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1 Introduction

Let us consider the Swift-Hohenberg equation in one spatial dimension:

ut = r u− (q2c + ∂2x)2 u+ f(u). (1)

Here f(u) represents the nonlinear terms in u and r is the bifurcation parameter. The pa-
rameter qc represents a characteristic wavenumber, i.e., it selects a characteristic lengthscale
given by 2π/qc. In unbounded domains the wavenumber qc can be set equal to qc = 1 but
this is not the case on finite domains.

Despite its simplicity, Eq. (1) has very remarkable properties and we shall use it here as
a “normal form” for systems exhibiting spatially localized structures on the real line. The
equation is of fourth order in x and reversible in space, i.e., it is equivariant under x→ −x,
u → u. Motivated by the experiments summarized in the previous lecture we select a
bistable nonlinearity of the form f(u) = b2u

2 − u3 (hereafter SH23) and f(u) = b3u
3 − u5

(hereafter SH35), with b2 > 0 (resp., b3 > 0); the latter nonlinearity leads to an additional
symmetry, x → x, u → −u, that plays an important role in the properties of the solutions
and is analogous to the so-called Boussinesq symmetry of Rayleigh-Bénard convection with
identical boundary conditions at the top and bottom.

Equation (1) has variational structure, i.e., it possesses a Lyapunov functional F [u(x, t)],
such that

ut = −δF
δu
, (2)

where F is given by

F =

∫ ∞
−∞

dx

[
−1

2
r u2 +

1

2

[
(q2c + ∂2x)u

]2 − ∫ u

0
f(v) dv

]
. (3)

It follows that
dF

dt
= −

(
∂u

∂t

)2

≤ 0, (4)

and hence that dF/dt < 0 provided ∂u/∂t 6= 0 somewhere in the domain. Thus on a finite
domain with null boundary conditions all solutions evolve towards stationary states; on an
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unbounded or periodic domain solutions in the form of moving fronts are possible. In the
following we will think of the functional F [u] as the (free) energy of the system. Stable
(unstable) solutions correspond to local minima (maxima) of this energy. We shall see that
in appropriate parameter regimes the energy landscape described by the free energy (3) can
be exceedingly complex.

2 Linear stability of the uniform state

2.1 The temporal view

The usual way to examine the stability of the state u = 0 is to linearize Eq. (1) about this
state and look for solutions of the form u ∝ exp(σkt+ ikx), where σk is the growth rate of
a perturbation with wavenumber k. The growth rate σk is given by the dispersion relation

σk = r − (q2c − k2)2. (5)

The marginal stability curve is determined by setting σk = 0 and then minimizing the
marginal value r = rk with respect to the wavenumber k. This calculation leads to the
prediction r = 0 for the onset of instability, and of the associated wavenumber, k = qc.

Observe that if one takes r < 0 then the condition for marginal stability, r = (q2c − k2)2,
has no solution for real k but it does have a solution with k complex. In contrast, if r > 0
there is a pair of real solutions, k = k±, with k− < qc < k+. As r decreases to zero from
above the wavenumbers k± approach k = qc from opposite directions and at r = 0 they
collide at k = qc. Thus the minimum of the marginal stability curve is in fact associated
with the collision of two roots of the marginal dispersion relation.

2.2 The spatial view

We can appreciate what is happening if we focus on steady states from the outset. These
satisfy the ordinary differential equation (ODE)

r u−
(
q2c +

d2

dx2

)2

u+ f(u) = 0. (6)

As explained at the end of the preceding lecture we can also study the stability of the trivial
flat state u = 0 in space by linearizing (6) around the u = 0 state and looking for solutions
of the form u ∝ exp(λx). We obtain

(q2c + λ2)2 − r = 0. (7)

For r < 0 the spatial eigenvalues of u = 0 form a complex quartet (see Fig. 1a). At r = 0
these eigenvalues collide pairwise on the imaginary axis (see Fig. 1b) and for r > 0 they split
but remain on the imaginary axis (see Fig. 1c) [3]. It should be evident that the temporal
and spatial points of view are closely related; in particular, the onset of instability in the
temporal point of view is equivalent to the presence of a pair of purely imaginary spatial
eigenvalues of double multiplicity.
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Figure 1: The behavior of the spatial eigenvalues λ of u = 0. (a) r < 0, (b) r = 0, (c) r > 0.

