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Abstract—In this paper, we investigate how to represent the
packet error process in a shallow water acoustic channel by
means of Markov as well as hidden Markov models. To train the
models, we employ experimental traces taken from transmissions
performed during the SubNet’09 sea trials, off the coast of Pi-
anosa island, Italy. In particular, signal-to-noise ratio (SNR) time
series show significant transitions of the average SNR on a large
time scale, which motivates the use of hidden Markov models.
The discussion on which model best fits this experimental data
is carried out considering relevant metrics for networking, i.e.,
packet error rate (PER), length of error bursts and correlation
of errors after a given number of packet transmissions. Results
show that hidden Markov models yield accurate reproduction of
both first and second-order metrics.

I. INTRODUCTION

Due to very large operational and equipment costs involved
in the setup of large-scale testbeds, simulation is still the
most flexible tool for extensive characterization of underwater
acoustic networks [1]. However, simulators frequently rely on
simplified models of the underwater channel, e.g., considering
single-path propagation [2], [3]. These models may help pro-
vide an order-of-magnitude prediction of the channel behavior
and of the networking protocols operating on top of it, but
usually assume the speed of sound as constant throughout the
water column, and in addition do not include such important
propagation effects as multipath-induced fading and time-
varying channel behaviors. A different approach investigated
in [4] aims at partially overcoming this fact by including a
ray-model-based acoustic propagation simulator in the popular
network simulator ns2. While this certainly improves the
accuracy of the simulation, the required computational burden
is potentially very high.

A possible way around this problem is to deduce synthetic
channel models from, e.g., measured packet error traces taken
from experimental campaigns. The drawback of such models
is their dependence on boundary conditions expressed by
environmental factors (e.g., water depth, sound speed profile,
bathymetry, bottom sediments, surface waves), as well as by
the type of modulation and receiver-side signal processing.
However, if such conditions are at least similar to those
affecting the traces used to train the models, networking
protocols run on top of the channel model are expected to
smooth out sufficiently small differences [5].

In this paper, we consider JANUS [6] packet transmissions
performed throughout the summer of 2009. JANUS is a
communications format designed for unsolicited broadcasting
of relevant information regarding the sender of the signal (in-
cluding, but not limited to, navigation information) by means
of underwater acoustic communications. A deeper description

of the JANUS waveform format is reported in Sec. II-A: for
the moment suffice it to say that the signal includes a Cyclic
Redundancy Check (CRC) code that can be employed to check
the correctness of the packet, and a synchronization preamble
which can be used for SNR estimation. We start from the
relationship between SNR and packet error rate (PER) and
show that a linear fit between the SNR (in dB) and the PER
matches data satisfactorily. We also discuss the non-linear
relationship between the transmitter-receiver distance and the
obtained PER.
By observing the time series of SNR samples, we discuss

the presence of quick changes in the average value, and
investigate how to model the channel so that these changes
can be captured, at least to some extent. To this end, we
consider three different types of Markov models (namely,
a 2-state model, a 4-state model extending the 2-state one
by incorporating memory of one more past event, and a
hidden 2-state Markov model), and compare such models
against a plain independent and identically distributed (iid)
error model. The latter is a standard model often assumed
to hold in, e.g., network simulations, whenever deterministic
propagation models are considered, and is used here as a term
of comparison for the accuracy of Markov models. While the
dataset currently available to us is limited and not sufficient to
derive very general conclusions, the final aim is to show that
such models can reproduce accurately enough the statistics
of underwater channels subject to the same environmental
conditions. This would make them amenable to be eventually
embedded into more complex network simulators, where they
would provide a compact and computationally efficient method
of reproducing the statistics of links showing similar environ-
mental characteristics (depth, distance, sound speed profile,
etc.) to those studied in this paper.

II. TESTBED SETUP AND DATA SET DESCRIPTION

A. Scenario and transmitted signal format

The sea trials took place in the framework of SubNet
2009, whose main goal was to experiment the transmission
of JANUS waveforms [6]. These are digitally modulated
frequency hopping-binary frequency shift keying (FH-BFSK)
signals, transmitted in the 9-14 kHz band. The signals are
composed of a preamble (three wakeup tones plus a 400ms si-
lence plus a hyperbolic band-sweeping chirp), a further 200ms
silence and the actual packet, which in turn is formed by a
header containing actual JANUS data and an optional payload.
A later JANUS version eliminates one of the silences by sub-
stituting the hyperbolic chirp and the following silence with a
known sequence of 30 FH-BFSK symbols. (The transmissions



Figure 1. A scheme of the testbed deployment off the Pianosa Island
(from [7]).

considered in this paper include no payload.) JANUS signals
are partially protected from errors by means of physical-
layer (PHY) Forward Error Correction (FEC), implemented
through fixed interleaving and a rate-1/2 convolutional channel
code of generating polynomials (7538, 5618). In addition, the
frequency hopping sequence is designed to escape multipath
patterns featuring long delay spread.

