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INTRODUCTION

Over the past few decades, correlative models de -
scribing species distributions as a function of environ-
mental variables have become commonplace. This
has been enabled by several factors, including the
development of flexible modeling techniques, the in -

creasing power of desktop computing, the accessibil-
ity of statistical and mapping software and improved
access to digital repositories of environmental and
spatial data (Guisan & Zimmermann 2000, Elith et al.
2006, Robinson et al. 2011). The papers in the Endan-
gered Species Research Theme Section ‘Beyond
marine mammal habitat modeling: applications for
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ecology and conservation’ clearly demonstrate that
the marine mammal research community has em -
braced these tools, and is applying them with in -
creasing proficiency and sophistication (Gregr et al.
2013, this Theme Section).

Marine mammal habitat models typically predict
the spatial distribution or abundance of a species
based on correlations between animal observations
and attributes of the physical marine environment
(e.g. seafloor terrain, sea surface temperature, prox-
imity to the ice edge) or proxies of dynamic oceano-
graphic processes that may directly or indirectly
aggregate prey (Redfern et al. 2006). This approach
often makes 2 implicit assumptions with regard to the
environmental variables: (1) they adequately capture
the underlying environmental gradients to which a
species responds, and (2) they reasonably represent
conditions that lead to enhanced feeding opportuni-
ties. These assumptions, and the focus on foraging
success, reflect the limits of our understanding of
how marine mammals interact with their environ-
ment as well as our ability to directly measure the
prey field at scales relevant to a foraging predator.

The correlative approach has generated consider-
able insight into the distribution of marine mammal
species and their potential foraging areas. However,
our models continue to capture only a small portion
of the observed variability in species’ occurrence or
abundance. For example, the deviance explained (a
measure of model fit) by models published in this
Theme Section was generally below 50%, and for
many models it was less than 25%. While progress
in analytical approaches (e.g. Gerrodette & Eguchi
2011, this Theme Section) now allows us to model
the uncertainty in the observational (‘sampling’)
processes (i.e. the factors that affect visual detec-
tion: Barlow et al. 2001, Williams et al. 2007), and
the measurement error in the environmental covari-
ates (Gomis & Pedder 2005, Gomis et al. 2005) sep-
arately from the ‘state’ process of scientific interest
(marine mammal density or distribution), we believe
the limited explanatory power of correlative ap -
proaches is due fundamentally to the omission of
critical environmental and behavioural processes
that directly affect marine mammal distributions.

We argue that the elucidation of such processes
and their subsequent incorporation into habitat mod-
els will significantly improve our ability to predict
species’ distributions. Here, we (1) review processes
likely to influence marine mammal distributions, (2)
describe how directed studies can help investigate
and understand those processes prior to modeling,
and (3) challenge the marine mammal modeling

community to adopt new methods and approaches
for integrating environmentally and behaviourally
mediated processes in their species distribution
 models.

FACTORS INFLUENCING THE SPATIAL 
DISTRIBUTION OF MARINE MAMMALS

Today’s habitat models attempt to describe marine
mammal distributions as a function of mostly physio-
graphic or physical oceanographic environmental
variables such as depth, sea surface temperature, sea
surface height or the local gradients of these, even
though it is generally believed that marine mammals
do not respond to them directly. Indeed, marine
mammal distributions are influenced by many factors
(Forcada 2008), and while some can be directly
related to such physical variables (e.g. prey produc-
tion), others may have very little to do with environ-
mental conditions (e.g. predator avoidance, competi-
tion, foraging specialisation). Here we identify what
we believe to be the most important processes influ-
encing marine mammal distributions in the context of
predictive modeling. We distinguish between those
that are principally environmental (i.e. those that
influence prey distribution) and those that are behav-
ioural (i.e. those that arise from social, foraging or
reproductive activities; Fig. 1). Recognising that
these processes occur over characteristic, but over-
lapping, spatial extents, we refer to them as local
scale (metres to tens of kilometres), mesoscale (tens
to hundreds of kilometres) and large scale (hundreds
to thousands of kilometres).

