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ABSTRACT

In this paper, we consider the transmission of progressively en-
coded images over underwater acoustic links, where transmitted
symbols are protected by Forward Error Correction (FEC). The al-
location of redundancy is performed according to both a Basic and
a Multiple Description (MD)-like technique. The performance of
this system is analyzed in terms of the resulting Peak Signal-to-
Noise Ratio (PSNR) as image packets are transmitted over the mea-
sured realizations of acoustic channel impulse responses. These
measurements were taken near the coast of Martha’s Vineyard dur-
ing October 2008, in different environmental conditions.

In the results, we quantify the performance improvement of the
multiple description (MD) technique compared to the Basic alloca-
tion, thus suggesting its suitability for the transmission of images
in the underwater acoustic scenario.

Categories and Subject Descriptors

C.2.0 [Communication/Networking and Information Technol-

ogy]: General—Data communications; I.6.6 [Simulation and Mod-

eling]: Simulation Output Analysis

General Terms

Measurement, Performance

Keywords

Underwater acoustic communications, source coding, image cod-
ing, simulation

1. INTRODUCTION
The acquisition and transmission of images is one of the most

appealing applications envisioned for autonomous underwater net-
works, and at the same time one of the most overlooked so far [1,2].
Nevertheless, the feasibility of real-time underwater imagery would
open up the way to new explorations of the marine environment,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WUWNet’11, Dec. 1 - 2, 2011, Seattle, Washington, USA
Copyright 2011 ACM 978-1-4503-1151-9 ...$10.00.

paving the way to discoveries in the fields of marine biology, ecol-
ogy and geology and being of help in oil spill relief operations, and
in the detection of underwater mines, to name a few.

The efficient encoding and transmission of images over terres-
trial radio links has been widely studied [3, 4]; however, as under-
water acoustic links are different from their terrestrial counterparts,
it is not clear whether the technologies and communication models
employed for the latter can be applied to the former as well [5]. In
fact, the typically high error rates, high path loss, and low channel
capacity in underwater channels make the purpose of high quality
image transmission even more challenging than in terrestrial ra-
dio links [6, 7]. The first works on underwater image transmission
were mainly focused on studying coding techniques aimed at com-
pressing the large amounts of information gathered by Autonomous
Underwater Vehicles (AUVs) during their missions. For exam-
ple, in [8] a wavelet-based video coding technique was proposed
to compress underwater video sequences.

More recent works investigating source coding techniques are [7,
9, 10]. In [9], a hybrid global-local motion-compensated scheme
has been proposed, which leverages on the main features of un-
derwater video sequences (e.g., primarily static scenes with small
moving objects, low contrast due to the artificial light conditions,
etc.). Although the authors demonstrated that the proposed com-
pression technique provides a satisfactory visual quality while main-
taining a high compression efficiency, realistic underwater trans-
missions have not been considered in the simulation tests. A sim-
pler source compression scheme has been investigated in [7], where
the Set Partitioning In Hierarchical Trees (SPIHT) source coding
scheme [11] has been applied to underwater transmissions. The
SPIHT encoded bitstream, divided in consecutive chunks, has been
transmitted over underwater links. Results have demonstrated that
SPIHT is an efficient compression technique for data and image
transmission, but still suffers from high end-to-end delays. How-
ever, the authors only consider a basic version of SPIHT, where
packets are retransmitted if lost, which is an inherently inefficient
hybrid Automatic Repeat reQuest (ARQ) strategy [12], and where
channel coding is assumed without any FEC optimization based
on the progressive nature of the source bitstream. End-to-end de-
lays might be considerably reduced by adopting more sophisticated
transmission schemes, which make the system more robust to chan-
nel impairments via a different management of redundancy, leading
to a considerable reduction of the number of retransmissions. For
example, the choice of the redundancy per chunk should be strictly
correlated to the priority level of the source bitstream, by adopt-
ing an unequal error protection (UEP) strategy (i.e., a more reliable
transmission for more important bits).



