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1 Introduction

In this lecture, we discuss the propagation of a gravity current into a continuously strat-
ified medium, i.e., a background with a density ρ(z), which is a continuous function of z.
An important property of such a background is the buoyancy frequency (Brunt-Väisälä
frequency)

N =

√
− g

ρ0

dρ

dz
, (1)

which is the typical frequency of oscillation of a vertically displaced fluid element. Imagine
a fluid element with volume V at an initial height zi and density ρi = ρ(zi). If this fluid
element is displaced to a position zi + s, its density can be approximated by

ρ(zi + s) ≈ ρ(zi) +
dρ

dz
s. (2)

Thus, Newton’s second law gives

ρ(zi)V s̈ = −gdρ
dz
s, (3)

which implies the fluid element oscillates at the buoyancy frequency (Equation 1). We will
make the Boussinesq approximation, which implies that N is constant. This is only valid if
dρ/dzL� ρ0, where L is the vertical length scale of the system, and ρ0 is a typical density.

In these notes, we will mostly discuss the release of a fluid of constant density ρc into
an ambient, stratified fluid with density ρ(z). The behavior is very different depending on
if there is a height hN satisfying ρc = ρ(hN ), or if instead ρc is either larger or smaller than
ρ(z) for all z in the domain. In the first case, there will be an intrusion at height z = hN ,
where the fluid is locally neutrally buoyant. On the other hand, if ρc is larger (smaller)
than ρ(z), then then a gravity current forms on the bottom (top) of the domain. We will
treat these cases separated. At the end of these notes, we will briefly mention the case of
the release of a stratified fluid into a stratified ambient.

1



2 Gravity Current

To simplify our analysis, we will assume that ρc, the density of the released fluid, is larger
than ρ(z = 0) = ρB, the density at the bottom of the ambient fluid (the case of ρc < ρ0,
the density at the top of the ambient fluid is likely similar). In this case, a gravity current
forms at the bottom of the domain.

The driving force for the gravity current is a horizontal pressure jump between the
released fluid and the ambient. In hydrostatic balance, the pressure is given by the integral
of the density, i.e., an average density. Thus, to lowest order, we would expect the gravity
current to be equivalent to one released into a constant density ambient with density ρE ,
where this density is given by the average of ρ over the height of the current, i.e., ρE = ρ(h/2)
for Boussinesq stratification (see Figure 1). For an energy-conserving gravity current from
a lock of depth D, we have h = D/2, so

ρE = ρ(D/4) = ρB −
ρ0
4g
N2D. (4)

We have

g′E = g′N +
1

4
N2D, (5)

where

g′N = g
ρc − ρB
ρ0

(6)

is the strength of the gravity current in terms of background stratification.
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Figure 1: A schematic depicting the equivalent density ρE . This is the average density of
the ambient stratified fluid over the bottom half of the domain. The simplest prediction
for a gravity current with density ρc > ρB released into a stratified fluid is that the gravity
current acts as if it was released into a fluid with constant density ρE .
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Recall that a gravity current released into a fluid of constant density has a Froude
number

U√
g′D

=
1

2

√
2−D/H. (7)

If the gravity current is equivalent to one released into an ambient fluid with constant
density, then this relation should still hold, with g′ replaced by g′E . This makes the prediction

FN =
1

2
, (8)

where

FN ≡
U√(

g′ND + 1
4N

2D
) (

2− D
H

) . (9)

This prediction was tested experimentally and numerically for various values of ρc and
stratifications. We introduce the stratification parameter

S ≡ ρB − ρ0
ρc − ρ0

, (10)

[5] recalling that ρ0 is the density at the top of the domain. Thus, S = 0 for an unstratified
ambient fluid, S = 1 if ρc = ρB, and S > 1 if there is an intrusion. Figure 2 shows FN as
a function of S. We note that there appears to be a critical SC above which the Froude
number deviates from one half.
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Figure 2: Froude number FN as a function of the stratification parameter S for experiments
and simulations from [2, 4, 3, 6]. Subcritical currents are depicted with open symbols and
supercritical currents are depicted with filled symbols.