Behavioural factors have been largely ignored in
habitat models for good reason: they are difficult to
study and the relationship between individual behav-
iour and population distribution is poorly understood.
There are also interactions between processes that
make incorporation of these factors in distribution
models challenging. For example, socialising and
prey availability may sometimes be linked (Croll et al.
2002), or species may have such high site fidelity that
active habitat selection is difficult to determine
(Laidre et al. 2004). In addition, human activities can
also affect marine mammal behaviour and distribution
through direct removal (e.g. industrial whaling and
sealing), incidental mortality in fisheries (bycatch),
habitat degradation or disturbance (e.g. shipping,
seismic exploration, military activities, offshore energy
developments), even leading to the extinction of spe-
cies (Turvey et al. 2007, McClenachan & Cooper
2008). While we acknowledge the pervasive influence
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of humans in marine systems (see Verity et al. 2002),
our focus here is only on natural drivers of marine
mammal distribution.

Prey production and concentration

The single most desirable independent variable in
marine mammal habitat modeling is prey abundance
(or characteristics of prey patches, such as density or
depth; see Benoit-Bird et al. 2013). Our sense is that
researchers intuitively expect that the spatial distri-
bution of a predator will match with near perfection a
map of prey abundance across all scales. However,
even if we were interested only in foraging behav-
iour, a perfect match between predator and prey
would only be possible if prey abundance could be
accurately and synoptically measured in 3 dimen-
sions at spatial scales relevant to foraging marine
mammals (i.e. decimetre resolution across horizontal
extents of tens to hundreds of metres and vertical
extents of metres). However, such prey sampling is
presently impossible; instead, sampling is done on
scales unlikely to reflect the true abundance of prey
available to marine mammals (e.g. Torres et al. 2008,
Hazen et al. 2011). Furthermore, predator distribu-
tions are only likely to match those of their prey if the
predators are, at all times, focused on areas with the
highest prey densities. In reality, a number of other
non-foraging activities like migrating, socialising or
breeding also influence species’ movements and dis-
tributions (e.g. Rasmussen et al. 2007, Blasi & Boitani
2012 in this Theme Section, Keller et al. 2012 in this
Theme Section, Laidre et al. 2012).

Nevertheless, a predator’s distribution must at times
correlate with prey abundance, which is largely
determined by production and concentration pro-
cesses that, in turn, are strongly influenced by physi-
cal processes. For example, the local processes of
upwelling or vertical mixing (via wind forcing or con-
vection) can stimulate primary production by intro-
ducing nutrients in surface waters, while dynamic
mesoscale features such as eddies or fronts can
aggregate secondary producers into discrete patches
that can be exploited by predators (Etnoyer et al.
2006, Palacios et al. 2006, Moore & Lien 2007, Wing-
field et al. 2011). Over large scales, physical pro-
cesses dictate regional biogeography, which ulti-
mately governs the distributional ranges of marine
prey and their predators. This is why variables
thought to represent such processes are frequently
used as proxies in modern marine mammal habitat
models (e.g. Kaschner et al. 2006). Unfortunately, the
links between these physical processes and prey
abundance via production and concentration are
very poorly understood in most parts of the ocean.
Even for zooplankton that feed on phytoplankton,
there can be significant temporal and spatial lags
between production and consumption by a zooplank-
tivorous marine mammal. For example, the calanoid
copepods consumed by a North Pacific right whale
Eubalaena japonica on a particular day in a particu-
lar location may have been ‘produced’ (i.e. laid as
eggs) hundreds of kilometres away, months prior or
even during the previous year (Gregr & Coyle 2009).
For prey species at higher trophic levels (e.g. nekton
such as squid and fish), such lags can be even more
pronounced (e.g. Jaquet & Whitehead 1996, Walli
2007, Grémillet et al. 2008).

