tracks with ratios outside this range were found and examined
to determine whether the calculated ratios were accurately
determined by the program. There were 19 T. pseudonana and
28 E. huxleyi ratios tested as outliers, and 15 T. pseudonana
and 27 E. huxleyi tracks showed obvious defects that were
visible in tour opinion but passed the tests by the program. The
ratios resulting from the 42 tracks that showed obvious defects
were removed. The defects in the tracks include the camera

integration terminating during the acquisition of the final streak
in the track, resulting in a fraction of the integrated intensity of
the streak; a phytoplankter track that flowed in and out of the
plane of focus caused the later streaks in the track to be in a
different state of focus than the earlier streaks in the track,
resulting in abnormally shaped streaks with inconsistent
integrated areas; and streaks that overlap the same image area
as a track from a phytoplankter that passed through the flows
cell at a different time in the integration. Table II shows the
number of ratios, calculated means, standard deviation of the
means, and standard deviations for the distributions after the
outliers were removed.

The inset of Fig. 5 shows the ratios of T. pseudonana and E.
huxleyi, with the defective ratios removed. The separation of
mean ratios for the two classes was 0.278. The sample standard
deviations for the E. huxleyi and T. pseudonana ratio
distributions shown in Table II were 10 and 12% of the
difference between the class mean ratios, respectively.

The program in its current version miscalculates ratios for
approximately 4.4% of tracks for a variety of minor thresh-
olding and timing factors, but once these errors were manually
identified and removed, there were no remaining misclassifi-
cations observed in these data. It still remains to automate the
process for removing residual bad tracks or to improve the
algorithm to correctly calculate the ratios for marginal tracks. If
the ‘‘bad’’ tracks are not removed, the rate of correct

FIG. 4. The solid black line is the column profile of a single fluorescence
streak corresponding to MOE1þ. Circles indicate the threshold score, and the
dashed lines are added as a guide. The product of the threshold scores and
intensity values for the streak is 6.207 3 104 counts.

TABLE I. Example showing calculation of the experimental ratio for a
single cell of the coccolithophore Emiliania huxleyi from a single track
that is shown in Fig. 1.

MOEa
Integrated intensity

(3 104)b
Average intensity

(3 104)c Ratiod

1þi 5.549 5.370 0.9112
1þii 5.190
1�i 6.207 5.893
1�ii 5.578

a Column 1 shows the identity of the MOEs, with (i) indicating the first
measurement of a given MOE type, and (ii) indicating measurement of the
second MOE of the given type. Two copies each of the two MOE types (1þ and
1�) mimicking the first linear discriminant function described in Part I were
sampled in each rotation of the filter wheel.þ and� symbols indicate the sign
of the relationship expected between the (MOE/ND) ratio and the score of a
single phytoplankton fluorescence excitation spectrum on the first linear
discriminant function. ND in this case stands for a neutral density filter (i.e., a
filter with a flat spectral function). The streaks associated with each MOE were
identified and integrated.
b Column 2 shows integrated intensity for the streaks associated with the MOEs
in column 1.
c Column 3 shows the averaged intensities for the repeat measurements, and
d Column 4 shows the ratio of 1þ to 1�.

TABLE II. Experimental results for ratios of the coccolithophore
Emiliania huxleyi and the diatom Thalassiosira pseudonana recorded on
a fluorescence imaging photometer.

Phytoplankton species Na X̄b SX̄
c SX

d

E. huxleyi 538 0.900 0.001 0.029
T. pseudonana 367 1.179 0.002 0.036

a N is the number of phytoplankton tracks analyzed for each distribution.
b X̄ is the mean ratio.
c SX̄ is the standard deviation of the mean.
d SX is the sample standard deviation for each distribution.
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classification is reduced to about 98%, when only two classes
are considered. Thus, there is still room for improvement in
SIMOC.