It is useful to look at the transition at r = 0 in a little more detail. We write r = ε2µ,
where µ = O(1) and ε � 1. We then find that for µ < 0 the spatial eigenvalues are
λ = ±ε(2qc)−1

√
−µ± i(qc +O(ε2)) while for µ > 0 the eigenvalues are λ = ±iε(2qc)−1

√
µ±

i(qc + O(ε2)). These considerations suggest that when r < 0 the solutions near u = 0 will
be growing or decaying as u ∼ exp(±ε

√
−µx/2qc), i.e., that the amplitude of such solutions

will vary on a long scale X ≡ εx while their wavenumber will remain close to qc. We will
take advantage of this insight in the next section.

3 Weakly nonlinear analysis

We now consider the steady states of SH35 with f(u) = b3 u
3− b5 u5 (SH35); the coefficient

b5 can be scaled to unity but is retained here to emphasize the contribution of the fifth
order term. The steady states satisfy the ODE

r u−
(
q2c +

d2

dx2

)2

u+ b3 u
3 − b5 u5 = 0. (8)

Because of the symmetry x→ x, u→ −u the weakly nonlinear theory for this case is simpler
than for SH23. Indeed, we can establish the presence of homoclinic orbits near r = 0 by
setting r ≡ ε2 µ < 0 with µ = O(1). As suggested by the linear theory in the preceding
section we use a multiple scale expansion with spatial scales x and X ≡ ε x, and introduce
the Ansatz:

u`(x) = ε u1(x,X) + ε2 u2(x,X) + ..., (9)

where
u1(x,X) = Z(X; ε) eiqc x + c.c. (10)

The following calculation determines Z(X; ε). For reasons that will become apparent the
calculation needs to be done to fifth order in the small parameter ε. For this reason it is
simplest to perform the calculation at r = 0 and then figure out what additional terms
involving µ have to be added. We begin by writing

d

dx
=

∂

∂x
+ ε

∂

∂X
. (11)
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Matching terms order by order in ε gives:

O(ε) : (∂2x + q2c )
2 u1 = 0 (12)

O(ε2) : (∂2x + q2c )
2 u2 = −4∂xX (∂2x + q2c )u1 (13)

O(ε3) : (∂2x + q2c )
2 u3 = −4∂xX (∂2x + q2c )u2 − 4 ∂xxXXu1 − 2∂XX(∂2x + q2c )u1 + b3 u

3
1

(14)

O(ε4) : (∂2x + q2c )
2 u4 = −4∂xX (∂2x + q2c )u3 − 4 ∂xxXXu2 − 2∂XX(∂2x + q2c )u2

−4 ∂xXXXu1 + 3 b3 u
2
1 u2 (15)

O(ε5) : (∂2x + q2c )
2 u5 = −4∂xX (∂2x + q2c )u4 − 4 ∂xxXXu3 − 2∂XX(∂2x + q2c )u3

−4 ∂xXXXu2 − ∂4X u1 + 3 b3 (u1 u
2
2 + u21 u3)− b5 u51. (16)

We solve these equations order by order. The O(ε, ε2) equations are solved by

u1(x,X) = A1(X)ei qc x + c.c., u2(x,X) = A2(X)ei qc x + c.c., (17)

where A1,2(X) are as yet undetermined and c.c. denotes a complex conjugate. The Ansatz

u3(x,X) = A3(X)ei qc x + C3(X)e3 i qc x + c.c. (18)

in the O(ε3) equation leads to the two results

4 q2c A
′′
1 = −3 b3A1 |A1|2, C3 =

b3
64 q4c

A3
1, (19)

with A3 arbitrary. The Ansatz

u4(x,X) = A4(X)ei qc x + C4(X)e3 i qc x + c.c. (20)

in the O(ε4) equation likewise leads to

4 q2c A
′′
2 = 4 iqcA

′′′
1 − 3 b3 (2 |A1|2A2 +A2

1 Ā2); (21)

the expression for C4 in terms of A1,2 is not needed in what follows. Finally, the O(ε5)
equation with the Ansatz

u5(x,X) = A5(X)ei qc x + C5(X)e3 i qc x + E5(X)e5 i qc x + c.c. (22)

yields

4 q2c A
′′
3 = 4 i qcA

′′′
2 +A′′′′1 − 3 b3 (2A1 |A2|2 + Ā1A

2
2 + 2 |A1|2A3 +A2

1 Ā3)

