
Scattering of internal waves over random topography

Yuan Guo

September 30, 2012

1 Introduction

Internal waves are initially generated as the barotropic tides (described by U(t) = x̂U0 cosωt)
flow over undulating sea-floor topography. They are an important component in ocean dy-
namics such as small-scale mixing and dissipation. Internal waves generated by barotropic
tides are usually of low mode number so they are of large-scale. Where are those small-scale
waves come from? One possible way of generating these small-scale waves is scattering (See
Figure 1). Scattering is a linear interaction between the propagating waves and the sea-floor

Figure 1: Snapshot at t = 0 of ReΨ(x, z)e−it for topography h(x) = 0.1 sinx. It is clear
from the graph that the width of white or black region (represent the scale of the waves)
changes from large to small. This Figure is taken from Bühler & Holmes-Cerfon, 2011

topography. The rugged bottom topography scatters the incoming waves into other spectral
modes and redistributes energy flux in the waves number space. Figure 2 is an example of
scattering. The incoming waves we use is of mode-one and we can see that by scattering we
obtain waves with high-wave number. Details of this redistribution process depend on the
shape of the topography, i.e. whether it is subcritical or supercritical (see definition below
Equation (7)).

Scattering problem is studied for determined topography by Mülcer & Liu (1999) and
subcritical random topography (Section 2.2 ) by Bühler & Holmes-Cerfon (2011). Here we
want to know what will happen when we allow random topography to have supercritical
part.
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Figure 2: An example of scattering of internal waves. The incoming waves are of mode-one
and with energy flux rescaled to unity. We only plot energy flux of the first 40 modes.

In this paper, we study two-dimensional (2D) scattering problem for ocean with finite
depth by using linearized two-dimensional (2D) rotating Boussinesq system. Linearization
is justified if the tidal excursion is much less than the scale of the topography. For simplicity,
the Coriolis frequency f and the buoyancy frequency N are taken to be constants, though
N is a function of depth z in real ocean. However, previous experience with variable N
indicated that usually allowing for variable N slightly modifies but does not change in
a fundamental way the results for constant N . Moreover, a recent study by Grimshaw,
Pelinovsky & Talipova (2010) shows that for some profiles of N(z), WKB theory gives
exactly the right answer. But, of course our results will be more useful if we can extend them
to realistic profile of N . Also we limit our problem to finite topography. The topography
may have arbitrary shape but it must be localized, i.e. we assume the bottom is flat in the
far field.

The paper is organized as follows. In Section 2, we give the governing equations of our
problem and specified what we mean by random topography. In Section 3, we derive a
formal solution to the scattering problem. An special geometric structure—wave attractor
is studied in details in Section 4. And in Section 5 we present our numerical results of the
decay of the expected energy flux and compare them with some know results. Conclusions
and some discussions are in Section 6.

2 Mathematical formulation

2.1 Govering equations

Our model is two-dimensional (2D) rotating linear Boussinesq system, in which all fields
depend on x (horizontal) and z (vertical) only. This does not prevent a non-zero velocity in
y-direction due to the Coriolis force. The equations for velocity field v = (u, v, w), buoyancy
b and pressure P are

ut − fv + Px = 0, vt + fu = 0, wt + Pz = b, bt +N2w = 0, (1)

and we also need incompressible constraint ux+wz = 0. For simplicity, assume the Coriolis
frequency f and the buoyancy frequency N are constants.

2



Introducing the stream function ψ(x, z, t) such that u = ∂zψ, w = −∂xψ, we can write
Equation (1) as

(N2 + ∂tt)∂xxψ + (∂tt + f2)∂zzψ = 0 (2)

For boundary conditions, we use rigid top and bottom boundaries at the ocean surface
z = H and the bottom z = h(x)

ψ(x,H, t) = ψ(x, h(x), t) = 0, (3)

It is worth mentioning here that the rigid boundary condition on the bottom is not trial
and is essential in solving the scattering problem. We focus our attention to the compact
region x ∈ [−Lx/2, Lx/2], and assume the ocean bottom is flat in the far field, i.e. bottom
topography z = h(x) is taken to be zero outside the compact region x ∈ [−Lx/2, Lx/2].
For left and right boundaries, we use group velocity to describe the direction of waves, the
transmitted waves on the right and reflected waves on the left must obey horizontal radiation
condition: energy flux is directed away from the topography. And the incoming waves that
enter the region on the left are specified in advance. The geometry of the problem together
with the boundary conditions are summarized in Figure 3.

