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INTRODUCTION

Like all species, marine mammals are expected to
be distributed, in large part, according to how they
respond to their physical or biological environment.
The particulars of how and why they are distributed

in their ecosystems are fundamental ecological, con-
servation, and management questions. An increas-
ingly accepted approach to understanding these
relationships is to quantify them using a variety of
correlative modelling techniques (e.g. Guisan &
Zimmermann 2000, Austin 2002, Redfern et al. 2006).
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ABSTRACT: Models for predicting marine mammal habitat are increasingly being developed to
help answer questions about species’ ecology, conservation, and management. Over the past
10 yr, the models and analyses presented at the Habitat Modelling Workshops of the Biennial
Conference on the Biology of Marine Mammals have shown tremendous development in their
breadth and complexity. At the 18th Biennial, held in Quebec City, Canada, in 2009 we noticed a
change in how these models were presented. Instead of a focus on methods and model develop-
ment, many researchers presented models highlighting ecological insights or management appli-
cations. We recognised this as a watershed moment for our discipline, the time when we started
paying more attention to what our models were telling us than how to build them. To celebrate this
progress, we invited researchers from the global marine mammal community to submit articles to
this Theme Section of Endangered Species Research describing work that included not only
advanced model development, but also emphasised ecological interpretation or management rel-
evance. The resulting collection of articles highlights the leading science in marine mammal habi-
tat modelling, and provides some important indications of how, as a community, we must continue
to refine our methods to move beyond correlations towards understanding the processes that
interact to create marine mammal habitat. While there will no doubt be future challenges to over-
come, the articles in this collection raise the standard for marine mammal habitat modelling, and
herald the transition from learning how to model, to using our models as a heuristic tool to support
ecological understanding and marine spatial planning.
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However, before ecological insights can emerge
from such models, and the resulting knowledge can
inform management, modellers must confront a
number of confounding issues relating to environ-
mental data collection, statistical methods, scaling,
observation error, and model validation. As marine
ecologists and biological oceanographers involved
in habitat modelling for well over a decade, we
have watched the evolution of our field since the
first Habitat Modelling Workshop was held at the
Society for Marine Mammalogy’s 14th Biennial
Conference on the Biology of Marine Mammals in
2001. The workshop attracted over 50 participants
and was dominated by questions about sources of
data and methods for their incorporation with mar-
ine mammal observations. Over the course of subse-
quent workshops (2003, 2005, 2009, 2011), we have
seen not only a large increase in the number of par-
ticipants, but also considerable advancements in (1)
the collection of mammal observations (e.g. satellite
tagging and passive acoustic monitoring; Andrews
et al. 2008, Van Parijs et al. 2009, Quakenbush et al.
2010), (2) analytical methods (e.g. Pearce & Boyce
2006, Phillips et al. 2006, Aarts et al. 2008, Gregr &
Trites 2008), and (3) access to environmental data
(e.g. Best et al. 2007).

Initially as participants, and then as workshop
organisers, we have watched this evolution of marine
mammal habitat modeling first hand. Since its incep-
tion, the workshop has always been extremely popu-
lar, now regularly attracting well over 100 scientists,
students, and new modellers interested in better
describing and understanding marine mammal dis-
tributions. Workshop themes have included move-
ment modelling, large-scale habitat modelling, pres-
ence-only methods, and the integration of ocean
circulation models. At more recent workshops, we
have witnessed an increase in the number of ad -
vanced modellers in attendance, presenting increas-
ingly sophisticated analyses (e.g. Gurarie et al. 2009,
Block et al. 2011). It is gratifying that some of these
researchers attended earlier workshops as students.

At the 18th Biennial Conference in Quebec City in
2009, we noticed a surge in the ecological insights
emerging from species distribution models, not just
at the workshop but also as part of the main confer-
ence sessions. It became apparent to us that, for the
first time, some of these insights were being consid-
ered in management decisions. Analytical methods
and data access tools had also matured considerably,
removing many of the early barriers to model devel-
opment. We thus recognised this meeting as a water-
shed moment when marine mammal habitat models

came of age, and set about marking this moment
with a special issue capturing the state of the art.