This is the approach presented in this paper. Specifically, we pro-
pose a comparative study of FEC allocation strategies for the trans-
mission of SPIHT source coded bitstreams in underwater acoustic
links. We focus on the SPIHT scheme because it is inherently de-
signed for progressive image encoding (whereby the quality of re-
ceived images depends on the number of correctly received pack-
ets), and for the capability to manage redundancy in a way that
is convenient to communications and that can be adapted to ac-
tual channel requirements (see also a description of SPIHT in Sec-
tion 2). To the best of our knowledge, this is the first study on
rate allocation schemes for the transmission of progressively coded
source information over underwater channels.

In the following, a symmetric n-channel FEC-based MD [13],
able to exploit the progressive nature of the encoded source, is com-
pared to a baseline algorithm [7]. For both algorithms, we propose
a forward error correction (FEC) profile optimization, which min-
imizes an objective cost function (e.g., the expected distortion) un-
der the constraints that the total number of bits to be transmitted is
fixed, and that the channel state information (CSI) available at the
transmitter is limited. We remark that due to the large underwa-
ter propagation delays and to the usually lower channel coherence
time, any instantaneous CSI fed back to the transmitter would be
likely outdated. Therefore, the FEC profile optimization will take
into account only the average signal-to-noise ratio (SNR), assum-
ing that no information is available on instantaneous fading fluctu-
ations and packet correlation.

The results, illustrated in Section 3, demonstrate how suitable
the MD technique is for underwater scenarios, especially in the low
SNR regime.

2. SYSTEM DESCRIPTION

2.1 Progressive Source Coding
Progressive/embedded coding methods (e.g., SPIHT), which have

been deeply investigated for terrestrial radio links, are appealing
for underwater communications as well. First, the quality of the
decoded information is proportional to the amount of received in-
formation. This means that the more the bits adopted for decoding,
the higher the quality of the reconstructed bitstream. Second, the
decoding process can be stopped as soon as a target bit budget (i.e.,
the total number of bits) or a target distortion objective is met, and
the quality will be the best possible for that bit budget.

Third, given an encoded bitstream, the image can be reconstructed
from different numbers of bits processed by the decoder, provid-
ing several qualities and several compression rates with just one
coding process. All these features make progressive coding meth-
ods highly suitable for heterogeneous networks (in terms of chan-
nel bandwidths, mobility levels of terminals, end-user quality-of-
service requirements), or for transmissions with limited CSI. How-
ever, progressive encoding is generally error-sensitive, as an error
generally makes the subsequent bits useless. Thus, the placement
and amount of FEC within the bitstream should be carefully de-
signed, e.g., by adapting the amount of FEC to the importance of
bits within the SPIHT stream.

2.2 Overview of FEC Allocations for SPIHT
In this section we describe FEC allocation techniques, aimed at

assigning the most convenient protection to the encoded bitstream
when limited CSI is available. Neither instantaneous channel fluc-
tuations nor the information on fading correlation will be taken into
account for the design of the allocation/coding schemes. In both al-
gorithms, we assume that the SPIHT encoded information is trans-
mitted in a resource block (RB) of fixed size, characterized by Nt

packets, each consisting of Lp modulated symbols.

2.2.1 The Basic Allocation

In the basic algorithm, depicted in Fig. 1, the encoded bitstream
is sequentially ordered, and allocated into packets. Each packet is
protected in the time domain by a concatenation of Reed-Solomon
(RS) and cyclic redundancy check (CRC) channel coding. We as-
sume erasure channels, which means that, at the receiver side, if
the CRC check fails (i.e., if the RS decoder is unable to correct
all errors affecting the received packet), the packet is lost. Losing a
packet makes all subsequent packets useless, as decoding a progres-
sively encoded stream requires in-order processing of transmitted
data. It follows that every source bit is more important than sub-
sequent ones, and requires UEP, i.e., the assignment of a greater
amount of FEC to the first bits in the bitstream, while leaving later
(thus less important) chunks less protected. In Fig. 1, for example,
the first information symbol is more protected than the subsequent
ones, and the probability of losing the first packet will be lower
than that of losing the other ones.