Comparisons to Theory. The performance of the fluores-
cence imaging photometer with the MOEs can be compared to
the modeled performance of single-cell fluorescence excitation
spectra in Part I.25 To do this, we return to the calibration
spectra originally used in the design of the optical elements and
shown in Fig. 1 of Part I.25 The transmission spectrum of a
particular MOE can be used to estimate the fluorescence
intensity expected when a phytoplankter is represented by each
of the original fluorescence excitation spectra and is excited by
light passing through it using the equation

IMOE; j ¼
X610

k¼550

TsysðkÞEplk; iðkÞTMOEðkÞ ð2Þ

In this Equation, k is wavelength (nm). Tsys is the measured
spectral radiance of the photometer system on the excitation
side and is equal to the product of the profile of the excitation
source and the transmission or reflection of the other optics
between the lamp and sample except for the filter wheel
elements. Eplk,i represent the fluorescence excitation spectrum
of the ith species of phytoplankton in the original calibration
set. TMOE,j represents the transmission spectrum of jth MOE on
the filter wheel. Since the optics of the system are chosen to
isolate the region between 550 and 610 nm, the sum of all
terms over this region is calculated. When this is repeated for a
single phytoplankter spectrum using both the MOE1þ and
MOE1– spectra, the ratio between these values can be
computed for the original calibration phytoplankton spectra.

The theoretical ratio averages and sample standard devia-
tions of single phytoplankter cells of E. huxleyi and T.
pseudonana were found by this method to be 0.926 6 0.012
and 1.177 6 0.014, respectively. The experimental averages
acquired with the fluorescence imaging photometer, shown in
Table II, deviate from these theoretical values by�2.9% for E.
huxleyi and þ0.2% for T. pseudonana. The major difference
between the theoretical and experimental result is that the

experimental sample standard deviations are about three-fold
higher than those in theory.

Minor differences in the mean ratios for each species can be
attributed to a variety of sources. First, the theoretical response
was calculated using the transmission spectrum of the actual
MOE as measured through the center of the filter using a well-
collimated beam. The filters we fabricate usually show minor
spectral shifting across the substrate due to slight spatial
variations in deposition rates. Also, the light passing through
the optical elements in the photometer is not as well collimated
as in the research grade ultraviolet-visible spectrometry used to
measure the transmission spectrum of the elements. This was
intentionally done to increase the etendue of the photometer,
but results in additional spectral blurring and shifting. It is also
likely that the spectral character of coatings on the curved
surfaces of lenses have not been adequately accounted for in
the model and that the original calibration spectra are
themselves not perfectly corrected for the original recording
instrument response, despite our best experimental effort.
Overall, we expected a mean separation in class ratios of 0.251
based on an optical model of the system, and we observed a
separation of 0.278 experimentally.

The differences in the sample standard deviations between
the model and experiment can likewise be attributed to several
factors. Among these factors are effects arising from the
sources mentioned above, plus a couple of others. The first is
that variability in the original calibration data may be
artificially narrow due to their selection process. Potential
calibration spectra were rejected for the technical reasons
described in Part I,25 such as escape of the cell from the optical
trap. These technical rejections may have introduced a bias
toward cells of a particularly uniform type. However, the most
likely difference between the model and experiment lies in the
S/N of the fluorescence imaging photometer, described in Part
II.26 In that article, we showed that the photometer meets, but
does not significantly exceed, the minimum criteria for
separating cells with the stated theoretical ratios with 95%
confidence. Doubling up on the optical elements and taking an
average was done in these tests specifically to improve the S/N
of the measurement. Using Eq. 8 of Part I,25 coupled with the
S/N measured for the instrument in Part II,26 we estimate the
theoretical sample standard deviation due to variability in the
single phytoplankton measurements to be near 0.06 ratio units.
By doubling the MOEs, we expect this value to drop by aboutffiffiffi

2
p

to around 0.04 ratio units. The average experimental
sample standard deviation was found to be around 0.033 units,
so that the measured uncertainty is likely to be dominated by
instrument effects.