Figure 3: Geometry of the problem and the boundary conditions.

We are interested in time-periodic solutions with given frequency such as the semi-
diurnal M2 tides. And in real ocean N/f ≈ 10 and ω/f ≈ 2 for M2 tides, hence we assume
f < ω < N and look for solutions of the form

ψ(x, z, t) = ReΨ(x, z)e−iωt (4)

where the complex-valued function Ψ(x, z) is to be solved. Then the system is

(N2 − ω2)∂xxΨ− (ω2 − f2)∂zzΨ = 0, Ψ(x,H) = Ψ(x, h(x)) = 0 (5)

This is one-dimension (1D) wave equation without time-like variable. But we can still solve
it by the method of characteristics.

The slope of the characteristics of all internal waves with the same value of frequency
ω is at some fixed angle with the vertical, which we rescale to 45o. In addition, we rescale
the ocean depth over the flat bottom to be π and write the non-dimensional variables with
a prime as

z =
H

π
z′, h =

H

π
h′, x =

1

µ

H

π
x′, µ =

√
ω2 − f2
N2 − w2

(6)
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After dropping the prime the non-dimensional equation for Ψ becomes,

Ψxx −Ψzz = 0, Ψ(x, π) = Ψ(x, h(x)) = 0. (7)

The bottom topography is called subcritical, critical or supercritical if the non-dimensional
topography slope satisfies |dh(x)/dx| < 1, |dh(x)/dx| = 1 or |dh(x)/dx| > 1.

2.2 Random topography

We consider the simplest case of random topography by choosing h(x) for our considered
region x ∈ [−Lx/2, Lx/2] a section of zero-mean stationary Gaussian process defined on the
real line by stationary covariance function C(x) such that

Eh(x) = 0 and Eh(y)h(x+ y) = C(x), (8)

where E is the probabilistic expectation. It is easy to generate a complex-valued stationary
scalar Gaussian random field H(x) with covariance function C(x) in Fourier space by

Ĥ(k) =

√
LxĈ(k)

2
(Ak + iBk) (9)

where Ak and Bk are independent Gaussian random variables with mean 0 and variance 1.
Then H = FT−1(Ĥ) is a complex Gaussian random field satisfying (Yaglom 1962)

EH(y)H(x+ y) = C(x). (10)

Real-valued field can be generated from complex-valued one by taking real or imaginary
part. From our definition, we know if H = h1+ih2 is a complex Gaussian random field with
covariance function C(x), then h1 and h2 are independent, real-valued Gaussian random
fields with covariance function C(x)/2 (Hida & Hitsuda 1993). This leads to a nice way of
obtaining samples of real-valued fields with covariance function C(x), since we only need
to generate complex-valued samples with covariance function 2C(x) and take their real or
imaginary parts.

In Fourier space, we can also compute the covariance function of h′(x) by

Eh(y)h(x+ y) = C(x) ⇐⇒ Eh′(y)h′(x+ y) = −C ′′(x). (11)

The covariance function C(x) we use for our numerical experiments and its corresponding
Fourier transform Ĉ(k) are

C(x) = σ2 exp

(
− x2

2α2

)
and Ĉ(k) =

√
2πσ2α exp

(
−k

2α2

2

)
(12)

hence we have
Eh2 = C(0) = σ2 and Eh

′2 = −C ′′(0) = σ2/α2 (13)
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3 Solving the wave equation

3.1 The method of characteristics and spectrum scheme

In order to solve the wave equation for Ψ,

Ψxx −Ψzz = 0, Ψ(x, π) = Ψ(x, h(x)) = 0, (14)

one approach is to follow Muller & Liu (2000a) that use the method of characteristics plus
a spectral scheme to satisfy the horizontal radiation condition for scattering waves. This
method will fail when characteristic paths converge onto some localized geometric structures
that are called wave attractors (see Section 4). Another attractive numerical scheme is
using a Green’s function approach in which we distribute suitable sources with certain
density γ(x) along the bottom topography (Echeverri et al 2010). Though the method of
characteristics has some limitations, we still choose it since it is easy to understand and
has a clear physical meaning. And we come out of situations that have wave attractors by
discarding such samples in our numerical experiment.

