Post Helium-3 Neutron Detection at BYU

John E. Ellsworth Inventions of J. Bart Czirr and Lawrence Rees

" drop-in replacement a technology for Helium-3 does not exist today. Furthermore, as many as six different neutron detection technologies may be required to performance best address the of the requirements neutron detection applications GE has served historically with technology using Helium-3."

THOMAS R. ANDERSON, APRIL 22, 2010

Product Line Leader, GE Energy, Reuter Stokes Radiation Measurement Solutions Before the Subcommittee on Investigations and Oversight Committee on Science and Technology, U.S. House of Representatives Hearing on "Caught by Surprise: Causes and Consequences of the Helium-3 Supply Crisis" http://www.parttec.com/Helium-3_Congress_Hearing_Anderson_Testimony_4-22-10.pdf

motivation

- Neutron Energy Spectroscopy to low energies
 - Measure sparse neutrons in background field
 - Identify nuclear reactions (astrophysics)

Explore nuclear fission, both spontaneous and induced

- Age old question: to what degree do neutrons erupt from scission or fission fragments
- Degree of mutual attraction of pairs of emitted neutrons

• Create a drop-in replacement for 3He detectors

- Possibly improve material identification (DHS)
- ToF detector/source system that will allow modestly funded universities entry to second tier nuclear science

nuclear@byu.edu

X

Helium-3 Neutron Detection

typical ³He proportional counter pulse height spectrum

J E Ellsworth, Transducer Signal Noise Analysis for Health Monitoring (SW-7440). Master Task Agreement No. 15022, Task Order No. 10, Amended October 1, 2009

Helium-3 Neutron Detection

typical ³He proportional counter pulse height spectrum

4.5

x 10⁴

sampling of ³He safeguard monitoring equipment used by IAEA

J E Ellsworth, Transducer Signal Noise Analysis for Health Monitoring (SW-7440). Master Task Agreement No. 15022, Task Order No. 10, Amended October 1, 2009

Nuclear Instruments and Methods in Physics Research 220 (1984) 406-430 North-Holland, Amaterian DETECTOR

1983

A MODERATING ⁶LI-GLASS NEUTRON DETECTOR Gary L. JENSEN, Dwight R. DIXON, and Kevin BRUENING *Brieham Young University. Prace. Unik M402. USA*

> Capture gated neutron spectroscopy using heterogeneous scintillators and multipulse discrimination

1987 Steven E. Jones (particle physics), J. Bart Czirr (neutron detection), Gary L. Jensen (accelerator physics), Daniel L. Decker (condensed matter and dep't chairman), and E. Paul Palmer (Geo-physics)

2010 Nathan Hogan (student), Adam Wallace (student), Suraj Bastola (student), Lawrence Rees (nuclear physics), and J. Bart Czirr (neutron detection)

some technologies

capture gated neutron spectroscopy and multi-pulse discrimination

Lithium Gadolinium Borate Cerium (LGB) Crystal in Plastic Scintillator

proton recoil and Li capture pulses

Built by Photogenics, Inc under patents license from BYU:1) Heterogeneous Neutron Scintillator2) Multi-pulse Neutron Scintillator

some technologies Lithium Gadolinium Borate Cerium (LGB) Crystal

LiGdBCe Crystals were grown at Institut de Chimie de la Matière Condensée de Bordeaux, France for Photogenics, Inc.

Tested at BYU LNAR Lab Oct 8, 2007

Lithium glass and then LGB crystals where each in-turn affixed with optical grease to the horizontal face of a PMT placed in a dark box and exposed to a Cf252 source. Data was taken with an ORTEC Trump MCA card and spectroscopy software.

Data mas taken mi		2 Homp Imp	on card an	a spectrost	5003 5011114	10.	
		6 to 7 times brighter than Li glass					
						Relative Brightness	
	Amplifier	Li Pulse		B Pulse		to Li Glass	
Sample	Gain	Height	Li gain	Height	B gain	Cz/GS-20	
GS-20 Li Glass	.40X300	259	2.158				
Cz272	.6X30	271	15.056	67	3.72	6.98	
Cz274	.6X30	248	13.778	63	3.50	6.38	
Cz275	.6X30	252	14.000	64	3.56	6.49	
Cz283	.6X30	251	13.944	65	3.61	6.46	
Cz277	.6X30	259	14.389	66	3.67	6.67	
Cz278	.6X30	115	6.389	too low		2.96	
Cz279	.6X30	249	13.833	63	3.5	6.41	
Cz276A	.6X30	181	10.056	52	2.888889	4.66	
Cz276B	.6X30	170	9.444	too low		4.38	/

some technologies capture gated neutron spectroscopy and multi-pulse discrimination