For this Theme Section of Endangered Species
Research, entitled ‘Beyond marine mammal habitat
modeling: applications for ecology and conservation’,
we have assembled a set of peer-reviewed articles
from the marine mammal community that demon-
strate the maturity of our field. In our call for papers,
initially targeting work presented at the 18th Bien-
nial Conference, we emphasised our desire to show-
case research that went beyond basic model devel-
opment. We asked authors to emphasise the novelty
of their models with respect to ecological interpreta-
tion or management relevance. The result is a collec-
tion of 15 articles that demonstrate the considerable
progress our community has made in the last 10 yr.
While new challenges continue to emerge, we can
now look forward to an increase in the number of
habitat models that move beyond methods and
exploratory analysis. With a robust and increasing
capability to glean ecological insight from a diversity
of data, the field now appears poised to make real
contributions to the protection of marine mammals
and the conservation of their habitat.

BACKGROUND

A variety of terms have been applied to habitat
models depending on the perspective of the re -
searcher (e.g. habitat suitability models, species−
habitat relationships, species distribution models).
However, regardless of the terminology or methods
applied, the fundamental objective, whether applied
to the landscape or the seascape, is the same: to elu-
cidate relationships between species occurrence (or
abundance) and aspects of the physical or biological
environment with sufficient accuracy to derive
meaningful ecological insight and ultimately develop
predictions of the species’ distribution.

There are 3 principal reasons for these efforts. The
first, and perhaps oldest, reason is to further our
understanding of species ecology. This goal dates
back to the observation by MacArthur & Wilson
(1967) that landscape heterogeneity contributes to
the persistence of biological diversity. Second, quan-
tifying species−habitat relationships became impor-
tant with the passage of the US Endangered Species
Preservation Act (1966) and the subsequent Endan-
gered Species Act (1973), both of which recognised
the importance of habitat in maintaining species pop-
ulations, and thus require critical habitat descriptions
for species listed as endangered. Finally, as the oceans
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become more and more crowded with human activ-
ity, it is paramount to be able to identify where indi-
viduals and groups actually are — a population’s
realised distribution — in order to mitigate potential
negative impacts on individuals. Increasing concern
over the effects of sonar (e.g. Parsons et al. 2008) and
seismic surveys (e.g. Gordon et al. 2004), combined
with the more obvious risks from ship strikes (e.g.
Jensen & Silber 2003) and fisheries interactions (e.g.
Read et al. 2006), makes understanding and predict-
ing the realised distribution of marine mammals one
of the most important marine conservation chal-
lenges of our time. Developing such methods has
implications beyond marine mammal conservation,
as distinguishing between potential and realised
habitats would inform a range of priority issues relat-
ing to both biological diversity (e.g. Sutherland et al.
2006) and conservation policy (e.g. Fleishman et al.
2011, Rudd et al. 2011).

Practical interest in the distribution of marine
mammals, particularly large cetaceans, can be traced
to commercial whaling interests (Maury 1852 et
seq., Townsend 1935). From the 1940s to the 1960s
the Japanese pioneered modern efforts, focusing
on understanding how oceanographic conditions re -
lated to the location of whaling grounds in both the
North Pacific and the Southern Ocean. The funda-
mental conclusion of this extensive body of work
(comprising the bulk of material published in the Sci-
entific Reports of the Whales Research Institute,
Tokyo, Japan) was that favourable whaling grounds
were delineated mainly by temperature and current
fronts (e.g. Uda 1954, Nasu 1966). Other notable
 contributions to our understanding of cetacean ecol-
ogy during the whaling era were made by Berzin
(1978), Volkov & Moroz (1977), Gulland (1974) and
Foerster & Thompson (1985), who investigated vari-
ous aspects of large whale population dynamics in
the (ultimately unfulfilled) hope of achieving sustain-
able harvest rates.

Early cetacean naturalists interested in the bio-
geography of species considered how large whales
were associated with particular habitat types and
sea-ice concentrations (Eschricht & Reinhardt 1861,
Southwell 1898). Characterisations of species−habi-
tat associations were pioneered by Gaskin (1968), Au
& Perryman (1985), Hui (1985), Smith et al. (1986),
Reilly (1990), and Viale (1991) on which more con-
temporary analyses (Waring et al. 1993, Reilly &
Fiedler 1994, Woodley & Gaskin 1996, Baumgartner
1997, Fiedler et al. 1998, Baumgartner et al. 2001,
Ballance et al. 2006) were based. This gradually led
to the development of some of the earliest predictive

models of marine mammal habitats (Palka 1995,
Moses & Finn 1997, Cañadas & Sagarminaga 2000,
Forney 2000, Gregr & Trites 2001).