The characteristics of Equation (14) are lines with slope ±1, i.e. lines along which
x ± (π − z)are constants. Use the homogeneous boundary condition on the surface z = π,
the general solution is

Ψ(x, z) = f(x+ z − π)− f(x− z + π), (15)

and the solution is determined if we can solve for the complex-valued function f(x) for all
x ∈ R. It is helpful to think f(x) is defined at every point along the surface and the value
of Ψ(x, z) at any interior point can be easily found by tracing both characteristics back to
the ocean surface. The non-trial boundary condition Ψ = 0 at the bottom z = h(x) implies
that for all x ∈ R, f should satisfy

f(x+ h(x)− π) = f(x− h(x) + π). (16)

Physically, this means f(x) have the same value at any two points on the surface that can
be connected by the characteristics (Figure 4). And f(x) is a periodic function of period
2π in the far field where h(x) = 0.

Figure 4: P1, P2, P3 and P4 are connected by charscteristics so the function f have the
same value at these four surface points.
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According to the definition from Muller & Liu (2000a), T (ξ) is the surface distance
between two characteristics emanating from the same bottom point ξ. The function T (ξ)
is called T-period and reflects the shape of the bottom topography. For flat bottom, T is
2π. Consider two T-periods T+ and T− on each side of the topography in the far field. If
we trace a characteristic from one T-period, say T+, we will end up in either T+ or T− in
the far field. Hence we can construct a map between T+ and T− by tracing a number of
characteristics from each period. Since we allow our topography to have supercritical part,
T+ contains a part T

′
+ which is mapped to T− and the other part T

′′
+ that is mapped to

itself. The same happens to T−. Therefore T+ = T
′
+

⋃
T
′′
+, and T− = T

′
−
⋃
T
′′
− such that

T
′
+ is mapped onto T

′
−, T

′′
+ onto itself, T

′
− onto T

′
+ and T

′′
− onto itself. And we denote the

map from T+ byM and the map from T− byM−1. To be more explanatory, we depict the
situation in Figure 5.

Figure 5: This graph shows how we define T+, T−, T ′+ and T ′′+. Similar definition applies
to M−1 except that characteristics start from T−. Characteristic can be reflected back by
supercritical part of the bottom (compare with Figure 4). Bottom topography is 2e−x

2/2.

The top and bottom boundary conditions imply that

f(M(x)) = f(x) if x ∈ T+, f(M−1(x)) = f(x) if x ∈ T−. (17)

And to be more physical, we decompose the complete wave fields in the far field by

f(x) = f0(x) + f r(x), x ∈ T+, f(x) = f t(x), x ∈ T− (18)

where f0(x) for incoming waves, f r(x) for backward reflected waves and f t(x) for forward
transmitted waves. More specifically, with the periodic condition (17) we have

f0(x) + f r(x) =

{
f t(M(x)) x ∈ T ′+, M(x) ∈ T ′−
f0(M(x)) + f r(M(x)) x ∈ T ′′+, M(x) ∈ T ′′+

(19)

f t(x) =

{
f0(M−1(x)) + f r(M−1(x)) x ∈ T ′−, M−1(x) ∈ T ′+
f t(M−1(x)) x ∈ T ′′−, M−1(x) ∈ T ′′−.

(20)

As mentioned earlier, in the far field over zero bottom topography, f0, f r and f t are
periodic functions with period 2π. Hence we can expand them as Fourier series and because
of the radiation condition they have the form

f0(x) =

∞∑
k=1

a0ke
ikx, f r(x) =

∞∑
k=0

arke
−ikx, f t(x) =

∞∑
k=1

atke
ikx. (21)
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Without loss of generality, we can set at0 = 0, since the two constant terms ar0 and at0 enter
our problem in the form ar0 − at0. If we substitute the Fourier representation (21) into the
periodic condition and project onto the mth Fourier mode , we obtain a linear system

ar = Bat + Ta0 +Aar, (22)

at = Sa0 +Dar + Cat. (23)