We assume that each image will be allocated and transmitted in
a RB with fixed dimensions, such that by increasing the level of
protection introduced by the channel coding, the information bits
transmitted per RB will decrease. Fig. 2(a) denotes the RB gener-
ated by the basic allocation, and the notation adopted in the follow-
ing: each image is allocated into Nt packets, each one consisting
of Lp modulated symbols. The goal of the basic allocation algo-
rithm is to optimize the right amount of FEC per packet, able to
find the best tradeoff between redundancy and reliability, as it can
be evaluated through the following problem formulation.

We assign a given channel code rate rj , j = 1, . . . , Nt to each
packet of the RB, and we denote by rrr = [r1, r2, . . . , rNt ] the rate
vector for the channel codes in the time domain. In view of the
previous discussion, any packet j is more important than all sub-
sequent ones; therefore, we impose rj ≤ rj+1. When all the
first j packets are received, but the (j + 1)-th packet is lost, the
decoded image quality will be D [Rj(rrr)], where D[·] is the rate-
distortion curve of the employed source coding scheme [14], and
Rj is the received bit budget (i.e., the total number of bits) for
the information symbols. This received bit budget is computed as
Rj(rrr) =

∑j

l=1
cl(rl) , where cl is the number of source informa-

tion bits in the l-th packet. Given the source code rate-distortion
curve D [Rj(rrr)], and the conditional packet loss probability Pj ,
which is the probability of losing the (j + 1)-th packet given that
packets 1, . . . , j are correctly received, we can evaluate the best
channel code rate vector rrr⋆ as the one that minimizes the expected
distortion E[D], i.e.,

Errr⋆ [D] = min
rrr

{

Nt
∑

j=1

D[Rj(rrr)]Pj(rrr) +D0P0(rrr)

}

(1)

subject to a constraint on the overall bit budget

Nt
∑

j=1

cj/rj ≤ Btot ,

where Btot is the total bit budget of the RB, and D0 corresponds to
the distortion when no packets are received, i.e., when the decoder
must reconstruct the message without being able to use any of the
transmitted information. For a gray scale still image, this typically
means reconstructing an entirely gray image. We use the iterative
procedure described in [15] to solve the optimization problem (1).

In an ideal system, in which the instantaneous SNR experienced
by each set of packets is available in the feedback channel, the Ba-
sic Allocation algorithm would be able to assign the right amount
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represents the bits for CRC and Reed-Solomon coding applied to each packet. The unshaded area represents information symbols.
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(b) MD-based Allocation

Figure 2: Resource block for progressive image transmission.

of FEC to each transmitted packet. In particular, since each RB
experiences its own SNR vector, the optimization problem in (1)
should be re-optimized for each RB. Thus, the Basic Allocation al-
gorithm leads to the best performance if the SNR experienced by
the packets is provided in the feedback channels, driving the sys-
tem to be extremely sensitive to non-ideal or outdated channel es-
timations. To show this sensitivity, we compare ideal systems with
realistic scenarios, in which the mean SNR per image is considered
as information in the feedback channel.

This allocation technique is considered as a baseline, and has
been already tested in underwater scenarios [7]. However, the allo-
cation in [7] is based on a heuristic approach (by transmitting more
redundancy when the channel is bad), whereas, here, we compute
the optimized allocation, in terms of image distortion, by solving a
minimization problem. This approach has not yet been investigated
for the underwater acoustic scenario.