The location of the experiments was chosen to be the island
of Pianosa, Italy (42.585◦N, 10.1◦E). The testbed consisted
of four hydrophones arranged at different depths in a vertical
array (VA), and of three acoustic modems (all Teledyne-Low
Frequency models [8]) placed on a tripod on the sea floor at
a depth of 60, 70 and 80m, at different distances from the
VA (1500m, 2200m and 700m, respectively). A scheme of
the testbed is depicted in Figure 1 [7]. The three transmitters
have been labeled T1 (1500m from the VA, depth 60m), T2
(2200m from the VA, depth 70m) and T3 (700m from the
VA, depth 80m). The hydrophones of the VA (named H1,
H2 and H4),1 are placed at 20, 40 and 80m, respectively.
Temperature sampling in the water column close to the VA
was provided by a thermistor chain.

The trials we are focusing on in this paper took place
between the end of May and the end of August 2009, and
include more that 12000 transmissions, in different channel
conditions. In [7], this data set was used for a study of the
power-delay profile and time spread characteristics of the links
between the modems and the hydrophones. Unlike in [7], in
the following we directly study the process of packet errors in
order to derive synthetic models for transmission performance.
To this end, we will focus on a representative set of results
including one experiment performed on May 30 and a second
experiment carried out on August 30, respectively indicated as
experiments A and B.

B. Analysis of SNR and packet error rate

We start by analyzing PER as a function of SNR for the
JANUS waveforms being considered. The correctness of the

1H3, placed at a depth of 60m, experienced malfunctioning, therefore its
recordings were not considered in our study.
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Figure 2. Log-scale scatterplot of PER as a function of SNR for varying
transmitter and all receivers. Linear fits of the joint scatterplot of all trans-
mitters as compared to the joint scatterplot of T1 and T2, as well as the
scatterplot of T3, are also provided.

Table I
COEFFICIENTS OF PER FITTING LINES.

TX nodes Slope (α) Intercept (β) MSE (same TX) MSE (all TX)

T1+T2 −0.035 0.775 0.0101 0.0164

T1+T2+T3 −0.026 0.676 0.0136 0.0136

T3 −0.019 0.580 0.0095 0.0197

packet is inferred through a CRC check at the receiver after
standard processing, i.e., detection of signal probe, recon-
struction of the hopping pattern, non-coherent detection of
BFSK symbols, de-interleaving and soft Viterbi decoding of
the PHY-level convolutional code. Fig. 2 plots PER against
SNR for all experiments listed in the previous subsection, for
all transmitter-receiver links. The figure has been obtained by
considering SNR bins of size 0.5 dB and by calculating the
relative frequency of packet errors for all packets whose SNR
falls in the same bin. Different markers and colors correspond
to different transmitters. Fig. 2 also includes a linear regression
fitting the relationship between PER and SNR expressed in dB,
i.e.,

PER = α · SNR+ β. (1)

A negative-slope line adequately fits data in this case, in
accordance to the approximate performance of incoherent
BFSK detection in the high SNR regime and in the presence
of frequency-flat fading (recall that the frequency hopping
pattern is designed to mitigate the effects of multipath). Fig. 2
suggests that the closest link (i.e., from T3, in green) yields
different performance with respect to the links from T1 and
T2: this is due to the harsher multipath, whereby secondary
paths yield significant power with respect to the main arrival.
As a consequence, the line that fits only the outcomes from T3
(light grey) has lower slope than the other lines. Depending
on the required degree of accuracy, one may decide to use
the T1+T2+T3 fit, which considers data from all transmitters
while providing an acceptably higher MSE with respect to the
MSE of the linear fit of T3 points (see Table I).

As a first approximation, we may incorporate fitted PER
curves into a simulator so as to reproduce the PER for
matching modulation and receiver processing and in similar
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Figure 3. Time series of SNR for transmissions from T2 during experiment
A. Moving averages over 50 samples are provided as a solid black line.