To understand the deviations from the FN = 1/2, we must discuss internal waves.
Internal waves are a generalization of the vertical oscillation of a fluid parcel in a stratified
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background. The momentum equation and buoyancy equation can be manipulated into the
following equation for the vertical velocity w,

(∂2x + ∂2z )∂2tw +N2∂2xw = 0, (11)

where we assume 2D flow. Assuming we can Fourier decompose w as

w = ŵ exp(i(kx+mz − ωt)), (12)

we have the dispersion relation for internal waves

ω2

N2
=

k2

k2 +m2
. (13)

For long waves satisfying m� k, we have that the phase and group velocity are both given
by

ω

k
= ±N

m
. (14)

Now we will impose that the boundary conditions that w = 0 on the top (z = H) and
bottom (z = 0). This implies

w ∝ sin
(nπz
H

)
, (15)

where n is an integer. This implies m is quantized

m =
nπ

H
, (16)

and the wave velocity is

c = ±NH
nπ

. (17)

The fastest wave speed is

cmax =
NH

π
. (18)

If the gravity current travels faster than this velocity, it is supercritical and cannot launch
internal waves. However, for gravity current velocities smaller than cmax, the current is
subcritical and it radiates internal waves (see Figure 3). These internal waves change the
upstream condition, and speed up the gravity current. The case U = cmax defines the
critical stratification SC . The curve SC as a function of D/H is given in Figure 4. This
is roughly consistent with the experimental results (Figure 2). Note that SC can never be
higher than ≈ 0.85.

There has been some work to apply hydraulic theory (i.e., an analysis similar to Ben-
jamin) to the release of constant density fluid into a stratified ambient. However, this
work has assumed that ρ becomes constant above the current, which is not the case. This
approach requires a description of the flow which cannot be predicted by the theory.
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Figure 11. Gravity currents and upstream waves for λ= 0 and S = 1 (left-hand side). Gravity
current (·) and leading-wave (∗) front positions vs. time following lock release (right-hand
side). (a) ho = 0.4, (b) ho = 0.7, (c) ho = 0.9. The gravity-current core is shown in grey, density
contours are spaced more closely near the current for detail. The plots represent a transition
from upstream-propagating internal waves (a − b) to steady gravity-current flow (c). The lock
is at x = 20.

Figure 3: Numerical simulations of constant density gravity currents released into stratified
ambient fluid. (a) & (b) show upstream propagating internal waves, whereas (c) does not
[6].
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Figure 4: Curve of critical stratification parameter SC as a function of D/H. For S < SC ,
the gravity current is supercritical and does not emit upstream propagating internal waves,
and the current evolves as if it is expanding into a medium of uniform density ρE . For
S > SC , the gravity current is subcritical and emits upstream propagating internal waves,
influencing the upstream condition, and increase propagation speed of the current.
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3 Intrusion Currents

As before we will consider the release of a finite volume of well-mixed fluid (ρi) into a
linearly stratified channel (constant N2). However, now we will consider the case where
ρu < ρi < ρl. In this case a gravity intrusion current will form, propagating within the
ambient fluid (see Figure 5). Assume the depth of the lock D is equal to the depth of the
channel H.

Figure 5: Top: A sketch of the initial setup for the intrusion where ρu < ρi < ρl. Bottom:
A sketch of an intruding current with ρi = 1/2(ρu + ρl) after the lock has been removed.
In this case the neutral buoyancy level is at hN = H/2.

The level of neutral buoyancy (hN ) is the level at which the density of the intrusion
is equal to the density of the ambient fluid ρi = ρs(hN ). This is the level along which
the gravity current will propagate. Let us start with the special case where the density
of the intrusion fluid is equal to the average density of the ambient fluid in the channel
(ρi = 1/2(ρu + ρl)). The level of neutral buoyancy will be hN = H/2. As before we use
the Froude number to describe the flow and use the equivalent reduced gravity in place of
g′ (Equations 8 and 9). The strength of the gravity current in terms of the background
stratification at h = hN is

g′N = g
(ρi − ρs(hN ))

ρ0
= 0. (19)

With H = D we find:

FN =
U

1/2NH
= 1/2 (20)

U = 1/4NH (21)