where the coefficient matrices are given by

Bmk =
1

2π

∫
T
′
+

eikM(x)eimxdx m = 0, 1, 2, · · · k = 1, 2, 3, · · ·

Tmk =
1

2π

∫
T
′′
+

eikM(x)eimxdx m = 0, 1, 2, · · · k = 1, 2, 3, · · ·

Amk =
1

2π

∫
T
′′
+

e−ikM(x)eimxdx m = 0, 1, 2, · · · k = 1, 2, 3, · · ·

Smk =
1

2π

∫
T
′
−

eikM
−1(x)e−imxdx m = 1, 2, 3, · · · k = 1, 2, 3, · · ·

Dmk =
1

2π

∫
T
′
−

e−ikM
−1(x)e−imxdx m = 1, 2, 3, · · · k = 1, 2, 3, · · ·

Cmk =
1

2π

∫
T
′′
−

eikM
−1(x)e−imxdx m = 1, 2, 3, · · · k = 1, 2, 3, · · ·

We can solve this linear system by truncating at a certain number of modes, and find the
solution once the mapping functions M and M−1 are known.

3.2 Checkerboard map

In order to construct the mapping function M and M−1, we only need to know how to
decide the ’next’ point xk+1 if given a point xk on the surface. We can do this by tracing
characteristics. However, there are two characteristics start from every surface point. This
leads us to an ambiguous situation that we have two candidates for xk+1. Figure 6 illustrates
the double-valued situation for a chosen bottom topography h(x) = 2e−x

2/2. We need a
way to get rid of the double-valued mapping.

Manually we can distinguish these two candidates once we know the starting direction of
the characteristic we need to follow. On a computer, we adopt the checkerboard construction
by Balmforth et al. (1995) to track the direction of the characteristic. To be specific, we
focus our attention on the bottom region −L < x < L containing the random topography
(L > Lx/2). For right-going and left-going characteristics define the new mapping variable
as x′ = x+L and x′ = x−L, respectively. Therefore, the new mapping variable for reflection
points of right-going characteristics are positive while negative for left-going characteristics.
So we have a way that automatically keep track of the characteristics’ directions. Figure 7
shows the checkerboard map for Gaussian bump h(x) = 2e−x

2/2. Comparing with Figure 6,
we can see that by introducing the new shifted variable we get the desired 1 : 1 map.

We can see from Figure 7, the checkerboard map for topography with supercritical part
is discontinuous. The discontinuities come from critical points where the absolute value
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Figure 6: Double-valued map for bottom h(x) = 2e−x
2/2.

Figure 7: Checkerboard map for bottom h(x) = 2e−x
2/2.

of topography slope change from bigger than 1 to smaller than 1. Figure 8 shows how
discontinuities occur when characteristics hit critical points.

Figure 8: Three cases that can lead to discontinuities for critical points with positive deriva-
tives. Similar cases for critical points with negative derivatives.
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It is much more difficult to build the checkerboard map with supercritical topography.
Unlike the purely subcritical situation in which characteristic can only go forward and only
hits the bottom once between neighboring surface points, characteristic can be reflected
back by the supercritical part of the bottom topography and hits several bottom points
before it reaches the surface again. Hence we are in a rather complicated situation in
letting the computer know which characteristic to follow while also need to solve for the
intersections of characteristics and the bottom (this is the most time-consuming part in
numerical experiments). We need to switch to another characteristic at these intersection
points. Figure 9 shows all the eight cases that could happen when characteristics intersect
with the bottom and indicates the characteristic we should choose.

Figure 9: Eight Cases that could happen when characteristics intersect with the bottom.

Allowing the bottom topography to have supercritical part makes the problem more
complicated. Can we only consider subcritical case? Some models have been built to
describe the shape of the bottom topography. One of them is the analytic spectrum created
by Bell (1975). This is an estimate of the power spectrum based primarily on topographic
data from the abyssal hill region of the ocean basin in the eastern central North Pacific.
And the bottom topography is modeled as a random distribution of statistically independent
hills. The spectrum is defined such that the variance of the dimensional height h̃(x, y) is

Eh̃2 =
π

2

∫ kc

0

F0k

(k2 + k20)3/2
dk ≈ (125m)2 (24)

where F0 = 250m2 cycles km−1, k0 = 0.025 cycles km−1 and the effective cut-off wave
number kc = 2.5 cycle km−1. The variance of the slope is

E|∇h̃|2 ≈ (125m)2k0kc ≈ 0.22. (25)

This is the spectrum for 2D topography. In order to apply it to our 1D topography, we need
to assume the topography is isotropic, i.e. assuming each of the two parts of the derivative
|∇h̃|2 = h̃2x + h̃2y has the same expected value. Therefore, the 1D model topography has

E|h̃′ |2 ≈ (125m)2k0kc/2 ≈ 0.142. (26)
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The typical value of the slope of characteristics before non-dimensionalization is µ = 0.17.
So if we assume the bottom is modeled as a zero-mean stationary Gaussian process, the
supercritical part takes up about 22.5% of the ocean bottom, which implies that the super-
critical part shouldn’t be neglected.