Distribution of Ratios. The distribution of ratios for
phytoplankton cells around the mean ratio for each species is
of interest when considering how well species are truly
separated. In the case of E. huxleyi, the distribution of ratios
shown in Fig. 5 has a standardized second moment, a test for
skewness,27 of �0.360. This value suggests the data are not
skewed compared with a normal distribution. The standardized
third moment provides a test statistic for kurtosis;27 the value
for E. huxleyi is 3.22 in these data. This value is consistent with
a normal distribution.

The same statistics for the T. pseudonana ratios are 0.36 and
4.87. Again, these values indicate a distribution not signifi-
cantly skewed to the left or right, but the distribution is
somewhat short-tailed compared with a normal distribution.

FIG. 5. Distribution of measured ratios for the coccolithophore Emiliania
huxleyi (black, 565 ratios) and the diatom Thalassiosira pseudonana (yellow,
382 ratios). The inset is the frequency distribution of the measured ratios where
47 outlier ratios were visually inspected and 42 were removed due to defects in
the image that were missed by the algorithm.
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CONCLUSIONS

An imaging multivariate optical computing system was
constructed for the classification of phytoplankton based on
fluorescence excitation. The use of MOEs for classification
implies that the system can be easily adapted to classify species
based on any spectral property as long as the species or
groupings of interest classify using linear discriminant analysis,
or any other method amenable to analysis using spectral
patterns.

We have shown that even two similarly pigmented species
grown in culture, E. huxleyi and T. pseudonana, can be
classified with a low error rate using this system via the
algorithms described herein to process the data.

Several of improvements to and extensions of this approach
are suggested by the work reported in this three-part series.
First, the approach to designing optical elements based on
discriminant analysis results is rather ad hoc; no native
approaches to the design of elements have yet been
implemented. To do so would require new code implementing
new figures of merit in the optical design algorithms, and there
are a wide variety of such calculations that could be done
mimicking discriminants analysis natively, as well as hierar-
chical cluster analysis and other methods of classification.

Second, the implication from Part II that phytoplankton
exhibit curiously variable fluorescence intensities at the single-
cell level has yet to be investigated further. This has significant
implications for the potential and speed of the analysis by our
fluorescence imaging photometer.

Finally, improvements in the consistency of the filter wheel
rotation frequency, and the pump stability, are desirable. Depth
of focus for the instrument is likewise a concern because it
limits the number of observed tracks that can be suitably
measured. Extraction of size and shape information from the
observed tracks is also desirable, using either image processing
approaches or via measurements extracted from the track cross-
sections, and spaces between streaks in a track.

Understanding how natural phytoplankton cells might
appear in this measurement, and extension to studies in the
field (e.g., shipboard) is of great interest. On a related note,
extension of the design of MOEs from discrete species to
classes of organisms, such as distinguishing haptophytes from
diatoms from cyanobacteria, is also of great interest.

Another area for development is the analysis of multiple
MOE streaks in a track by more flexible methods. In the
present work, MOEs were measuring a single spectral pattern
(linear discriminant vector 1), but in general there might be any
number of MOEs measuring on many vectors. Simple ratios
are not the most flexible means of combining the discrete
measurements. An alternative approach would be a multivar-
iate analysis applied directly to the MOE signals. This
approach has the advantage of enabling post-processing or
tuning of the response of the system long after the hardware
has been placed in service, and allows it to be applied to tasks
for which is was not originally designed.

Furthermore, we are interested in pushing the sensitivity of
the method down to detection of picophytoplankton (nominally
0.2–2 lm in diameter) by a combination of improved S/N and
automated control over the filter wheel rotation frequency and
pump speed so that different regimes can be explored.

To a greater or lesser degree, work in all these areas is
currently underway in our laboratories, although experience

suggests that the kind reader should not hold his or her breath
between subsequent installments of these reports.
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