Lithium Gadolinium Borate Cerium (LGB) Crystal in Plastic Scintillator

proton recoil and Li capture pulses

Built by Photogenics, Inc under patents license from BYU: 1) Heterogeneous Neutron Scintillator 2) Multi-pulse Neutron Scintillator

some technologies

lithium <u>glass</u> and plastic moderating scintillator

- #1 showed <u>10⁻⁴ n- γ discrimination</u>
- MCNP calculations suggested 5% efficiency for bare ²⁵²Cf
- Low-Room-Return-Lab measurements gave an efficiency of 5.3%
- #2 Having some plastic in front of the ⁶Li glass is better for bare ²⁵²Cf source

some technologies capture gated neutron spectroscopy and multi-pulse discrimination

- #1 showed 10⁻⁴ n- γ discrimination
- MCNP calculations suggested 5% efficiency for bare ²⁵²Cf
- Low-Room-Return-Lab measurements gave an efficiency of 5.3%
- #2 Having some plastic in front of the ⁶Li glass is better for bare ²⁵²Cf source
- #3 BROKEN GLASS DETECTOR: 1mm glass shards placed on top of plastic scintillator / moderator limits electron absorption from gamma rays

some technologies

capture gated neutron spectroscopy and multi-pulse discrimination cadmium metal in plastics scintillator

some tools

low room return testing, BYU Indoor Practice Field (IPF)

Detector suspended in the air 45 feet from all structural materials (concrete, ground, steel, etc)

9

6

neutron energy (MeV)

Some tools Time of Flight (ToF) testing

250

200

150

100

50

URANIUM FISSION TARGET

BYU LNAR Lab

Time-of-Flight (n

240

200

220

260

Lithium glass with moderating scintillator shows better efficiency for a shielded neutron source.

MCNP by Lawrence Rees

Expecting a nice tight E to ToF fit?

LNAR Lab LGB detector E vs. ToF

Light from plastic proton recoil is non-linear.

LNAR Lab LGB detector E vs. ToF

Light from plastic proton recoil is non-linear.

Light from plastic proton recoil is non-linear.

Solution: inorganic hydrogenous crystal that has high hydrogen content: NH₄X (Br, I, etc)

some lessons learned troubles with PMTs

Inconsistent rise time across face of PMT – Constant Fraction Discriminators (CFD) depend on consistent rise time (15% threshold)

In the Cd detector low energy gammas register multiple pulses separated by about 100 ns

Modeling of a PMT showed electron propagation time from photocathode to 1st dynode varied by ~150 ns from center to edge of the PMT face

some lessons learned solutions

- Use a 10X faster PMT having 14 dynodes (Pos 2000V)
- Use plastic wedges in place of slabs so light is delivered at the edge in balance with the center

For suppressing room return:

20' from concrete is as good as 50'.

20' is about 1% different than set at infinity.

Scissors lift enables testing much heavier detector systems.

Useful Product: Cd – Plastic Detector

J. Bart Czirr at LANL LANSCE WNR Lab ToF Facility Aug 28, 2013 Useful Product: Cd – Plastic Detector Using Nikolai Kornilov's ²⁵² CF Fission Chamber, Edwards Accelerator Lab Ohio University Aug 16, 2013

Thank You

Support provided by: BYU CPMS, DOE, NNSA, DHS, and INL

Post Helium-3 Neutron Detection at BYU

John E. Ellsworth, J. Bart Czirr, and Lawrence Rees Undergraduate Researchers: Nathan Hogan, Adam Wallace, Stephen Black, Steven Gardiner, Brian James, Suraj Bastola, and Nirdosh Chapagain, Andrew Hoffman, and Neil Turley

Development of spectrometers for studying low flux neutrons mixed in a field of gamma and cosmic rays has continued at BYU since 1982. As ³He, the archetypal neutron detector medium, becomes scarcer, BYU and associates have been pursuing technologies that may serve as acceptable detectors, even for low energy fission neutrons. Presented will be 1) some technologies: typical ³He safeguard monitoring equipment, capture gating techniques, multi-pulse discrimination, and hybrid developments; 2) some tools: low room-return lab, LANL LANSCE time of flight, and fission spectroscopy; 3) and some lessons learned: PMT timing disparity, plastic non-linearity, and pulse fragmentation.

Support provided by: BYU CPMS, DOE, NNSA, DHS, and INL