2.2.2 The MD-Like Allocation

We now illustrate the general mechanism for converting an em-
bedded bitstream from a source encoder into multiple descriptions
in which contiguous information symbols are spread across mul-
tiple packets. The basic idea of MD source coding is to split the
information into multiple bitstreams approximately equally impor-

tant, each of which can be independently decoded. In the MD-
Like allocation technique [13], which is a n-channel FEC-based
MD coding, contiguous information symbols are spread across Nt

multiple packets (also called “descriptions”), instead of being as-
signed to the same packet.

We now show how an embedded bitstream, generated from a
progressive source coding, can be allocated and opportunistically
protected in a RB to be transmitted over underwater channels. With
the final goal of improving the reliability of the bitstream transmis-
sion, we assume to protect the encoded image with a bidimensional
channel code (product code). Fig. 3 depicts the detailed steps of
the MD-Like technique: i) allocation and vertical channel coding,
ii) horizontal channel coding.

In the first step, the bitstream is allocated across packets/ descrip-
tions. The information is protected using systematic maximum dis-
tance separable (MDS) RS codes across packets, with a level of
protection depending on the relative importance of the information
symbols. This means that for a (Nt, kl) codeword, where kl is the
number of source symbols to encode the l-th codeword, the FEC
level is fl = Nt − kl and the source information is decoded if
at least kl of Nt descriptions are received. Due to the progressive
nature of the source information, we assume fl ≥ fl+1: the more
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important the information bits, the higher the protection. For exam-
ple, in Fig. 3, the MD-Like allocation leads to the construction of
4 codewords. The first one is a (5, 1) systematic MDS code (code-
word 1) in which erasure of any four descriptions still allows to re-
construct information symbol 1 and to achieve a delivered quality
equal to D(R1). It is worth noting that, due to independent descrip-
tions, the MD-Like scheme only requires to know how many and
not which packets have been received. Thus, all the packets have
roughly the same importance, and, in the optimization process, the
second order statistics of the channel will be a sufficient informa-
tion for the FEC design, as described in the following. Moreover,
due to the allocation of the information symbols across packets,
rather than the sequential one as in the Basic Allocation, the first
description will not contain all the most important source bits. So,
the loss of the first packet will not jeopardize the reconstruction of
the first source bits. In the example of Fig. 3, if the first description
is lost, the delivered quality would be equal to D(R7), while in the
Basic allocation it would be D(R0), since no information would
be available for the source decoding.

A second step of the algorithm consists in concatenating CRC
and RS codes to each description (horizontal coding), in order to
enhance the system robustness to channel fluctuations (both fast
and slow fading). Since each description is approximately equally
important, an equal error protection (EEP) profile is employed.

Fig. 2(b) illustrates the proposed RB for the transmission of an
embedded bitstreams, depicting the notation adopted in the follow-
ing. Due to the UEP across the packets, a staircase boundary can
be observed as RS coding line, while a vertical boundary represents
the CRC/RS coding line. The Lrs symbols on the left of the verti-
cal boundary are the RS codeword across packets, while those on
the right represent the CRC/RS parity symbols. In the proposed
allocation algorithm, we will be interested in evaluating the packet
loss probability mass function PNt(g), g ∈ [0, Nt], which is the
probability of losing any g out of Nt total packets in the RB. When
j = Nt − g packets are received, any l-th RS codeword across
the packets with cl ≤ j can be correctly decoded, and the total bit
budget for the source information becomes

Rj =
∑

l:cl≤j

cl ×Brs (2)

where Brs is the number of bits per RS symbol. In this MD-Like
allocation technique, both FEC profiles of the product code need to
be designed for the minimization of the expected distortion, based

on the following problem formulation

Er⋆,fff⋆ [D]= min
{r,fff}

{

Nt
∑

l=1

D [Rl(r, fl)]PNt(Nt − l) +D0PNt(0)

}

(3)
where fff = [f1, f2, . . . , fLrs ] is the code rate vector for the RS code
across the packets.