Throughout the 1990s and into the 21st century,
marine habitat modellers struggled with several fun-
damental challenges. These included how to deal
with the variety of observational data available and
the associated error, how to access geophysical data
(especially remotely sensed oceanographic data),
and how to apply analytical methods developed on
the landscape (e.g. Guisan & Zimmermann 2000) to
the more dynamic, 3-dimensional structure of the
marine environment.

Observational data range in quality from historical
records and opportunistically collected sighting data
to well-quantified abundance estimates derived from
line-transect surveys. Over the past decade or so, the
evolution of satellite telemetry and passive acoustic
monitoring has provided valuable new sources of
observational data. Each of these observational data
types provides a different perspective on how a spe-
cies responds to its environment. While each can be
used to develop species−habitat relationships, they
require different assumptions and must therefore be
analysed differently. The fundamental distinction is
between presence-absence (i.e. visual survey) and
presence-only data (i.e. opportunistic sightings, satel-
lite telemetry, passive acoustic monitoring), and a vari-
ety of analytical methods are available for both (e.g.
Elith & Graham 2009).

Historically, the primary sources of independent,
geophysical data have been bathymetry (including
depth, slope, and complexity) and remotely sensed
sea surface temperature. This has largely been be -
cause of their ease of acquisition compared to other,
perhaps more proximate (sensu Austin 2002) vari-
ables (e.g. subsurface temperature structure, prey
distribution). Bathymetry and surface temperature
are also well-suited for extending habitat predictions
over broad spatial extents such as an ocean basin, or
a nation’s territorial waters. Fortunately, these funda-
mental measures of the marine environment have
served as sufficient proxies for some of the features
that form marine habitat (e.g. bathymetry for shelf,
slope, and oceanic regions; sea surface temperature
for fronts and gradients; see Bakun 1996), allowing
habitat models based on them to provide limited eco-
logical insight into habitat associations by capturing
some of the variance in the observational data. Stud-
ies employing direct in situ sampling of oceano-
graphic properties provide the clearest insights into
species−environment relationships (e.g. Reilly 1990,
Baumgartner et al. 2001), but the synoptic, high-
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 resolution view provided by remote sensors is a chal-
lenge to replicate with in situ sampling. Today, ocean
circulation models are providing an ever richer suite
of synoptic independent variables, as demonstrated
by some of the articles in this Theme Section.

Reviews of the analytical methods available to
combine the dependent and independent data ap -
pear with regular frequency in the ecological litera-
ture (e.g. Guisan & Zimmermann 2000, Elith et al.
2006, Robinson et al. 2011). However, as observed by
Redfern et al. (2006), marine habitat models have
always faced a unique set of challenges beyond those
on the landscape, on which most such reviews are
based. This is because as cryptic, highly mobile
 species inhabiting a dynamic, 3-dimensional envi-
ronment, marine fauna cross a range of ecological
scales much more commonly than terrestrial  species
(Steele 1998). Their high mobility and expansive
habitats also complicate the collection of both ob -
servational (dependent) and independent data. Thus,
early modelling efforts, characterised by attempts to
apply emerging terrestrial approaches to this more
dynamic environment, helped bring into focus sev-
eral conceptual challenges facing marine ecologists
during this period. Topics discussed at our workshops
included the role of scale and the hierarchical struc-
turing of physical processes, the implications of dif-
ferent observational data, and how spatial autocorre-
lation and statistical assumptions confounded the
regression methods that were dominant during this
time.

Today, models incorporating animal distributions
and representations of their physical environment
are ubiquitous across the terrestrial and marine
realms. They are used in a variety of marine disci-
plines such as biological oceanography, marine bio-
geography, endangered species research, marine
spatial planning, and fisheries management. As
demonstrated by the articles in this Theme Section,
such models now incorporate advanced data collec-
tion technologies and sophisticated analytical meth-
ods with a predictive power that, in some cases, may
outperform more traditional regression methods
(Elith et al. 2006).

These advances in data collection and analytical
methods have significantly reduced the barriers to
developing species−habitat relationships for marine
mammals, making today’s challenge less about
model development and increasingly about the
interpretation and relevance of model results. The
articles contained in this Theme Section represent
the cutting edge work being done to meet that
challenge.

