

An update on Arctic sea ice thickness conditions from airborne and satellite altimetry

Sinéad Louise Farrell^{1,2,3}, Jackie Richter-Menge⁴, Nathan Kurtz³

 ¹ Earth System Science Interdisciplinary Center, University of Maryland, USA
² NOAA Laboratory for Satellite Altimetry
³ Cryospheric Sciences Branch, NASA Goddard
⁴ Terrestrial & Cryospheric Sciences Branch , ERDC – CRREL

CRREL

Outline

- Brief recap of airborne sea ice data products (IceBridge)
- Results for 2013 snow depth, sea ice thickness, and thickness uncertainty
- Review of 5-year sea ice thickness data set (2009 2013)
- Basin-scale sea ice thickness (ICESat and CryoSat-2)
- Review of 10-year change in thickness and volume (2003 2012)

Arctic Airborne Altimetry

• **Operation IceBridge:** NASA airborne mission, multi-instrument suite, launched in March 2009 to bridge gap between ICESat and ICESat-2

More info at: icebridge.gsfc.nasa.gov and nsidc.org/data/icebridge/

Arctic Sea Ice Campaigns	5
<u># Flights</u>	
2009: 6	
2010: 8	
2011: 9	
2012: 14	
2013: 10	

Instrumentation – Data Sets

- Surface Topography (ATM Laser Altimeter)
- Snow Depth (Snow Radar)
- Sea Ice Morphology (High res. digital photography)
- Gravity field gravimeter

Sea Ice Thickness – Data Products

Photo Credit: Andrew Roberts, SEDNA 2007

Sea Ice Data from IceBridge:

Measurements:

- (A) Lead Height sea surface elevation (& uncertainty)
- (B) Snow Depth
- **(C)** Mean Freeboard (& uncertainty)

Derived Product:

- Thickness
- Thickness Uncertainty
- Available at 40 m resolution
- Stored at NSIDC

Snow Depth (h_s) – March/April 2013

nsidc.org/data/docs/daac/icebridge/evaluation_products/sea-ice-freeboard-snowdepth-thickness-quicklook-index.html

Sea Ice Thickness (h_i) – March/April 2013

nsidc.org/data/docs/daac/icebridge/evaluation_products/sea-ice-freeboard-snowdepth-thickness-quicklook-index.html

Sea Ice Thickness Uncertainty (σh_i) – March/April 2013

nsidc.org/data/docs/daac/icebridge/evaluation_products/sea-ice-freeboard-snowdepth-thickness-quicklook-index.html

Ice Thickness Uncertainty (σh_i)

Average ice thickness uncertainty <u>~ 0.65 m</u>

Formally calculated via inclusion of all error terms, Eqn. 1
- including freeboard & snow depth – prevalence of leads major contributing factor

$$\sigma_{h_{i}} = \left[\left(\frac{\rho_{w}}{\rho_{w} - \rho_{i}} \right)^{2} \sigma_{h_{f}}^{2} + \left(\frac{\rho_{s} - \rho_{w}}{\rho_{w} - \rho_{i}} \right)^{2} \sigma_{h_{s}}^{2} + \left(\frac{h_{s} \left(\rho_{s} - \rho_{w} \right) + h_{f} \rho_{w}}{\left(\rho_{w} - \rho_{i} \right)^{2}} \right)^{2} \sigma_{\rho_{i}}^{2} + \left(\frac{h_{s}}{\rho_{w} - \rho_{i}} \right)^{2} \sigma_{\rho_{s}}^{2} \right]^{\frac{1}{2}}$$
(Eqn. 1)

Uncertainty has decreased over time

- improvements in instrumentation and processing techniques

- discarding data with a freeboard uncertainty of > 0.1 m.

See Kurtz et al., 2013 (The Cryosphere) for detailed description of uncertainty estimation

IceBridge Campaign	Mean	Mode	Range	Discarded
	(m)	(m)	(m)	%
2009	0.71 ± 0.19	0.66	0.38 - 3.54	48
2010	0.66 ± 0.18	0.55	0.37 - 2.00	37
2011	0.66 ± 0.17	0.56	0.38 - 2.39	20
2012	0.70 ± 0.17	0.63	0.38 - 2.60	16
2013	0.59 ± 0.15	0.50	0.38 - 2.58	9

Sea Ice Thickness: 2009 - 2013

Regional Ice Thickness (2009 – 2013)

	Central Arctic		Beaufort Sea Chukch	+ Eastern i Sea
IceBridge Campaign	Mean ± 1 σ (m)	Mode (m)	Mean ± 1 σ (m)	Mode (m)
2009	2.90 ± 1.69	2.0	2.49 ± 1.01	2.4
2010	3.23 ± 1.35	2.4	2.57 ± 1.09	2.6
2011	3.27 ± 1.32	2.6	1.52 ± 0.65	1.8
2012	3.50 ± 1.46	3.0	1.88 ± 0.91	1.2
2013	3.04 ± 1.25	2.2	1.60 ± 0.75	1.4
5 Year Mean	3.19 ± 1.41	2.4	2.01 ± 0.88	1.9

- Central Arctic: Dominant multiyear (MY) ice zone: 90% +
- Beaufort /Chukchi Sea (BC) Region: Mix of MY and first-year (FY) ice: ~ 25 % MY ice, distribution varies
- Decrease in MY in both sectors in 2011 that persisted
- Mean Sea Ice Thickness in Central Arctic is **<u>3.2 m</u>** and obs show interannual variability
- Mean ice thickness in B/C Region is 2.0 m, but decrease observed after 2011.
- Very thin ice observed in Chukchi Sea: 0 1 m, following Feb. breakout event

From: Richter-Menge and Farrell, 2013, GRL

ICESat and CryoSat-2 Thickness Record

Dates	OCUINOV	1.00/10141	OCUINOV	1°CU/1v1a
2003–2008	11,852	16,299	9119	15,451
2010-2011	8283	15,424	6846	13,429
2011-2012	6838	14,215	6104	13,290
Change ^a	-4291	-1479	-2644	-2091

From: Laxon et al., 2013, GRL

- Combining ICESat and CryoSat-2 records: Basin Scale coverage
- Decadal variability and trends in thickness and volume of pack.
- Observations indicate decline in ice thickness and volume over last 10 yrs
- Between 2003 and 2012 volume of winter pack decreased by 9 % (1479 km³).
- Average volume loss (autumn and winter) was ~500 km³/yr
- Equivalent to a loss of 0.075 m/yr in ice thickness

IceBridge vs CryoSat-2 Ice Thickness

- Cross calibration - independent estimates of sea ice thickness (airborne, sat., in situ sources)

- Example shown here: IceBridge vs. CryoSat, Spring 2012 data

Spatial patterns in thickness gradient agree; correlation 0.61; mean thickness difference 0.05 m

- On-going efforts to understand source of scatter and major differences
- Effort underway to provide a consistent time series of data with consistent auxiliary inputs

IceBridge/CryoSat-2 Sea Ice Thickness Data Availability

- NASA IceBridge Airborne Sea Ice thickness data product: http://nsidc.org/data/idesi2.html
- IceBridge "quicklook" Data: http://nsidc.org/data/icebridge/evaluation-products.html
- CryoSat-2 sea ice thickness and uncertainty @Alfred Wegener Institut (AWI) http://www.meereisportal.de/de/datenportal/karten_und_datenarchiv/ (Contact Stefan Hendricks, R. Ricker, V. Helm at AWI)