Unlike the Basic Allocation scheme, the MD-Like optimization
does not depend on the instantaneous SNR vector. The reason can
be found in two main factors: i) an EEP is assumed in the horizontal
time coding, so the mean SNR is a sufficient information to set the
right amount of FEC in the time domain coding. ii) the UEP profile
of the vertical coding is optimized based on the packet loss PMF,
which requires to know how many and not which descriptions are
lost. Thus, from the FEC optimization process, the second order
statistics of the channel is required, and not the instantaneous in-
formation. This means that, first, the FEC optimized scheme will
be suitable for all the RBs transmitted over channels with the same
second order statistics. Second, the optimization scheme is robust
to non-ideal or outdated CSI.

2.3 Channel Model
We now address the correlation between the channel model and

the UEP profiles. In [16], the MD-Like allocation scheme has been
proposed for transmission of progressive images over OFDM net-
works. The authors considered a frequency-selective environment
and deduced that the level of diversity offered by the channel in the
frequency domain is one of the main factors which affect the UEP
profile design. In our work, we aim at studying the possible effects
of the channel characteristics on the FEC optimization.

We assume that packets are sequentially transmitted in time over
underwater channels. We denote the coherence time as ∆t, and
we consider that K packets span ∆t. Subdividing the Nt pack-
ets into blocks of K descriptions, for this theoretical analysis, we
assume that packets in different blocks are considered to fade in-
dependently, while packets in the same block experience identical
fades.

Knowing the coherence time of the channel, the Basic alloca-
tion algorithm can be slightly simplified. In particular, we might
assume that a constant level of FEC is assigned to packets in the
same block. Assuming that the packets in the subblock are corre-
lated, one level of FEC will offer the right amount of protection to
all the K transmitted packets. For the extreme case of K = Nt, all
the packets will be correlated, and the UEP might degenerate to an
EEP. The opposite case is when K = 1, and all the packets might
experience a different channel code rate.



When the MD-Like algorithm is considered, the correlation be-
tween packets affects the packet loss PMF, which is an impor-
tant parameter in the FEC optimization. In particular, a two-state
Markov model, which corresponds to a Gilbert-Elliot channel, char-
acterizes the channel by a “good" state (G) and a “bad" state (B),
the probability that k packets are lost for a channel with K corre-
lated packet is [16]

PK(k) = PK(k|G)P (G) +PK(k|B)P (B) (4)

where PK(k|G) (PK(k|B)) is the probability of having k cor-
rupted packets when the channel is in the “good" (“bad") state, and
P (G) (P (B)) is the probability of being in the “good" (“bad")
state. Assuming that the subblocks are mutually independent, the
PMF of losing g packets out of Nt can be derived from the PMF of
each subblocks as follows

PNt(g) =
∑

k1,k2,...,kL:k1+k2+...+kL=g

PK(k1)·. . .·PK(kL) (5)

where L = Nt/K is the number of independent subblocks per RB,
and we assumed that all the packet loss PMFs per subblock are the
same, since the subblocks have the same statistics.

From the previous analysis, we deduce that the packet loss PMF
of the RB depends on the coherence time of the channel, and it is
determined by the number of combinations for g and kj . For high
coherence time values (K = Nt), due to the limited number of
combinations in losing g packets, PNt(g) is mostly determined by
the PMFs of the individual sub-channels. This means that, when
most of the packets are correlated, there is a substantial probability
of losing or receiving most of the packets, whereas the probability
of losing only a small number of descriptions is negligible. Given
this PMF, there is no level of diversity offered by the channel (or
degrees of freedom), which means that in most cases the RB will
be entirely received or lost. Therefore, in order to create a level of
priority in the RB, a sharp UEP is required in the vertical coding.