CONTRIBUTIONS TO THE THEME SECTION

Every article in this collection extends existing
modelling methods, and many emphasise some of
the emerging challenges we are facing. Corkeron et
al. (2011) address spatial autocorrelation in oppor-
tunistically collected data, Gerrodette & Eguchi
(2011) show how uncertainty can be included in the
design of Marine Protected Areas, and Forney et al.
(2012) provide an extensive investigation of statisti-
cal methods for predicting encounter rates and group
size. Blasi & Boitani (2012) show how a collection of
methods can be integrated to describe 2 types of crit-
ical habitat at small scales, based on different behav-
iours, while Doniol-Valcroze et al. (2012) combine
ecological-niche factor analysis and cluster analysis
to characterise the influence of the tidal cycle on
 foraging habitats using high-frequency tagging data.
Wheeler et al. (2012) show how different sources of
dependent data can be combined, and Goetz et al.
(2012) use advanced regression techniques to com-
bine count and presence data. Gregr (2011) provides
one of the first applications of maximum entropy mod-
elling to marine systems while exploring the effect of
scaling physical processes, something Becker et al.
(2012) also explore in the context of generating fore-
casts of species distributions. Lambert et al. (2011)
push the forecasting envelope further by driving
their predictive models with climate forecasts.
Pendleton et al. (2012) explore the utility of including
prey distributions derived from a bio-physical ocean
model. Gilles et al. (2011) provide a compelling
example of model validation, and Best et al. (2012)
combine model performance metrics with model
results into a multi-species decision support system
for marine spatial planning. Finally, Keller et al.
(2012) provide a refreshingly explicit regression
treatment complete with autocorrelation analysis,
while Gallus et al. (2012) demonstrate the use of pas-
sive acoustic data in a predictive model.

In addition to the significant technical advances
represented by this body of work, the collected arti-
cles span several space and time scales. High-resolu-
tion studies include the description of blue whale for-
aging habitat and how it changes on an hourly basis
(Doniol-Valcroze et al. 2012), near real-time forecasts
of cetacean distributions (Becker et al. 2012), and
weekly predictions of right whale habitat suitability
based on modeled prey distribution (Pendleton et al.
2012). In contrast, habitat suitability at basin scales is
explored by considering the long-term persistence of
oceanic right whale habitats (Gregr 2011), and the
potential for climate effects to displace dolphin habi-
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tat (Lambert et al. 2011). These studies highlight the
importance of correctly coupling space and time
scales (Wiens 1989), a topic that is critical to correctly
structuring the hierarchical interactions between
physical and biological processes.

The scaling question is also reflected in the de -
pendent data used in the various analyses. These
range from historic presence-only data (Gregr 2011,
Wheeler et al. 2012) to multi-year line transect sur-
veys (Becker et al. 2012, Best et al. 2012, Forney et al.
2012). The spatial resolution of these data and the
degree to which they can be associated with concur-
rent oceanographic conditions helps determine the
appropriate model resolution. Understanding the
resolution of modelled processes and how they inter-
act is key to moving model predictions along the con-
tinuum from predictions of potential to realised, or
occupied habitat.

This distinction between where animals are versus
where they could potentially be is critical for man-
agement since these cannot be equated unless a spe-
cies is near its carrying capacity — an unlikely situa-
tion for most marine mammals today. This is also
dependent on the temporal resolution of the study,
and again, the articles in this Theme Section span the
range of possibilities from the potential habitat end of
the spectrum (Gregr 2011, Lambert et al. 2011,
Wheeler et al. 2012) to the occupied habitat end
(Becker et al. 2012, Forney et al. 2012, Pendleton et
al. 2012). Studies considering dependent and inde-
pendent data averaged over a number of years to
improve sample sizes are more in the middle of the
spectrum (Gilles et al. 2011, Best et al. 2012). Yet
another perspective is provided by investigations of
how foraging habitat is influenced by the dynamics
of prey in addition to oceanography (Goetz et al.
2012, Pendleton et al. 2012).

The question of delineating habitat boundaries is
addressed both from a methodological perspective
(Gerrodette & Eguchi 2011, Gregr 2011) and from a
definitional one. This includes considering the dyna -
mic nature of foraging habitats (Doniol-Valcrose et
al. 2012, Pendleton et al. 2012), and the extension of
critical habitat boundaries to calving grounds (Keller
et al. 2012). The question is also informed by studies
showing that sparse data can yield meaningful eco-
logical results (Corkeron et al. 2011), and that larger
collections of data can be marshalled in a decision
support system integrating predictive models for mul -
tiple species (Best et al. 2012).