Prey behaviour and life history

Prey exhibit a myriad of feeding and predator
avoidance strategies that can influence their avail-
ability to marine mammals. Schooling behaviour in
krill and baitfish can make such prey much easier to
capture by rorqual whales, and diel vertical migra-
tion (DVM) can bring deep-dwelling organisms
closer to the surface for feeding by shallow-diving
species (Benoit-Bird & Au 2003, 2006). Spatial or
temporal variability in these species-specific behav-
ioural processes can drive similar variability in the
distribution of marine mammals. Ontogenetic changes
in prey size, energetic content or behaviour associ-
ated with various life history strategies can also in -
fluence marine mammal foraging behaviour. For
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example, some zooplankton prey species deposit
lipids during certain life history stages to survive
later periods of low food resources (Hirche 1996),
thus becoming desirable as food for marine mammals
only during specific developmental phases (Wishner
et al. 1995, Baumgartner & Mate 2003, Laidre et al.
2007, Gregr & Coyle 2009). Finally, prey behaviour is
often thought of as a local-scale process, but nektonic
prey can often move across mesoscales (e.g. Slotte
1999).

Reproduction

Large-scale migrations motivated by mating and
calving are well known for many marine mammal
species, yet little is known about the extent to which
local-scale movements are motivated by mating
opportunities (Laidre et al. 2012). Further, the move-
ments and behaviour of different demographic
groups are likely driven by different requirements.
For example, prey densities or sizes required for
feeding by adult males may be quite different than
for reproductive females, and these differences can
drive changes in the spatial distribution of the popu-
lation (e.g. Le Boeuf et al. 2000, Engelhaupt et al.
2009, Heide-Jørgensen et al. 2010).

Foraging adaptations

When feeding, the occurrence of a marine mammal
in a particular location can be thought of as the inter-
action between prey availability and the animal’s for-
aging adaptations. For instance, if highly abundant
forage fish are widely dispersed, a rorqual may have
difficulty feeding because it is morphologically and
behaviourally adapted to lunge feeding (Goldbogen
et al. 2013) and cannot feed on 1 fish at a time the
way an odontocete might (Johnson et al. 2009). The
diving and sensory physiology of a marine mammal,
as well as its associated diving and foraging behav-
iour, combine to dictate what aspects of the water
column are important (e.g. mesopelagic prey for
deep divers, epipelagic prey for visual hunters, ben-
thic prey for bottom feeders, thin prey layers for ram
filter feeders, dense prey schools for lunge feeders).
Therefore, the processes governing prey availability
at particular depths likely influence marine mammal
foraging and spatial distribution (e.g. the thickness of
the surface mixed layer may have no influence on the
distribution of elephant seals Mirounga spp. that
feed at 200 to 600 m, whereas subsurface features

and boundaries between deep water masses appear
to be important; Biuw et al. 2007, Robinson et al.
2012).

Intra- or interspecific interactions

Long-term familial or social associations between
individuals have been widely documented in marine
mammals (e.g. Wells et al. 1987, Connor et al. 1992,
Parsons et al. 2009, Ramp et al. 2010), suggesting that
the movements of individuals can be influenced by
the distribution of conspecifics. Croll et al. (2002)
hypothesised that the vocalizations of male fin
whales are intended to advertise the presence of
prey patches to widely dispersed females across
mesoscales, in an effort to attract them for socialising
and possibly mating. The low-frequency calls of
baleen whales are particularly well suited to coordi-
nating movement and activities among individuals
across such spatial extents (i.e. the ‘range herd’ con-
cept of Payne & Webb 1971). Over shorter distances,
acoustic and visual contact helps maintain cohesion
among individuals in groups wherein the movements
of individuals are highly correlated with conspecifics
(e.g. Janik & Slater 1998).

Marine mammals are subject to predation by
sharks and other marine mammals (Estes et al. 1998,
Heithaus 2001, Laidre et al. 2006), thus predator
avoidance must have some influence over their
movements and distribution (the ‘seascapes of fear’
concept of Wirsing et al. 2008). Jefferson et al. (1991)
reviewed a wide variety of marine mammal re -
sponses to the presence of killer whales Orcinus orca,
including active defence, fleeing, hiding or changing
group size. Such behavioural responses can often
indicate a change in distribution owing to predator
avoidance. A variety of agonistic social interactions
between marine mammal species are also prevalent
(Shelden et al. 1995, Palacios & Mate 1996, Ciano &
Jørgensen 2000, Frantzis & Herzing 2002, Rossi-San-
tos et al. 2009), and, while poorly understood, they
probably play a role in shaping species’ distributions
at local scales. Across taxa, multi-specific interac-
tions between marine mammals, fish and birds are
also commonly observed (e.g. Pitman & Ballance
1992, Bearzi 2006, Vaughn et al. 2007, Haynes et al.
2011, Scott et al. 2012), and while these interactions
are even less well understood, they may influence
the spatial distribution of a species through processes
such as mutualism, commensalism or competition.
For example, based on an observed negative rela-
tionship between the abundance of sei whales Bal-
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aenoptera borealis and the occurrence of DVM in the
copepod Calanus finmarchicus, Baumgartner et al.
(2011) speculated that the occurrence of zooplanktiv-
orous fish influenced the distribution of sei whales by
inducing DVM behaviour in their common copepod
prey.