For high L values (i.e., for low K values), by the Central Limit
Theorem, PNt(g) approaches a normal distribution, leading to a
high (low) probability of losing half of the (all or zero) descrip-
tions. For example, when K = 1 all the packets will be mutually
independent. Since the probability of losing most of the packets is
negligible, there is no need to assign a lot of FEC in the first code-
words in the vertical coding. Therefore, the system can increase the
throughput, keeping the FEC value in the RS codeword low even
for the codewords with high priority. This would drive the system
choosing an EEP profile as the best option.

2.4 Description of the Acoustic Data Set
The experiment, during which the data set was collected, was

conducted on October 2008 at the Martha’s Vineyard Coastal Ob-
servatory (MVCO) operated by the Woods Hole Oceanographic
Institution [17]. The data set is particularly interesting because
such environmental conditions as surface waves and wind speed
and direction varied significantly over the duration of the experi-
ment. While the collected data sets are from only one deployment,
the results about the performance of the considered image trans-
mission techniques can be extended to other scenarios with similar
geometries. The scenario consists of a single transmitter and four
receiving systems, deployed at different directions and distances.
In particular, systems S3 and S5 were placed 200 m and 1000 m
Southeast of the transmitter, respectively, while S4 and S6 were
similarly deployed in the Southwestern direction. The devices were
deployed in shallow water conditions (the water depth was around
15m almost uniformly), near Martha’s Vineyard Island from Oc-
tober 18 to October 27, 2008. The temperature was almost con-

Figure 4: This picture, representing the sea floor, was collected

by an AUV, and is an example of a typical underwater image.

stant on the water column. The transmitter central frequency was
11.5 kHz. In these conditions, the most important factor causing
the time-variability of the acoustic propagation is the surface con-
dition.

In the simulations, we will consider the data received at system
S3. The transmitted signals, from which we estimate the channel
impulse response, consist of multiple repetitions of a 4095-symbol
binary maximum length sequence transmitted at a symbol rate of
6.5 kbps. A transmission three minutes in duration was made
once every two hours. A maximum length sequence is a particular
pseudo-noise signal that is spectrally flat. Thanks to this property,
it is possible to estimate the channel impulse response by comput-
ing the correlation between the transmitted signal and the received
signal. We compute the channel estimate over segments of the
received signal that are 400 symbols long (which corresponds to
60 ms). After each estimation we shift the window by 100 sym-
bols, which corresponds to 15 ms, resulting in an estimate every
15 ms over windows of 60 ms. The data were collected at high
SNR in order to allow an accurate estimation of the channel im-
pulse response.

In this work we use these estimates as underwater acoustic chan-
nel realizations. Given the availability of a channel estimate ev-
ery 15ms, by assuming a symbol duration of almost 2ms and by
assuming that the channel is constant over the interval between
two estimates, we know the channel coefficients at every byte in
a packet. An image consists of 153 packets, each 512 bits long.
Every packet lasts almost 1 s so that all channel estimates over
a three-minute period are used as channel realizations during the
transmission of an image. In Section 3, more details on how the
channel estimates were processed to compute the statistics of the
performance will be provided.

3. SIMULATION RESULTS

3.1 Simulation Setup
We run the simulations on the 512 × 512 gray-scale image in

Figure 4. The image was encoded using the SPIHT [14] algorithm
to produce an embedded bitstream with a compression rate of 0.3.
The serial bitstream was allocated into a RB with Nt = 153 pack-
ets, each consisting of 512 binary phase-shift keying (BPSK) mod-
ulated symbols, for a total budget of 9830 bytes. In the MD-Like
allocation algorithm, we used MDS RS codes across the descrip-



tions and there were 8 bits per RS symbol, that is Brs = 8. As the
available coding rates used in the optimization problems (1) and
(3), we consider {0.7, 0.8, 0.9}.