Although there is evidence that the ocean topography is not strictly isotropic, measure-
ments of eastern central North Pacific may not be able to represent the whole sea topography
and more recent models are proposed by Goff & Jordan (1988) and Nikurashin & Ferrari
(2010), our consideration of supercritical part is still reasonable. As we mentioned earlier,
the supercritical part of the topography makes the checkerboard map discontinuous. The
discontinuities could probably lead to significant differences. And we will see in Section 4
that even when the topography contains only a small part of supercritical bottom, say about
5%, there can be wave attractors especially for long topography, which can never happen
for purely subcritical bottom.

4 Wave Attractors

In this section, we look at a special geometric structure of the characteristics. As the char-
acteristic can be reflected back by the supercritical part of the bottom, it is possible that the
characteristic forms some closed orbits, what is called wave attractors. One reason we want
to look at wave attractors is that if there are attractors, our method of tracing characteris-
tics to get the map M and M−1 will fail. Since our path following the characteristics will
probably converge onto the closed orbit and can never reach either T-period in this case.
We certainly can use other numerical methods such as the Green’s function to solve our
1D wave equation. But the wave attractors are still of great interest since their existence
can lead to significant different behavior of internal waves. Figure 10 (from Echeverri et al.
2011) describes such a situation. The horizontal axis is a parameter value that describes
the bottom topography and the vertical axis is the conversion rate that measures how much
energy in the barotropic tides is converted to the energy of internal waves. This is related
to our problem because this conversion of energy provides a way of realizing the incoming
waves. And we can see that the existence of attractors even leads to an ill-posed problem
because the numerical results do not converge when increasing the resolution.

4.1 Example of wave attractors

We can have different kinds of wave attractors. And we classify them by the number of
reflection points of the closed orbit on the surface. The simplest case is 1-point attractor as
shown in Figure 11. The bottom topography is given by h(x) = B

(
1− cos

(
2πx
A

))
, |X| 6 A

and 0 elsewhere. The parameter values are B = 1.15 and A = 1.6π. We can also consider
the stability of these closed orbits, i.e. whether the characteristic paths converge onto
them. Since our problem involves mapping from both directions and the characteristic path
is reversible, these closed orbits must be stable from one direction and unstable from the
other. For 1-point attractor, the stability can be easily determined by examine whether the
fixed point of the map Xk+1 = F (Xk) is stable or not. As shown in Figure 11, the stable
orbit for clockwise characteristic path is indicated by arrows, whereas the other is unstable.
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Figure 10: Conversion rates for h(x) = B
(
1− cos

(
2πx
A

))
, |X| 6 A and 0 elsewhere.

The parameter values are B = 1.15 and A = 1.6π. And three truncations are shown:
K = N = 1000, 2000 and 4000. This Figure is taken from P. Echeverri et al, 2011.

Because of the symmetry of the topography, there are two corresponding closed orbits for
counterclockwise characteristic path, and the stability of the two orbits is interchanged.

Figure 11: The bottom topography is given by h(x) = B
(
1− cos

(
2πx
A

))
, |X| 6 A and 0

elsewhere, where B = 1.15 and A = 1.6π. Stable orbit for clockwise characteristic path is
indicated by arrows. This Figure is taken from P. Echeverri et al, 2011.