+

(
− 3 b23

64 q4c
+ 10 b5

)
A1 |A1|4 (23)

after elimination of C3. Equations (19), (21) and (23) can now be assembled into a single
equation for Z(X, ε) ≡ A1(X) + εA2(X) + ε2A3(X) + ...,

4 q2c Z
′′ = −3 b3Z |Z|2 + 4 i qc ε Z

′′′ + ε2
[
Z ′′′′ +

(
− 3 b23

64 q2c
+ 10 b5

)
Z |Z|4

]
+O(ε3). (24)
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The higher derivatives can be eliminated iteratively, resulting in the amplitude equation

4 q2c Z
′′ = −3 b3Z |Z|2 −

3 i ε b3
qc

(
2Z ′|Z|2 + Z2 Z̄ ′

)
+ ε2

[
9 b3
2 q2c

(
2Z |Z ′|2 + (Z ′)2 Z̄

)
+

(
−327 b23

64 q4c
+ 10 b5

)
Z |Z|4

]
+O(ε3). (25)

Equation (25) represents the Ginzburg-Landau approximation to the Swift-Hohenberg equa-
tion (8) at r = 0 [5].

4 Normal form theory

The linear problem at r = 0 is degenerate because the purely imaginary eigenvalues λ = ±iqc
have double multiplicity. The presence of this degeneracy is a consequence of the spatial
reversibility of the equation and this fact allows us to make use of normal form theory
developed for a Hopf bifurcation in systems that are reversible in time. For this reason
the bifurcation at r = 0 is often referred to as the reversible Hopf bifurcation with 1 : 1
resonance or sometimes as the Hamiltonian-Hopf bifurcation.1 The normal form for this
bifurcation is derived and analyzed in [9], and is given by

Ȧ = i qcA+B + i AP (µ; y, w), (26)

Ḃ = i qcB + i B P (µ; y, w) +AQ(µ; y, w), (27)

where y ≡ |A|2, w ≡ i
2(AB̄ − ĀB). Here µ is the bifurcation parameter and P and Q are

(infinite) polynomials with real coefficients:

P (µ; y, w) = p1 µ+ p2 y + p3w + p4 y
2 + p5w y + p6w

2 + ..., (28)

Q(µ; y, w) = −q1 µ+ q2 y + q3w + q4 y
2 + q5w y + q6w

2 + ... (29)

Although these equations look quite different from the equation obtained through multiple
scale analysis the two calculations are in fact one and the same. To see this we set µ = 0
and write (A,B) = (ε Ã(X), ε2 B̃(X))ei qc x, obtaining

ε2A′ = ε2B + iεA

[
ε2p2 |A|2 + ε3p3

i

2
(AB̄ − ĀB)

]
+O(ε5), (30)

ε3B′ = i ε2B

[
ε2 p2 |A|2 + ε3 p3

i

2
(AB̄ − ĀB)

]
+εA

[
ε2 q2 |A|2 + ε3 q3

i

2
(AB̄ − ĀB) + ε4q4|A|4

]
+O(ε6). (31)

Equation (30) now yields a power series expansion for B in terms of A,

B = A′ − i ε p2A |A|2 + ε2
p3
2
A (AĀ′ − ĀA′) +O(ε3), (32)

1Hamiltonian systems are reversible in time; eq. (8) is in fact a Hamiltonian system in space [11]
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and this equation can be used to eliminate B from Eq. (31):

A′′ = q2A |A|2 + i ε

[(
3 p2 −

1

2
q3

)
A′|A|2 +

(
p2 +

1

2
q3

)
A2 Ā′

]
+ε2

[
p3 ((A′)2 Ā−AA′ Ā′) + (q4 − q3 p2 + p22)A |A|4

]
+O(ε3). (33)

Finally, writing Z = A+ ε2 ρA |A|2 +O(ε4) allows one to compare the result with Eq. (25)
and thereby deduce the normal coefficients:

ρ =
9 b3
16 q4c

, p2 = − 9 b3
16 q3c

, q2 = −3 b3
4 q2c

, p3 = 0, q3 = −3 b3
8 q3c

, q4 = −177 b23
128 q6c

+
5 b5
2 q2c

.(34)