As a representative metric, we compute the PSNR1 of the image
versus the SNR averaged over an image. In particular, we consider
the low-high SNR range between 5 to 22 dB. By processing the
data set described in Section 2.4, we obtain a collection of three-
minute long sequences of consecutive instantaneous SNRs. We
then compute the sequences of channel gains from the sequences
of estimated SNRs. The simulated communication system consists
of the source encoder, a modulator, the channel with additive noise,
the demodulator and the decoder. During a simulation run, we mul-
tiply the transmitted byte stream by the corresponding portion of
the channel gain sequence and we add noise. The result of this lat-
ter operation is the received data stream, which is then demodulated
and decoded in order to assess the communication performance. In
the simulation we consider all the inferred channel gains for each
noise power level. This approach allows us to study the system
behavior in different SNR regimes, while taking into account the
channel gain fluctuations that occur in realistic acoustic propaga-
tion scenarios and heavily affect the communication performance.

For both the basic and MD schemes, we compare a realistic sys-
tem (labeled as “shadowing"), in which the transmitter only knows
the mean SNR per image, with a genie-aided system (labeled as
“ideal"), in which the transmitter has a perfect knowledge of the
instantaneous CSI, which is used in the optimization process. This
comparison aims at quantifying, in terms of performance loss, how
the allocation schemes are affected by a limited CSI. Moreover,
we perform an analytical and a simulation study for both allocation
techniques.

We compute analytically the packet loss probability mass func-
tion and the PSNR, by assuming independent and identically dis-
tributed (i.i.d.) packets and by precomputing the packet error rate
(PER), from the data set. On the other hand, we obtain the simu-
lation results by feeding the system with the channel realizations,
and simulating realistic transmission of the images. It is worth not-
ing that both the analytical and the simulation curves assume the
same PER when the allocation is performed. By comparing the
simulation and the theoretical curves, we show whether or not it is
accurate to assume independence at the byte as well as the packet
level.

3.2 Results
Figure 5 shows the computed FEC profiles, for both the Basic

and the MD schemes, for two different average SNRs at system S3.
The x-axis and y-axis indicate the number of information bytes and
the packet transmission index, respectively. We recall here that an
image is encoded into 153 packets, each of 64 bytes. Depending
on the allocated FEC, each packet has a certain amount of redun-
dancy. For this reason, the y-axis is limited between 1 and 153,
whereas the x-axis can be between 1 and 64. The solid lines cor-
respond to the profile for a middle SNR regime, whereas the dot-
ted (with the diamond) lines represent the profiles at a high SNR
regime. Black and blue colors indicate the MD and the Basic al-
location schemes, respectively. While the Basic allocation scheme
adds FEC to each packet, the MD-like technique introduces both
vertical and horizontal redundancy. The double level of FEC in-
troduced in the MD allocation technique increases the transmission
reliability, at the price of a reduction of transmitted source bits.
However, a reduction of transmitted source rate is not necessarily
translated into a decreasing quality of the reconstructed image. In

1PSNR = 10 log10
(
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Figure 6: PSNR vs SNR for system S3 at 200m Southeast.

particular, the reconstructed image quality increases accordingly to
the correctly received information bits. Thus, the best FEC pro-
file is not the one which maximizes the transmitted source rate, but
the one which maximizes the correctly received bits. This trade-
off between reliability and transmission rate is investigated in the
following figure. As expected, for both the allocation schemes, the
best FEC profile is reduced with the increasing of the mean SNR.

Figure 6 shows the results in terms of the received image quality,
PSNR. We remind that the PSNR represents the tradeoff between
transmission source rate and reliability. For this reason, we de-
fine as the best FEC profile, the one which maximizes the PSNR.
As expected, the MD technique outperforms the Basic allocation
scheme, especially in the low-medium SNR regime (5 − 20 dB),
which will be the operational SNR regime for typical underwater
acoustic systems. The double channel coding in the MD technique
reduces the transmitted source information, but increases, at the
same time, the reliability of the transmission. This means that the
MD allocation technique is able to find the best tradeoff between
transmitted source rate and reliability. Therefore for future imple-
mentation, if memory is not a problem, the MD technique should
be preferred to the basic one. As expected, the greater the SNR, the
higher the transmission reliability, and the lower the required FEC
in the RB.