We can also have 2-point wave attractor, actually this is the most common kind of
attractors we find in our numerical simulations (see Section 4.3). Figure 12 is a 2-point
wave attractor. Red dots on the surface indicate the location of reflection points of the
characteristic path while the black line is the corresponding closed orbit. The stability of
multi-point wave attractors is geometrically more complicated since we need to consider all
surface points. So we do not go into details here. We can have more than two reflection
points on the surface, Figure 13 is an example of 4-point wave attractor founded in our
numerical simulations.
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Figure 12: (a) A sample that has 2-point wave attractor in numerical simulations with pa-
rameter value σ = 0.25, α = 0.5 for zero-mean stationary Gaussian random field generated
by covariance function in Equation (12). S1 and S2 are two supercritical points, while other
points are subcritical. The whole plot of the random bottom topography is shown in (b).
The length of random bottom is 10π.

Figure 13: A sample that has 4-point wave attractor in numerical simulations with param-
eter value σ = 0.25, α = 0.5 for zero-mean stationary Gaussian random field generated by
covariance function in Equation (12). S1 and S2 are two supercritical points, while other
points are subcritical. The whole plot of the random bottom topography is shown in (b).
The length of random bottom is 10π.

4.2 Method to detect attractors

Finding 1-point wave attractor is just finding the fixed point for the checkerboard map.
To find the fixed point, we only need to check whether the checkerboard map and the
straight line xk = xk+1 have any intersection. In Figure 14, we find 4 intersections, and
they correspond to the two closed orbits (in Figure 11) in both directions.

To find 2-point attractor, a natural way is to apply the checkerboard map forward two
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Figure 14: Checkerboard map for topography h(x) = B
(
1− cos

(
2πx
A

))
, |X| 6 A, with

parameter value B = 1.15 and A = 1.6π. Two magnifications show the structure near the
two fixed points

times and then find the fixed points of the map Xk+2 = F (Xk). However, this method
has some shortcomings. Since it is impossible to build checkerboard map for every single
point on the surface, we actually build the checkerboard map by discretizing the bottom
and then tracing characteristics emanating from every discretized point until they reach the
surface. For arbitrary surface point we find its checkerboard map by linear interpolation
while keeping an eye on the discontinuities. This process unavoidably leads to some numer-
ical error. Since attractors are delicate structures that are sensitive to errors, this is not the
best idea. An alternative way is to find the intersection points of the checkerboard map with
the backward checkerboard map Xk−1 = G(Xk). This method is better because we do not
need to find the discontinuities of the map Xk+2 = F (Xk) and apply linear interpolation,
both time saving and with less numerical error. Backward checkerboard map can be easily
obtained by just reversing the order of the two coordinates. We use this method to find
2-point wave attractors in our numerical experiments and Figure 15 is the checkerboard
map for one particular sample.

Similar ways can be used to find wave attractors involving more reflection points on the
surface. Just as the situation for 2-point wave attractor, we don’t apply the checkerboard
map four times to find the fixed points of the map Xk+4 = F (Xk) due to potential numerical
errors. Instead, we apply the checkerboard map twice and seek the intersection points of
the map Xk+2 = F1(Xk) with Xk−2 = F2(Xk). Again, the map Xk−2 = F2(Xk) can be
easily found by interchanging the two coordinates of the map Xk+2 = F1(Xk). Figure 16
shows the checkerboard map for a sample that have 4-point wave attractor in our numerical
simulations.
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Figure 15: One sample that has 2-point wave attractor with parameter value σ = 0.25 and
α = 0.5 for zero-mean stationary Gaussian random field generated by covariance function
in Equation (12). The length of random topography is 10π. Magnifications are used to
show the structure near the intersection points.

Figure 16: One sample that has 4-point attractor with parameter value σ = 0.25 and
α = 0.5 for zero-mean stationary Gaussian random field generated by covariance function
in Equation (12). The length of random topography is 10π. Magnifications show the
structure near the intersection points.

4.3 Probability of having attractors

In order to get an idea of the probability of having wave attractors, we do several numerical
experiments. Here we only look at wave attractors that involving 1 ∼ 4 reflection points.
More complicated attractors are possible but because of the finite length of the random
topography we use (10π in our numerical simulations) and their more complicate structures,
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these attractors are of very low probability.
We choose the parameter σ = 0.06, 0.10, 0.13, 0.17, 0.21 and 0.25 while keeping σ/α =

1/2 fixed. For this fixed value we can easily estimate the probability of supercritical bottom.
Since we model the bottom topography as a section of zero mean stationary Gaussian
process, the absolute value of the slope of the bottom is bigger than 1 if and only if it is
larger than two standard deviations of the slope, which is σ/α by Equation (13). Therefore
about 4.55% of the bottom is supercritical. We plot the results in Figure 17(a), and the
probability is calculated for 1000 simulations.