The remaining coefficients p1 and q1 are determined as part of the unfolding. This term
is used to refer to the reintroduction of the bifurcation parameter into the description. As
indicated earlier, we write r = ε2 µ < 0, where µ = O(1), and compute the resulting linear
terms. The unfolded version of (33) through O(ε) is

A′′ = −q1 µA+ q2A |A|2 + i ε

[
2 p1 µA

′ +

(
3 p2 −

1

2
q3

)
A′ |A|2

+

(
p2 +

1

2
q3

)
A2 Ā′

]
+O(ε2) (35)

and since Z = A+O(|A|2A) this equation corresponds to the amplitude equation [5]

4 q2c Z
′′ = −µZ − 3 b3 Z |Z|2 +

i ε

qc

[
−µZ ′ − 3 b3 (2Z ′ |Z|2 + Z2Z̄ ′)

]
+O(ε2). (36)

Matching terms through linear order gives

p1 = − 1

8 q3c
, q1 =

1

4 q2c
. (37)

5 Homoclinics and heteroclinics

The normal form (26)–(27) is completely integrable [9], with integrals

K ≡ 1

2
(AB̄ − ĀB), H ≡ |B|2 −

∫ |A|2
0

Q(µ, s,K) ds. (38)

Note that orbits homoclinic to (0, 0) lie in the surface H = K = 0. In this case the equation
for a ≡ |A|2 > 0 takes the particle-in-potential form

1

2

(
da

dX

)2

+ V (a) = 0, (39)

where

V (a) ≡ 2 q1 µa
2 − q2 a3 −

2

3
q4 a

4. (40)
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The shape of the (truncated) potential V (a) depends on the coefficients q1, q2 and q4
determined in the previous section. The essential role played by the coefficient q4 is now
evident.

The behavior of solutions of (39)–(40) when q4 < 0 is shown in Fig. 2. The insets
show the effective potential V (a) associated with each region in the (µ, q2) parameter plane.
Shading indicates the existence of homoclinic orbits to a = 0; elsewhere, a = 0 is a local
minimum of the potential and no homoclinic orbits are possible. We see that homoclinic
orbits exist in the whole half-space µ < 0, i.e., in the subcritical region. The transition from
region (d) to region (c) involves a local bifurcation at µ = 0 which creates a small amplitude
homoclinic orbit. The transition from region (a) to region (b) involves a global bifurcation
at µ = 0 which creates a large amplitude homoclinic orbit at µ = 0; the turning point of
the orbit occurs at a0 = −3 q2/(2 q4) > 0.

Figure 2: Summary of the behavior of Eqs. (26)–(27) when q4 < 0. Shading indicates the
existence of homoclinic orbits to the fixed point at the origin. Insets show V (a) characteristic
of the four regions (a)–(d). At µ = 0, there is a local (global) bifurcation in q2 < 0 (q2 > 0).
From [9].

The behavior of solutions of Eqs. (39)–(40) when q4 > 0 is summarized in Fig. 3. In
this case, homoclinic orbits to a = 0 only occur in region (d). In regions (a) and (e), a local
minimum of the potential is located at a = 0 so a particle that starts at this point remains
at rest. In regions (b) and (c), the trajectory of a particle that starts at a = 0 is unbounded.
The boundary between regions (c) and (d), marked in the figure with a dot-dashed line, is
given by

µ∗ = − 3 q22
16 q1 q4

(41)

and corresponds to the presence of a heteroclinic cycle between the origin and the point
a = −3q2/q4 > 0 corresponding to a periodic solution Z(X).