PROCESS STUDIES

To understand better how each of the processes
above affects the spatial distribution of marine mam-
mals, we suggest that directed studies are needed to
elucidate how these processes influence marine
mammal behaviour. These ‘process studies’ need not
explicitly consider spatial distribution, but should in-
stead focus on those aspects of the environment and
the animals’ behaviour that might influence spatial
distribution. Such studies should seek to quantify the
interactions between the species of interest and its
environment, prey, conspecific behaviour and (or)
non-prey species that may affect occurrence, individ-
ual movements or foraging behaviour. They may em-
ploy a wide variety of techniques such as short-term
tagging, long-term tagging, focal follows, targeted
prey and oceanographic sampling, and physiological
observations. The results of these studies can then be
used to (1) inform spatial models by refining model
structure, (2) provide values for previously unknown
or poorly constrained parameters or (3) identify novel
independent variables. More generally, such studies
will improve our ecological understanding of the
many factors that may motivate changes in species
distribution.

To illustrate, we consider the factors that might
influence the behaviour and distribution of the sperm
whale Physeter macrocephalus, a species that has
proven notoriously difficult to model. Papastavrou et
al. (1989) hypothesised that sperm whales dive to and
feed in the oxygen minimum layer (OML) where
slow-moving, easy-to-catch fish and cephalopods
specifically adapted to a low-oxygen environment
occur (H1). We further hypothesise that sperm whales
will occur more frequently in areas where the OML is
shallower because OML-associated prey will be
nearer to the surface and therefore more accessible
to the whales (H2). A short-term tagging study could
be conducted to address H1 by deploying electronic
tags to record the whales’ diving behaviour, and pro-
filing a dissolved oxygen sensor repeatedly from a
ship in proximity to the tagged whales. If H1 is con-
firmed, OML depth could then be included in a
model of sperm whale habitat suitability based on

sighting surveys and simultaneous in situ oxygen
profiling to address H2. The use of OML depth in the
model would be strongly justified by the results of
the process study and would allow the unambiguous
testing of a hypothesis about spatial distribution (H2)
based on fundamental ecological research.

Building on this process-oriented approach, Croll
et al. (1998) advocated the integration of several in -
dependent yet coordinated process studies con-
ducted at different space and time scales to develop
a comprehensive understanding of what motivates
the horizontal or vertical movement of a target spe-
cies. To illustrate their approach, Croll et al. (1998)
integrated the results from large-area sighting and
oceanographic surveys, small-area surveys, hydro -
acoustic sampling, net sampling, faecal sampling and
short-term tagging, to conclude that blue whales Bal-
aenoptera musculus fed during the daytime on 2 spe-
cies of euphausiids in 2 distinct depth strata (Thysa-
noessa spinifera between 0 and 50 m over the shelf,
and Euphausia pacifica between 100 and 175 m off
the shelf), and that the spatial distribution of blue
whales was influenced by aggregations of these prey
formed downstream of regions of persistent coastal
upwelling and steep bottom topography. Other
researchers have adopted this approach, for exam-
ple, to examine the factors that influence the behav-
iour, occurrence and distribution of North Atlantic
right whales Eubalaena glacialis by integrating data
from spatial surveys, short-term tagging, zooplank-
ton sampling and point surveys (Baumgartner &
Mate 2003, Baumgartner et al. 2003a,b), or to study
spatial and temporal associations between bowhead
whales Balaena mysticetus, zooplankton and phyto-
plankton in western Greenland using satellite tag-
ging, short-term tagging, oceanographic surveys and
zooplankton sampling (Laidre et al. 2007).