0 1 2 3 4 5 6
80

70

60

50

40

30

20

time [hours]

d
e
p
th

 [
m

]

 

 

1510

1512

1514

1516

1518

1520

Figure 5. Sound speed profile [m/s] at different depths as a function of
time during experiment A.

environments as the shallow summer waters of Pianosa. How-
ever, we would still need to factor in the correlation among
SNR values, including those experienced between the same
fixed transmitter and receiver: assuming uncorrelated SNR
realizations may actually be too strong an assumption. This
is exemplified in Figs. 3 and 4, which show the SNR time
series for the signals transmitted by T2 during experiments A
and B, respectively, as received by all hydrophones of the VA.
For better clarity, a moving average over 50 samples of the
trace is also shown as a solid black line. The figures show
that some links are quite stable throughout the duration of the
experiment, whereas others experience greater instability. For
instance, the T2–H1 link in Fig. 3 is stable almost throughout
the whole experiment, with the exception of a slight increase
towards the end, as we will explain later. The same applies
to the T2–H2 link as well. On the contrary, the T2–H1 link
in Fig. 4 remains stable around an average SNR of 7 dB for
roughly 6 hours, then experiences an abrupt improvement as
its SNR increases to more than 20 dB, before falling back to
roughly 13 dB. Similar observations apply to the T2–H2 link
as well. Some oscillations of up to 10 dB in the value of SNR
over the T2–H4 link can be observed in both figures; however
it should be noted that the SNR remains very high, hence
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Figure 4. Time series of SNR for transmissions from T2 during experiment
B. Moving averages over 50 samples are provided as a solid black line.

oscillations are not expected to have a significant impact on
PER. We will elaborate on this point in the next section.

The most significant variations on the SNR in Figs. 3 and 4
cannot be ascribed to noise, because different hydrophones
of the VA are differently affected. To give at least a partial
explanation, we must therefore observe the time series of the
sound speed at different depths (SSP) in the water column
close to the VA.2 Fig. 5 reports the sound speed samples taken
every two minutes for the whole duration of experiment A.
We observe a sound speed increase in the upper water layers
from 6 to 7 hours after the beginning of the experiment; this
changes the way acoustic waves are refracted, and in this case
allows more power to be bent toward hydrophones closer to
the surface (H1 and H2). For the same reason the SNR over
the T2–H4 link decreases (H4 is the deepest hydrophone).
Unfortunately, due to thermistor chain down time, we cannot
display a similar plot for experiment B.

The variations of the average SNR over macroscopic time
scales discussed above motivates us to analyze whether such
variations can be profitably tracked through synthetic models
such as Markov models (MMs) and hidden Markov models
(HMMs), which incorporate memory of past events. The
following section is devoted to the discussion of their appli-
cability to the proposed scenario.

III. MARKOV MODELS

To keep track of channel memory, we consider three differ-
ent models, whose parameters are estimated from the measured
data: a 2-state Markov channel, which keeps memory of
one previous event (MM1); an extension of the same model
bearing a memory of 2 previous events and resulting in a 4-
state channel (we will refer to this model as MM2), and a
2-state hidden Markov model (HMM). The accuracy of these
models is then compared to an independent and identically

2We recall that the testbed deployment included a thermistor chain, which
is used to indirectly measure sound speed at different depths by virtue of
the Mackenzie formula [9] and by assuming that water salinity does not vary
significantly throughout the summer season.



distributed (iid) error model and to real channel traces.3 To
evaluate the accuracy of the models, we consider the predicted
average error probability ε, the probability mass function (pmf)
of the length of an error burst (i.e., the probability pb(k) that
the number b of consecutive errors (i.e., an error burst) is equal
to k) and the m-step error correlation (i.e., the probability
ξn,m = P[packet n+m erroneous|packet n erroneous]). We
choose these metrics because i) the average error probability
ε is the primary check for the correctness of an estimated
model; ii) an accurate approximation of the pmf of error bursts
is important to assess the impact of the model on network
protocols, in addition to being tightly related to the chosen
model (e.g., a 2-state Markov model exhibits a geometric burst
length pmf [11]); finally iii) second-order statistics such as
the m-step error correlation ξn,m have a significant impact on
network protocols and may lead to design guidelines (e.g.,
protocols should not insist on transmitting over a channel
whose errors are still highly correlated for high m).