Note that the leading order amplitude equation

4 q2c Z
′′ = −µZ + 4 q2c q2 Z |Z|2 +O(ε) (42)
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Figure 3: Summary of the behavior of Eqs. (26)–(27) when q4 > 0. Shading indicates the
existence of homoclinic orbits to the fixed point at the origin. Insets show V (a) characteristic
of the five regions (a)-(e). A heteroclinic cycle is present along the dot-dashed line µ = µ∗.
From [9].

has two types of solutions when q2 < 0, µ < 0. One is constant:

Z(X) =

(
µ

4 q2c q2

)1/2

ei φ +O(ε) (43)

and corresponds to

u(x) =

(
r

4 q2c q2

)1/2

cos(qc x+ φ) +O(r), (44)

while the other is spatially localized:

Z(X) =

(
µ

2 q2c q2

)1/2

sech

(
X
√
−µ

2 qc

)
ei φ +O(ε) (45)

and corresponds to

u(x) = 2

(
r

2 q2c q2

)1/2

sech

(
x
√
−r

2 qc

)
cos(qc x+ φ) +O(r). (46)

For the periodic states the spatial phase φ is arbitrary; this is not so for the localized states
for which the spatial phase φ is locked to 0, π/2, π, 3π/2 when terms beyond all orders are
kept. Thus in SH35 four branches of localized states bifurcate from u = 0 at r = 0. Of
these the branches with φ = 0, π correspond to solutions that are reflection-symmetric while
those with φ = π/2, 3π/2 are odd under reflection. The φ = 0, π states are related to one
another by the symmetry u → −u as are the φ = π/2, 3π/2 states. Thus in a bifurcation
diagram that represents the solution amplitude as a function of r one finds two branches,
one of even states and the other of odd states. The above calculation shows, in addition,
that such localized states are only present when the periodic state bifurcates subcritically
and hence are present in the region of coexistence between the periodic state and the trivial
state u = 0, cf. lecture 6. Analogous results, not discussed here, show that in the case of
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SH23 two branches of localized states bifurcate from u = 0 at r = 0. Both correspond to
even states and are characterized by φ = 0, π. In this case the φ = 0, π states are no longer
related by symmetry and the bifurcation diagram therefore also consists of two distinct
branches.

The selection of the spatial phase φ is a highly subtle point [7, 8, 10]; however, one can
get a good appreciation of the issues involved by substituting the approximate solution (46)
into Eq. (1). Note in particular that states of the form (46) have no particular symmetry
unless φ takes one of the special values just mentioned. Such asymmetric states are in
fact present but are only created in secondary bifurcations from the primary branches of
localized states that bifurcate from u = 0. Figure 4 shows schematically the number and
connectivity of the resulting localized states in the SH23 and SH35 cases: in the SH35 case
four asymmetric branches are created at finite amplitude and connect each of the two even
branches with each of the two odd branches (see Sect. 7 below).

Figure 4: Schematic diagram showing the number and connectivity of the branches of
localized states for (a) SH23 and (b) SH35. In (a) each rung consists of two distinct branches
connecting the two constant phase branches; in (b) each rung consists of four distinct
branches connecting each constant phase branch with its two neighbors. From [3].

6 Example: Natural doubly diffusive convection

Natural convection is a term given to convection driven by horizontal temperature convec-
tion. When the fluid is a mixture of two components (eg., water and salt) and the gradients
of both temperature and (salt) concentration are horizontal we speak of natural doubly
diffusive convection.

Motivated by the results in Sect 2.5.1 of lecture 6, we examine an infinite vertical slot
filled with such a mixture. We adopt no-slip boundary conditions on the vertical plates and
suppose that these are maintained at fixed but different temperatures and concentrations.
These can be arranged such that the buoyancy force due to the temperature field is ex-
actly balanced by the buoyancy force arising from the concentration field. In this case the
system possesses a conduction state characterized by linear variation of temperature and
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concentration across the system and no flow. This state will be stable for small tempera-
ture differences but is expected to lose stability as this temperature difference, traditionally
measured by the dimensionless Grashof number Gr ≡ gα∆T`3/ν2, increases. Here α is the
coefficient of thermal expansion, ∆T is the imposed temperature difference, and ` is the
separation between the two plates, assumed to be placed at x = 0, `.

Linear analysis about the conduction state with respect to two-dimensional spatially
growing perturbations looks for solutions of the time-independent linearized equations of
the form (ũ, w̃, T̃ , C̃)(x) exp(λ z), where λ ≡ qr + i qi is the spatial growth rate. This
formulation leads to the dimensionless equations [2]:

λ ũ = −∂xp̃+∇2ũ (47)

λ w̃ = −∂z p̃+∇2w̃ +Gr (T̃ − C̃) (48)

0 = ∂xũ+ ∂zw̃ (49)

λ T̃ = ũ+
1

Pr
∇2T̃ (50)

λ C̃ = ũ+
1

Sc
∇2C̃ (51)

with the boundary conditions ũ = w̃ = T̃ = C̃ = 0 at x = 0, 1. Here Pr ≡ ν/κ is the
Prandtl number and Sc ≡ ν/D is the Schmidt number. In contrast to the Swift-Hohenberg
equation, this problem is an eigenvalue problem for λ that has to be solved for each value of
Gr and fixed values of the remaining parameters. Such a problem has in general an infinite
number of eigenvalues, but we are interested here only in the leading eigenvalues, i.e., the
eigenvalues whose real parts are closest to zero.