Because process studies require expertise and re-
sources that are not typically found in the marine
mammal community, we recommend establishing
collaborations with oceanographers and (or) biologists
with expertise in particular prey species. When re-
sources are limited, process studies can be conducted
incrementally to first identify prey species, then to
elucidate processes that influence the behaviour and
distribution of those prey species, and finally to exam-
ine the behaviour of the marine mammal species of in-
terest with respect to the distribution and behaviour of
their prey. The goal of these studies is to draw a
tighter connection between ecological processes and
marine mammal behaviour. Once a fundamental un-
derstanding of those connections is achieved, re-
searchers can then investigate how those same pro-
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cesses influence marine mammal distribution. Statis-
tical species−habitat models are well suited for this
task, and we discuss below how confirmatory models
can be used for the purpose of hypothesis testing.

MOVING FROM CORRELATIVE TO 
MECHANISM-BASED PREDICTIONS

Accurate predictions of marine mammal distribu-
tions are increasingly needed to inform conservation
efforts, especially in light of current management
frameworks like ecosystem-based management or
marine spatial planning (e.g. Levin et al. 2009, Foley
et al. 2010, Murawski et al. 2010). In response to
these needs, marine species distribution modeling
has seen an explosive growth in recent years (Robin-
son et al. 2011). However, the most commonly
applied methods are correlative, and while correla-
tions can suggest which predictors might be impor-
tant, they provide little insight into the underlying
mechanisms (Dormann et al. 2012). Correlative
approaches should therefore be seen as an initial
step in developing an understanding of the key pro-
cesses. This understanding is essential if we wish to
accurately predict and forecast species distributions,
especially in the face of global climate change, as
correlative relationships may not apply under differ-
ent ocean climate conditions (Myers 1998), and mod-
els built upon them may become less accurate over
time (Beaumont et al. 2008, Morin & Lechowicz 2008,
Cuddington et al. 2013).

Further, correlative approaches are primarily de -
scriptive — their intent is to describe how much of the
variability in the data can be explained with inde-
pendent predictor variables, and to allow interpola-
tion (i.e. predictions) between observed values.
Extrapolations to different environments (i.e. fore-
casts), either in space or in time, are more problem-
atic since observations are unavailable for model
specification or evaluation. As such, extrapolations
must assume that processes are stationary (i.e. invari-
ant over time or space) and that the distribution of
predictor variables is also the same in the forecast
regions or time periods (Elith & Leathwick 2009).
Clearly, such assumptions may not always be true.
These shortcomings underscore the need for alterna-
tive approaches that focus on describing causal rela-
tionships, such as mechanistic models. Also known
as process-based models, mechanistic models are
mathematical representations of biological systems
that quantify the interactions between an organism
and its environment through functional relationships

using predictive algorithms (Elith & Leathwick 2009,
Kearney & Porter 2009, Dormann et al. 2012). A shift
to more mechanism-based distribution modeling is
essential if, as a community, we are to make infer-
ences about realised distributions instead of simply
habitat suitability, or to make meaningful contribu-
tions to the understanding of how marine mammals
will respond to a changing climate.

We identify and describe 3 distinct stages of dis -
tribution modeling to encourage and support this
transition within the marine mammal community:
correlative modeling, confirmatory modeling and
mechanistic modeling. We hope that this discussion
will help marine mammal ecologists better orient
themselves in the sometimes bewildering field of
species distribution modeling, and thus be better
able to articulate their model objectives, analyse
their data and interpret their model results in the
most appropriate context.

Correlative models

Correlative models are often an essential first step
to understanding how environmental conditions may
influence a species’ spatial distribution, especially
where no a priori information on the species’ ecology
exists (e.g. for a poorly studied or cryptic species). As
demonstrated by the collection of articles in this
Theme Section, our community has made enormous
progress in the last few decades. It is evident from
these articles that we are paying closer attention to
model scope, either through more thoughtful de -
pendent variable specification (e.g. Lambert et al.
2011, Blasi & Boitani 2012, both this Theme Section),
or by isolating the habitat question to a specific con-
text (e.g. Gregr 2011, Doniol-Valcroze et al. 2012,
both this Theme Section). However, there are 2 prin-
cipal areas where we feel further improvements can
still be made.