As data access improves (e.g. Best et al. 2012) we
will need to become more circumspect in our selec-
tion of independent variables. We need to pay closer

attention to the principle of parsimony, and strive to
represent only ecologically defensible relationships
in our models. Overly complex relationships that defy
ecological explanation (e.g. see the ‘skyline’ plots
described in Fig. 2 in Gregr 2011) may describe cor-
relations well, but do little to further our ecological
understanding. Explicitly including process hypothe-
ses (e.g. Gregr 2011, Becker et al. 2012, Keller et al.
2012) can lead to a more parsimonious selection of
independent variables and significantly improve
model performance and interpretability by guiding
the selection, resolution, form of, and interaction
between, the potential independent variables.

Several articles also consider the effect of seasonal-
ity on spatial boundaries (Gilles et al. 2011, Gregr
2011, Gallus et al. 2012). These studies demonstrate
the importance of seasonal variability when consid-
ering wide-ranging marine species, and show how
model performance improves when oceanographic
processes are scaled by season instead of pooled into
annual averages. The effect of temporal refinement
is also evident in a comparison of average and now-
cast models (Becker et al. 2012).

The work in this collection represents the leading
edge of scientific advice on marine mammal distribu-
tions for management. This includes studies explic-
itly intended to mitigate the potential of injury due to
interactions with military and industrial sonar use
(Becker et al. 2012, Forney et al. 2012), ship strikes
(Pendleton et al. 2012), and the possible longer-term
impact of coastal development (Gilles et al. 2011).
Critical habitat designations (Blasi & Boitani 2012,
Goetz et al. 2012, Keller et al. 2012, Wheeler et al.
2012) and marine protected area strategies more
broadly are also represented (Gerrodette & Eguchi
2011, Gregr 2011, Lambert et al. 2011, Gallus et al.
2012).

CONCLUSIONS

The old mariner’s adage, ‘red skies at night, sailor’s
delight; red skies in the morning, sailor’s warning’
predicts the likelihood of storminess from atmospheric
colour. While such correlations can be useful when no
other information is available, we generally demand
much greater accuracy from our weather forecasts,
now regularly provided by models that encapsulate
our fundamental understanding of the physical pro-
cesses that govern atmospheric dynamics. In contrast
to modern weather forecasting, predictive modelling
of marine mammal distributions continues to depend
on correlations, much the way early mariners used at-
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mospheric ‘signs’ to predict weather. However, tech-
nical advances in observational data collection, access
to environmental data, and analytical methods have
made building habitat models much more straightfor-
ward compared to 10 yr ago. It is therefore no longer
enough to simply explore correlations between a spe-
cies and its environment.

The articles in this Theme Section, in addition to
being examples of the state of the art in marine mam-
mal habitat modelling, provide some important indi-
cations of how we can move beyond a correlative
approach. Much like weather forecasts moved from
correlative analyses to process-based predictions, we
anticipate that future advances in habitat modelling
will also be best achieved by elucidating the physical
and biological processes underlying habitat forma-
tion. As a community, we must continue to push our
methods to address questions of process dynamics
and scaling, furthering our ability to interpret ecolog-
ical linkages and to develop management applica-
tions. This will require becoming explicit about our
model assumptions, and carefully justifying the
selection of variables and scale to avoid building
models with high statistical but little ecological sig-
nificance. It also means focusing on the ecology of
both our study species and their prey to improve the
hypotheses included in our models. Finally, it will
also require some consideration of behavioural states,
and an exploration of how other motivating factors
beyond foraging may influence habitat selection and
animal distributions. In Palacios et al. (2013, this
Theme Section), we examine these processes in detail,
advocate an approach to fill modelling gaps, and out-
line a progression of modelling stages that we be -
lieve will lead us to generate increasingly robust pre-
dictions of species distributions rooted in greater
ecological understanding.

While there will no doubt be significant challenges
in the future, we believe that, with this collection of
articles, the standard for marine mammal habitat
modelling has now been raised. We are on the cusp
of making the transition from learning how to model
to using our models as a heuristic tool to support eco-
logical understanding and marine spatial planning.
This is something worth celebrating as a community.
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