Figure 17: (a) Probability of having attractors for parameter σ = 0.06, 0.10, 0.13, 0.17,
0.21 and 0.25 with fixed σ/α = 0.5 in 1000 simulations. (b) Probability of having 2-
point attractors for σ/α = 1/2 (1000 simulations) and σ/α = 5/7 (100 simulations). The
supercritical part is about 4.55% and 16.15% of the random topography, which is of length
10π.

From the graph, we can see there is no 1-point or 3-point attractor. Here is a simple
explanation for this. Let 4 = max |h(x)| the largest deviation of height, then the distance
from P1, P2 and B to the surface are given by HP1 = π + α4, HP2 = π + β4 and
HB = π + γ4 while α, β and γ are parameters that varying between −1 and 1. From
Figure 18, these three distances have a very nice relation,

HP1 +HP2 = HB.

By simple algebra, we have 34 > (γ − α− β)4 = π, which leads to

4 > π/3 or correspondingly σ > π/9 ≈ 0.35

since we model the topography by Gaussian process. Similar argument suggests we need
4 > π/5 or σ > π/15 ≈ 0.21 to have 3-point attractor. Hence for small-amplitude topog-
raphy we are interested in, there is no 1-point or 3-point attractor.

The probability of having 2-point attractors increases as the value of σ decreases. This
is because when we reduce the value of σ, the width of each bump also decreases. So we
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Figure 18: Showing the relation between HP1 , HP2 and HB. P1 and P2 are two supercritical
points, B is usually but not necessarily a point on the bottom while S is the surface reflection
point.

tend to have more intervals and therefore more supercritical intervals. By examining the
structure of 2-point attractor as in Figure 12(a), we can see that we need two supercritical
points S1 and S2 to form the closed orbit. And they must belong to different supercritical
intervals. The length of each supercritical interval may be an issue, but since what we need
is only supercritical points S1 and S2, we can assume the length do not have a significant
effect on the probability. So if we have more supercritical intervals we tend to have a higher
probability of finding 2-point attractors.

Similar arguments can also apply to 4-point attractor, because in order to form 4-
point attractor, we also need two supercritical points S1 and S2 in different supercritical
intervals. This implies the probability should increase when we reduce σ. However, from
Figure 18, the probability of 4-point attractors does not show the expected increase. Two
reason might account for this. One is the statistical error. From the graph, the existence
of 4-point attractors is a rare event, we only get roughly 2 or 3 4-point attractors in 1000
simulations. So the probability of 4-point attractors in these 1000 samples is not convincing.
We need more simulations to know how the probability changes with σ. Numerical errors
may also have an effect on the total number of 4-point attractors. Although we only apply
the checkerboard map twice, there is still some numerical error due to linear interpolation.
And attractors are delicate structures and sensitive to numerical errors.

By Figure 17(a), the probability of having 4-point attractors is much less than that
of 2-point attractors. Finite length of the topography is one reason, since if considered
small amplitude topography the distance between the two supercritical points S1 and S2
is roughly 2π for 2-point attractor and 4π for 4-point attractor. And also to form 4-point
attractor, we need 6 points in the right place while we only need 4 for 2-point attractor.

We fix σ/α = 5/7 which will increase the probability of supercritical part to about
16.15%, and only look at the probability of 2-point attractors for parameter value σ =
0.10, 0.13, 0.17, 0.21 and 0.25 within 100 simulations. According to our arguments that
more supercritical intervals leads to higher probability of having 2-point attractors, we
expect higher probability of 2-point attractors than the case for σ/α = 1/2, about 4.55%
supercritical part of the topography. This is confirmed in Figure 17(b). Also from the
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graph, the relation between the value of σ and the probability is roughly linear. But we do
not have an explanation for this so far.

5 Energy Decay

The problem we are aiming for in this project is the energy decay of internal waves caused
by scattering over rugged sea-floor topography, i.e. if given mode-one incoming waves, we
want to know how much energy is left in the first mode of the transmitted waves. Due
to the existence of wave attractors, we only study samples without attractors by throwing
away samples that contain attractors.