Firstly, it is important to recognise that physical
and biological oceanographic processes manifest
themselves at characteristic spatio-temporal scales
(Fauchald et al. 2000, Hewitt et al. 2007, Anderwald
et al. 2012). Therefore, careful consideration of
scales, the linkages among them and their relevance
to a study’s questions have implications for its sam-
pling design, analytical approach and ultimately for
the scope of its ecological conclusions (Wiens 1989).
As a practical suggestion, it is often useful to examine
the decorrelation scales of both dependent and inde-
pendent variables (e.g. Doney et al. 2003, Hosoda &
Kawamura 2004, Boyce et al. 2010) prior to analysis,
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as this can yield insight into (1) the scale of important
ecological processes relative to the ‘input’ resolution
inherent in the sampling design, and (2) the appro-
priate scale at which to bin raw data for analyses and
for the ‘output’ resolution of a study. Modellers might
benefit from considering scaling as a form of averag-
ing, and recognising that all variables, including the
dependent data, should be averaged in the same
manner, to ensure that the scales of the dependent
and predictor data match.

A related consideration is that, in marine systems,
predictor variables measured at one point in time are
often the manifestation of earlier dynamics (e.g.
phytoplankton enrichment resulting from earlier
wave propagation, eddy decay or frontolysis; see
Flierl & McGillycuddy 2002, Olson 2002). A pre-
dicted snapshot of a species’ distribution may there-
fore be at least partially a reflection of past condi-
tions, resulting in temporal and spatial mismatch
(Grémillet et al. 2008), and will consequently have
reduced explanatory power. Such lags, both spatial
and temporal, are important, but are often ignored
(and understandably so, as they are difficult to char-
acterise). Drawing from a non-marine-mammal
example, Walli (2007) used water-mass backtracking
to identify time lags of 1 to 3 wk between the peaks
in primary production and in foraging activity by
Atlantic bluefin tuna Thunnus thynnus in different
regions of the North Atlantic. So while the areas
where the predator conducted the highest amount of
foraging consistently occurred where phytoplankton
blooms had previously developed, a zero-lag correla-
tion between the two would have found no statistical
significance (Walli 2007). Proper consideration of
such lag issues is also crucial for correctly represent-
ing the processes of interest.

Secondly, the increasing number of environmental
variables available to researchers has led to the for-
mulation of correlative models developed using auto-
matic variable selection techniques (e.g. stepwise
and machine learning methods) that extract signifi-
cant variables from a large number of independent
variables. With such ‘black box’ approaches, explain-
ing why the ‘significant’ variables are ecologically
important can become nearly impossible, particularly
when the nature of the relationship (i.e. functional
form, potential interactions) is not constrained. Rela-
tive significance is also difficult to assess since the
variable selection process erodes confidence in the
resulting p values, such that hypothesis testing with
such models is ill advised (Whittingham et al. 2006).
In addition, interpreting the influence of a particular
variable on a species’ distribution is difficult because

adding or removing other variables can often change
the functional relationship between the dependent
and independent variables. To better understand the
role of the independent variables, one practical
approach is to specify separate single-variable mod-
els, which avoids corruption of p values and permits
much stronger inferences about variable significance
(e.g. Baumgartner et al. 2003a). Once significant
variables are identified individually (or in small
groups), hypotheses can be generated about why
they are important, and either process studies or new
confirmatory models that use independent data (see
below) can be designed to address those hypotheses
(Johnson & Omland 2004). How processes interact
across scales can then also be hypothesised and
related to the presumed scale of influence. For exam-
ple, Gregr (2011) described how spatial extent and
resolution influenced variable importance in predict-
ing North Pacific right whale habitat: models at the
basin scale were driven by distance to underwater
canyons, while regional models were more influ-
enced by local ocean climate.