(a) Basic allocation scheme, SNR=6 dB,
PSNR=19.7 dB.

(b) Basic allocation scheme, SNR=12 dB,
PSNR=32.3 dB.

(c) MD-Like allocation scheme, SNR=6 dB,
PSNR=33.4 dB.

(d) MD-Like allocation scheme, SNR=12 dB,
PSNR=35.6 dB.

Figure 7: Image quality for system S3 at 200m Southeast. Both MD and Basic allocation schemes are considered for transmissions

over 6 dB and 12 dB SNRs channels.

Figure 6 refers to system S3, which is at 200m from the trans-
mitter. We can observe that, for the Basic allocation technique, the
theoretical ideal and shadowing curves are separated by 1 − 3 dB
in the medium SNR range ([8 − 15] dB) and by 0.5 − 1 dB in the
low SNR regime ([5− 7] dB). This behavior represents the perfor-
mance degradation due to a limited CSI in the shadowing curves,
which relies on the mean, rather than the instantaneous, SNR infor-
mation, when independent and identically distributed (i.i.d.) errors
over a packet are assumed. From the simulated results, it can be
observed that the theoretical evaluation is a pessimistic estimate of
the system performance. Even though the optimum theoretical FEC
profile underestimates the channel quality, it actually over protects
the system, thus reducing the gap between ideal and shadowing
curves. This means that, for the considered receiver, the mean SNR
is a sufficient information for the design of the FEC profile in the
basic technique.

For the MD allocation, the performance degradation is lower
than 2 dB for both theoretical and simulated curves, proving the
robustness of the algorithm to limited CSI. This is justified by the
adoption of FEC protection in the time domain and across pack-
ets. From these results we can conclude that, for the considered

receiver, a faster feedback would not give any PSNR performance
improving to both the Basic and the MD allocation techniques.

Finally, this results in terms of reconstructed images given in
Fig. 7, for systems with 6 dB and 12 dB SNRs, provide some
subjective comparisons. Here, the advantage of the MD allocation
scheme can be observed by comparing the reconstructed images
with the original one (Fig. 4). The four reconstructed images in
Fig. 7 represent four different simulated results, already provided
in terms of PSNR score in Fig. 6. For both the allocation schemes,
it can be visually observed that increasing the SNR value improves
the quality of the reconstructed image. More important, for the
same mean SNR value, it is noticeable the gain that the MD al-
location scheme achieves compared to the Basic one. The gain is
remarkable in very challenging environments, such as SNR=6 dB,
in which the double FEC protection of the MD allocation schemes
makes it possible to reconstruct the image at a more than decent
quality, Fig. 7(c). On the contrary, the Basic allocation scheme
does not provide sufficient protection against channel impairments
for systems with SNR=6 dB, see Fig. 7(a).

To conclude, this study aims at investigating and comparing the
performance of two allocation techniques for the SPIHT algorithm.



Compared to the basic method, MD is found to be more suitable
for underwater acoustic systems in terms of PSNR and robustness
against channel variability. For both methods, the mean SNR was
found to be a sufficient information for the FEC profile optimiza-
tion. This can be justified by a limited variation of the considered
channel, and it might not be verified in cases of fast fading trans-
missions. Moreover, the Basic allocation technique turns out to be
sensitive to the correlation between packets, leading to a substantial
difference between simulated and theoretical curves.

4. CONCLUSION
In this work we have performed a simulation study in order to

compare the performance of two allocation techniques for the SPIHT
image coding in case of underwater acoustic communications. We
have shown how much the MD allocation outperforms the basic al-
location and we have verified the i.i.d. assumption for the error pro-
cess at both the byte and the packet level. Moreover we have seen,
in case of fast channel fluctuations, how robust the techniques are
to imperfect CSI.
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