A. 2-state Markov model (MM1)

This model is characterized by two states, labeled 0 and
1, which represent a correct and erroneous packet reception,
respectively. The model is specified by the transition matrix

P2 =

(

p00 p01
p10 p11

)

, (2)

which regulates the transitions between correct and wrong
receptions, and where the subscript 2 refers to the number
of states. Let us call π = [π0 π1] the vector containing the
steady-state distribution of the Markov chain, i.e., the solution
to the system of equations πj =

∑

i πipij under the constraint
that

∑

i πi = 1. In this case, the error probability is ε2 =
π1 = p01/(p01 + p10); moreover, we have pb(k) = pk−1

11 p10,

and ξn,m = p
(m)
1,1 , where p

(m)
1,1 is the element in position (1, 1)

of the m-step transition matrix, Pm
2 .

B. 4-state Markov model with memory of two past events

(MM2)

This model expands the 2-state model by explicitly incor-
porating further memory of past events within states. Four
states are defined, i.e., (00), (01), (10) and (11), where 0
and 1 represents again a correct and a wrong packet recep-
tion; the transition probabilities between these states are thus
arranged into a 4 × 4 matrix P4, with elements of the kind
p(k−1 k) , (k k+1), where the event with index k is in common
between the pair before and after the transition. In this case,
the average probability of error is ε = π01 + π11; the pmf of
the burst length is found by considering the evolution of the
Markov process from the only state leading to errors after a
successful packet reception, i.e., state (10):

pb(k) =

{

p01,10 k = 1

p01,11p
k−2
11,11p11,10 k ≥ 2

(3)

3The MM1 model was also considered in a comparative study [10] focused
on N -states Markov channel models, where however the number of states
tracks changes in the SNR level instead of providing explicit memory of
past error events as in this paper; in addition, we note that the study in [10]
considers an iso-velocity medium and trains models using simulated channel
traces instead of field measurements.

Similarly, ξn,m is found as

ξn,m =
π01

(

p
(m)
01,01 + p

(m)
01,11

)

+ π11

(

p
(m)
11,01 + p

(m)
11,11

)

π01 + π11
. (4)

C. 2-state hidden Markov model (HMM)

HMMs assume that a non-observable state structure lies
beneath observed values for a certain random process [12]. In
this case, we observe erroneous or correct packet reception,
and make the assumption that the probability of such events
actually depends on the (hidden) state of the channel. As in the
hidden Gilbert-Elliot model [13], [14], the state may represent
a different level of goodness of the channel, corresponding to
a different probability of receiving a packet correctly.

HMMs can be described in terms of a transition probability
matrix PH (whose structure is the same as P2 in this case);
furthermore, by defining φi(j) as the probability that event j
is observed in state i, we can define the following diagonal
observation probability matrices

C =

(

φ0(0) 0
0 φ1(0)

)

E =

(

φ0(1) 0
0 φ1(1)

)

, (5)

which respectively model correct (matrix C) and erroneous
(matrix E) packet reception in either state [11], [12]. Since
the state of the chain is hidden, all statistics must be averaged
through the stationary distribution of the underlying Markov
process.

Therefore, the average probability of error is ε = πEe,
where e = [1 1]T , and we recall that π is the steady-state
probability distribution vector of the hidden Markov chain. In
addition, we remark that the matrix products PHE and PHC

yield the joint probability of making a transition and observing
an erroneous or correct packet, respectively, after the transition
has been completed. The burst length probability distribution
can be found in accordance to the previous definitions:

pb(k) =
πC(PHE)kPHCe

πCPHEe
(6)

The conditional probability ξn,m is found by considering m-
step spaced error events, by averaging over the probability of
being initially in state 0 or 1, and by conditioning on the event
that an error was in fact observed on the initial state, i.e.,

ξn,m =
πEP

m
HEe

πEe
, (7)

where we note that both terms of the fraction are scalar.

D. Comparison among Markov models and channel traces

We begin by comparing the average probability of suc-
cessful packet reception, 1 − ε, as predicted by the models
and as measured from data traces. This test is a basic check
that the models are correct; in addition, it is worth noting
that a simple slotted Stop-and-Wait Automatic Repeat reQuest
(ARQ) protocol would exhibit a throughput of 1 − ε packets
per round-trip time. The results of the evaluation are reported
in Table II and show good accordance with measurements.