While modest improvements in model performance
are likely to be realised with better spatial and tem-
poral scaling, more careful environmental variable
selection, and improved or more flexible modeling
approaches, the fact remains that correlative applica-
tions generally contain little a priori ecological
understanding (Dormann et al. 2012). We therefore
now consider ways in which we can move beyond
correlative models to those based on process.

Confirmatory models

Hypotheses about how environmentally or behav-
iourally mediated processes influence marine mam-
mal distributions are ideally developed from process
studies, but they can also be suggested by correlative
models or an a priori understanding of a species’ (or
its prey’s) ecology gleaned from the literature.
Regardless of how these hypotheses are generated,
statistical species−habitat models can serve as a use-
ful tool for testing them. We refer to these models as
‘confirmatory’, as they are meant to confirm (or test)
our ideas of what is driving the spatial distribution of
a particular species based on the new insights pro-
vided by the process studies. Returning to our sperm
whale example, demonstrating that sperm whales
dive to and forage in the OML (a vertical process)
provides an ecological basis for testing the hypothe-
sis that variability in OML depth influences sperm
whale horizontal distribution. A confirmatory model,
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then, would be used to examine sperm whale spatial
distribution with respect to OML depth to test this
hypothesis (the extensibility of the model to other
areas would, of course, be limited by the availability
of OML data at the relevant scales, but at the very
least, the results of the study would highlight the
need for such data). For North Atlantic right whales,
Baumgartner & Mate (2003) demonstrated that right
whales forage on thin layers of calanoid copepods
just above the bottom mixed layer, and Baumgartner
et al. (2003a) confirmed that the depth of the bottom
mixed layer significantly influenced the spatial distri-
bution of right whales (the addition of this variable
increased the model drop in deviance by 29%). Sim-
ilarly, Gregr (2011) used an understanding of North
Pacific right whale prey life history and potential
oceanographic concentration features gleaned from
previous studies reported in the literature to investi-
gate the potential for prey concentration via bathy-
metric steering.

Since these models are specifically designed to test
hypotheses, approaches that allow strong inferences
should be used (e.g. the single-variable modeling
strategy outlined above; see also Burnham & Ander-
son 2002, Johnson & Omland 2004, Araújo & New
2007). The generalised linear and additive modeling
frameworks that are in wide use today are adequate
tools for confirmatory models. In addition, tremen-
dous progress has been made in the past decade in
the development of Bayesian information-theoretic
methods for modeling complex ecological processes
as a viable alternative to the frequentist inference
methods so prevalent in correlative models (Ellison
2004). Through hierarchical factorization of pro-
cesses and parameters into a series of conditional
submodels, these methods have the capacity to
merge and assimilate diverse types of information,
while explicitly incorporating and propagating the
sources of error associated with them (Wikle 2003,
Clark 2005). In particular, their ability to account for
process features such as mean and random effects
(including spatial autocorrelation), point versus areal
relationships, and spatiotemporal hierarchies, makes
them highly appealing for species distribution mod-
eling (Gelfand et al. 2006, Latimer et al. 2006, Diez &
Pulliam 2007). While one of their drawbacks when
modeling high-dimensional problems is the compu-
tational cost involved in simulation (i.e. Gibbs sam-
pling with the Markov chain Monte Carlo algorithm),
the recent implementation of the integrated nested
Laplace approximation algorithm makes it now feasi-
ble to efficiently fit complex models to spatial ecolog-
ical problems (Illian et al. 2013).

But what variables (or proxies) and parameterisa-
tions should we use to capture processes like social-
ising, the presence of predators, foraging capabilities
or interspecific competition? And how should we
incorporate these behaviourally mediated processes
into models of species distribution? The challenge of
specifying behavioural processes can be overcome
with mechanistic formulations, provided the pro-
cesses can be parameterised from theory, meta-
analyses of empirical data or process studies. Be -
cause mechanistic models are deterministic, rather
than statistical, representations of a system of inter-
est, and because their present applications are some-
what different, we discuss them in the next section
while noting their imminent convergence with em -
pirical frameworks.