For random subcritical topography, there is clear evidence that the expected energy flux
has exponential decay (Bühler & Holmes-Cerfon 2011) and the decay rate is defined as

E1(n) = E|at1|2 = e−λ1n. (27)

where n is the number of bounces on the bottom. Though not being able to derive a rigorous
formula for the decay rate λ1, they suggest an expression for λ1 of the form

λ1 =
+∞∑
k=1

kĈ(k), (28)

where Ĉ(k) is the Fourier transform of the covariance function C(x). And a simpler form
is valid for uncorrelated (|C(x)| � C(0) for x > 2π) topography

λ1 = Γ0

√
E|h|2E|h′|2 = Γ0σ

2/α, (29)

with Γ0 = 2.5 for Gaussian covariance function.
Our guess is that we still have exponential decay of energy flux for topography with

supercritical part. To test our guess, we fix
√
E|h|2E|h′|2 = σ2/α since for small α, the

correlation length, which is proportional to α, is small so our topography remains roughly
uncorrelated. And we use n = Lx/2π as our variable, where Lx is the length of the random
bottom topography. The parameter value we use is summarized in Table 1 and the results
is given in Figure 19. The logarithmic plot clearly indicates decay of expect energy flux.
(a) gives a better result than (b) mainly because the parameter α is smaller, which mean
smaller correlation length and better approximation of formula (29).

σ2/α σ α supercritical part

1/22 0.10 0.22 2.79%
1/22 0.09 0.1782 4.77%

5/48 0.25 0.60 1.64%
5/48 0.20 0.384 5.49%
5/48 0.17 0.27744 10.27%

Table 1: The parameter value we use for numerical simulations.
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Figure 19: σ2/α = 1/22 and 5/48, respectively. σ = 0.10, 0.09, 0.25, 0.20 and 0.17. The
expectation at each point is taken to be the average over N = 50 topography samples
without attractors.

We can use least square method to linearly fit (Figure 20) our data points, for
√
E|h|2E|h′|2 =

σ2/α = 1/22 and 5/48, we get λ1 ≈ 0.132 and 0.275, respectively. And we can compare
the decay rate we get from numerical simulations with theoretical prediction given by for-
mula (29). The results are collected in Table 2.

Figure 20: Linearly fit the data points by least square method.

6 Conclusion and discussions

In this project, we find a way to build checkerboard map for arbitrary smooth topography.
After being able to obtain the checkerboard map we look at a spacial geometric structure–
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σ2/α λ1 λ∗1 = Γ0σ
2/α (λ1 − λ∗1)/λ1 × 100%

1/22 0.132 5/44 13.9%
5/48 0.275 25/96 5.30%

Table 2: λ1 is the decay rate we get from numerical simulations. λ∗1 is the predicted decay
rate taken from formula (29). The last column is the relative error.

wave attractor. We find some factors that can influence the probability of having attractors
and give qualitatively explanation of them. But rigorous explanation is still missing. The
geometric structure of the closed orbits, especially those involving more than one surface
reflection points is complicated. So coming up with exact formula for the probability of
multi-point attractor is difficult when the topography is generated randomly.

Also our method of finding attractors relies heavily on the checkerboard map. As men-
tioned in Section 3.2, obtaining the checkerboard map for supercritical topography is not
easy and time consuming, so we are limited to rather short topography length (10π in our
numerical simulations). Can we find a way to detect wave attractor without using the
checkerboard map? After all, the topography is totally determined by its Fourier coeffi-
cients ĥ(k). So ĥ(k) should have some special properties to put several points in the exactly
right place to form closed orbit.

We also look at decay of energy flux by using the simplest formula (29) because we
can clearly see how our parameter σ and α relate to the decay rate λ1. Also due to the
difficulties in building checkerboard map, we only look at rather short topography length,
say Lx < 9 ·2π. Numerical error is still an issue, since for finding the mapsM andM−1, we
need to interpolate the checkerboard map several times. The existence of wave attractors
forces us to discard samples that have attractors, since our current method can not deal
with cases that have attractors. We need other numerical schemes, such as the Green’s
function to include sample with attractors. And we also need to add a little viscosity to
put forward a well-posed problem. Another reason that we do not consider sample with
attractors is that the existence of attractors might lead to significant different energy decay
mechanism, just like what happens in Figure 10. And we can’t explain the exponential
decay rigorously.
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