The mid-depth current travels at half the speed of a gravity current along the bottom of a
channel in a stratified fluid.
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The total Available Potential Energy (APE) for the intrusion current is:

APE = g

∫ 0

hN

(ρs(z)− ρi)zdz + g

∫ H−hN

0
(ρi − ρs(z))zdz (22)

=
g

3

(
(ρl − ρi)h2N + (ρi − ρu)(H − hn)2

)
. (23)

The level hN for which this has a minimum (differentiate with respect to hN ) is:

hN =
H

2
. (24)

In Figure 6 images of an intrusion gravity current are shown. The top panel shows the
initial setup, with dye marking isopycnal surfaces. For this experiment N was chosen to be
1 s−1 and hN = 0.8. In the next panels the evolution in time is shown, a gravity current
develops. Note that in front of the current the isopycnal surfaces are deflected downwards,
indicating waves are able to travel faster than the current and change the conditions of the
ambient fluid. The flow is thus subcritical to at least one long wave mode.

Figure 6: Images of an intrusion gravity current from experiments. In this case N = 1 and
hN = 0.8.

Figure 7 shows the dimensionless intrusion current velocity for different values of hN .
The minimum is the discussed special case of h = 1/2H, where U = 1/2FNNH. At the
boundaries where the current flows along the bottom and top (h = 0, h = 1) we find double
the velocity (U = FNNH). The dashed, horizontal grey lines in the figure show the speed
of the first three modes of long waves. The grey line near the top of the plot is the first long
wave mode. Its nondimensional speed is larger than the nondimensional current speed for
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all h and thus these flows are always subcritical to the first long wave mode. The second
long wave mode is the middle grey line plotted. Depending on the value of h the flow is
either subcritical (small and large h) or supercritical (mid-level currents) to this mode. The
third long wave mode is too slow to make an impact for all h, so is unable to transmit
information ahead of the intrusion current.

Based on these numbers it can be concluded that the experiment in Figure 6 is subcritical
to the first mode of long waves only and thus it must be these waves that cause the deflections
of the isopycnal surfaces in the ambient fluid ahead of the current.
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Figure 7: Comparison of dimensionless intrusion velocity (U/(NH)) for numerical simu-
lations (left) and experiments (right) to model predictions. The dashed line shows the
theoretical F = 0.25, the solid line F = 0.266. The light grey horizontal dashed lines on
each plot represent from top to bottom the first, second and third mode long wave speed
respectively.

4 Adjacent stratified regions

Finally, we consider the case of a lock exchange between two differently linear stratisfied
fluids (Figure 8). The fluid in the left lock has a constant buoyancy frequency equal to Ni,
the right lock has a constant buoyancy frequency Na. Let us define the stratification ratio
S as the ratio between the buoyancy frequency in the two locks:

S =
N2

i

N2
a

. (25)

From previous lectures and the considerations above we already know the intrusion
current speed for some cases.

• Equal stratification in the two locks, i.e. Ni = Na and thus S = 1. In this case there
is no horizontal density gradient in the channel and thus no gravity current: U = 0.

• No stratification in the left lock, i.e. Ni = 0, S = 0. This is the case described in
section 3, of a well-mixed fluid, propagating as an intrusion into a linearly stratisfied
fluid, U = 1/8NH.
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Figure 8: Schematic showing the initial conditions of lock-release of a linearly stratified in-
truding fluid of Ni, into a linearly stratified ambient fluid of Na, where the average densities
of both fluids are equal. From [1].

The cases where 0 ≤ S ≤ 1, the intrusion current speed is a function of the stratification
ratio: U = 1/4NHf(S). Because Ni is smaller than Na the intrusion current will travel
from the left lock into the right fluid.

Figures 9 and 10 show experiments and numerical simulations respectively for two dif-
ferent stratification cases. On the left S ' 0.2, a relatively fast intrusion current, and on
the right a slower current of S ' 0.8.

Figure 9: Snapshots of the laboratory experiments for S = 0.23 (left) and S = 0.77 (right)
for Na = 1.5 s−1 at the dimensionless times Nat = 10, 20 and 30. The dashed white line
denotes the initial position of the gate. The intrusion fluid is visualized with dye.
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