Mechanistic models and their integration with
empirical models

Important strides are being made in the develop-
ment of mechanistic formulations that explicitly para-
meterise biological processes such as physiology
(Kearney & Porter 2009), trophic transfer (Morissette
et al. 2010, Morozov et al. 2012), social interactions
(New et al. 2013), predator−prey behaviour (Srini-
vasan et al. 2010, Ferguson et al. 2011, Testa et al.
2012), individual movement (Satterthwaite & Mangel
2012) and population dynamics (MacCall 1990,
Struve et al. 2010). In addition, driven by the needs of
the fisheries assessment community, a variety of eco-
system-level modeling frameworks tailored for the
marine environment have recently been developed
that even permit the inclusion of human activities and
climate change impacts (Plagányi 2007, Stock et al.
2011, Morzaria-Luna et al. 2012, Plagányi et al. 2012).
These numerical approaches can be efficient tools for
addressing theoretical concepts and for investigating
how new parameters and their sensitivity play a role
in outcomes using alternate model formulations.
However, the promise of mechanistic approaches is
tempered with their limitations, including the high
computational costs, the need for verifiability, their
extensibility to areas outside the modeled domain,
and the incorporation of uncertainty (Plagányi 2007,
Stock et al. 2011, Link et al. 2012). For these reasons,
an incremental, iterative process from simple to com-
plex formulations is recommended before spatially
explicit models of marine mammal population dy-
namics incorporating prey abundance and environ-
mental variability can be successfully built (Interna-
tional Whaling Commission 2013).
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Another area under development is the integration
of deterministic and statistical approaches into cou-
pled modeling frameworks, the need for which is
broadly recognised in the ecological literature (e.g.
Jakeman et al. 2006, Evans et al. 2011, Grimm &
Railsback 2011, Robinson et al. 2011, Dormann et al.
2012, Cuddington et al. 2013). One possible ap -
proach, so-called hybrid modeling, takes the output
from mechanistic models as input for correlative
models to predict spatial distributions (e.g. Cheung
et al. 2008). In this sense, the hybrid approach is con-
firmatory (see ‘Confirmatory models’ above) in that
the mechanistic model serves as a kind of process
study to inform the statistical model. However, such
separate analyses will soon be unnecessary; with the
convergence of the Bayesian paradigm with graphi-
cal model representations and efficient computa-
tional algorithms, the models of the future will be
capable of generating inference and dynamic predic-
tion within a single, synthetic approach (Clark &
Gelfand 2006).

CONCLUSION

We have identified a progression of modeling
stages that should lead us to formulate increasingly
robust and accurate predictions of marine mammal
distributions. At the same time, our choice of model
type and level of complexity should be weighed care-
fully against the research question, the data available
and the application (e.g. identifying habitat for con-
servation, empirical testing of a hypothesis for a novel
ecological process, forecasting of future distributions),
to ensure that the outputs of our models are used in
appropriate and meaningful ways. In addition, our
model outputs should also include and quantify their
inherent uncertainty. This requirement is no more
pressing than when management applications are
concerned, where the management goals must reflect
the uncertainty levels (see Gerrodette & Eguchi 2011).
Our challenge as a modeling community is then to
provide ecologically supported results with the tools
and information available to us today, while continu-
ing to develop or adopt more synthetic approaches for
integrating environmentally and behaviourally me -
diated processes in our models. Clearly there are lo-
gistical and observational hurdles to obtaining this
 information on wide-ranging and elusive species.
However, such information is critical to elucidating
the role of process in marine mammal distributions.

One of our primary goals in organising the Theme
Section ‘Beyond marine mammal habitat modeling:

applications for ecology and conservation’ was to
demonstrate and celebrate how far the marine mam-
mal community has come in the application of empir-
ical distribution models for both science and man-
agement. The contributions in this Theme Section
represent a snapshot of the state of the art in marine
mammal spatial modeling, and we may use this
snapshot to mark our progress in 5, 10 or 20 years
time. While it is impossible to envision what the
 models of the future will be like, we anticipate that
prediction accuracy will best be improved by using
process studies, confirmatory models, synthetic ap -
proaches and more strategic application of model
results to further our understanding of the ecology of
marine mammals. Given the existing and emerging
risks to marine mammals from human activities and
climate change, accurate spatial distribution models
based on relevant oceanographic and behavioural
processes are needed for conservation and manage-
ment, now more than ever.
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