Consider now the m-step error correlation ξn,m defined
in Section III. Figs. 6 and 7 show this metric for the links
between T2 and all hydrophones during experiments A and



B, respectively. The figures compare ξn,m as predicted by all
models against the probability of having an erroneous packet
using an iid model and against measured traces. The pictures
suggest that non-hidden models perfectly reproduce short-term
correlation (i.e., where their inherent memory of past errors
allows a correct representation of the channel behavior); how-
ever, they converge very quickly to their stationary behavior, as
indicated by the fact that predicted error correlation quickly
reaches the iid floor; on the contrary, the HMM achieves a
much better reproduction of long-term error correlation, at the
price of only a slight error in the short-term correlation.

By comparing the results of Figs. 6 and 7 to those in Figs. 3
and 4, we can note that channel traces are not always represen-
tative of a hidden model. For example, the T1–H1 and T2–H2
links in Fig. 3 are quite stable even on a long time scale,
and can be successfully modeled by non-hidden approaches

Table II
COMPARISON OF AVERAGE CORRECT PACKET RECEPTION PROBABILITIES

Receiver Data MM1 MM2 HMM

Experiment A

H1 0.578 0.580 0.579 0.580

H2 0.569 0.568 0.567 0.568

H4 0.924 0.923 0.922 0.910

Experiment B

H1 0.370 0.369 0.369 0.369

H2 0.690 0.692 0.691 0.695

H4 0.924 0.923 0.922 0.910

as well. Conversely, such links as T2–H4 in Fig. 3 as well
as all links in Fig. 4 exhibit much larger oscillations, which
an HMM is expected to capture more effectively. Figs. 6(c)
and 7(a)–(c) confirm this intuition by showing that HMMs
adhere better to measured error correlation values on the long
term. Indeed, while in some cases HMMs also converge to the
iid floor faster than measured data (e.g., Figs. 7(a) and 7(b)),
they do so more slowly than non-hidden models do.

The goodness of HMMs is also suggested by the observation
of the pmf of the length of an error burst, pb(k). We focus
again on transmitter T2 and on experiments A and B, whose
results are reported in Figs. 8 and 9. These figures compare
pb(k) as predicted by the models against the pdf estimated
from real data (represented by red star-shaped markers). The
figures show that in general the best approximation of data
is yielded by MM2, followed by HMM and MM1, with
occasionally similar performance on some of the links. To
further support this assertion, we have reported in the legend
of each picture the Kullback-Leibler divergence (KLD) of
predicted pmfs from the pmf estimated from data traces. In
almost all cases the divergence is smaller for the MM2 and
HMM models than for the MM1 and iid models, with the
exception of Fig. 8(b), where the KLD of the HMM slightly
exceeds that of non-hidden models. Along with the satisfactory
approximation of long-term error correlation, this suggests that
HMM models are good candidates for a synthetic model of
acoustic channels. We remark that we have focused only on
transmissions from T2 in experiments A and B, but these
results are representative of all other experiments and links,
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Figure 6. m-step error correlation. Transmitter T2, experiment A.
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(b) Link T2–H2.
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Figure 7. m-step error correlation. Transmitter T2, experiment B.
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Figure 8. Probability of observing k consecutive errors. Transmitter T2, experiment A.
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(c) Link T2–H4.

Figure 9. Probability of observing k consecutive errors. Transmitter T2, experiment B.

which would allow to draw the same conclusions.

IV. CONCLUSIONS

In this paper we have presented an evaluation and compar-
ison of channel models for a shallow-water acoustic channel
in the waters near the Pianosa island, Italy. The transmission
format was JANUS, a FH-BFSK-based format with PHY-
level FEC implemented through a convolutional code. We
considered Markov models with memory of both one and
two past events, and a hidden Markov model (HMM), and
compared them to data traces and a simpler iid error model.
Our comparison shows that the HMM is better at tracking long
term channel behavior, especially if substantial shifts between
low quality and high quality channel states are observed;
in addition, an HMM yields a much better representation
of long-term error correlation, while providing a very good
approximation of the distribution of the length of error bursts.

As a final note, we remark that other datasets may certainly
be considered to train the same type of Markov models con-
sidered in this study. However, we focused on the SubNet’09
dataset because it contains long experimental runs: this makes
it possible to assess the model accuracy in channels experi-
encing limited non-stationarity due to changing environmental
conditions. Future work on this topic includes implementing
the models in a more complex network simulator and validat-
ing the results using different datasets.
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