Figure 5: The spatial growth rate qr as a function of the distance from the critical Grashof
number Grc in the subcritical regime Gr < Grc. From [2].

Solution of this problem indicates that the four leading eigenvalues form a pair of purely
imaginary eigenvalues qr = 0, qi ≡ qc = ±2.5318 of double multiplicity when Grc =
650.9034. Thus at this value of Gr the solution takes the form of a spatially periodic
wavetrain. Moreover, one also finds that (Fig. 5)
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• Gr < Grc: λ = ±i qc ±O(
√
Grc −Gr)

• Gr > Grc: λ = ±i qc ± i O(
√
Gr −Grc),

implying that the leading spatial eigenvalues behave exactly as in the Swift-Hohenberg
equation. This is a consequence of the reversibility of the equations with respect to the
symmetry ∆: (x, z) → (1 − x,−z), (ũ, w̃, T̃ , C̃) → −(ũ, w̃, T̃ , C̃) which plays exactly the
same role as the symmetry x → −x, u → u in SH23. Thus in this case we expect two
branches of localized states of even parity (with respect to ∆), corresponding to φ = 0, π.
Theory predicts that these branches will only be present if the coefficient q2 in the normal
form (26)–(29) is negative. This will be so if the branch of periodic states with wavenumber
qc bifurcates subcritically. The theory also predicts that if this is the case the branches of
localized states also bifurcate subcritically. Thus the prediction of localized states in the
present system reduces to the computation of the direction of branching of periodic states.
This is a standard calculation that can be done in a periodic domain of period 2π/qc, i.e.,
in a small domain, although it may have to be done numerically. For Pr = 1, Sc = 11 this
bifurcation is indeed subcritical [2]; moreover, two branches of even parity localized states
are present and these also bifurcate subcritically, exactly as predicted by SH23 [4].

Figure 6: (a) Bifurcation diagram showing the snakes-and-ladders structure of localized
states. Away from the origin the snaking branches L0 and Lπ are contained within a snaking
region (shaded) between E− and E+, where r(E−) ≈ −0.3390 and r(E+) ≈ −0.2593. Solid
(dotted) lines indicate stable (unstable) states. (b) Sample localized profiles u(x): (i)–(iv) lie
on L0, near onset and at the 1st, 3rd, and 5th saddle-nodes from the bottom, respectively;
(v)–(viii) lie on Lπ, near onset and at the 1st, 3rd, and 5th saddle-nodes, respectively.
Parameters: b2 = 1.8. From [4].
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7 Snakes-and-ladders structure of the pinning region: SH23

In this section we describe what happens when the small amplitude results are extended
into the fully nonlinear regime using numerical continuation. We describe the results for
SH23,

ut = r u− (q2c + ∂2x)2 u+ b2 u
2 − u3. (52)

Figure 6 shows the L2 norm, ||u|| ≡
∫∞
−∞ u

2(x) dx, of the localized states L0,π as a function
of the bifurcation parameter r. The L2 norm (per unit length) of the periodic state, labeled
P , is shown for comparison. The figure shows that the two branches of even parity localized
states that bifurcate subcritically from u = 0 at r = 0 enter a shaded region, hereafter
the snaking or pinning region, in which they undergo repeated saddle-node bifurcations as
they snake across the region. These saddle-nodes converge exponentially rapidly to a pair
of r-values, hereafter r(E−) and r(E+), representing the boundaries of the shaded region.
The convergence is monotonic and from the right in both cases. The lower panels show a
series of profiles of u(x) at successive saddle-nodes and reveal that the states labeled L0 are
characterized by a peak in the center while those labeled Lπ have a dip in the center. The
panels show that each localized state nucleates a pair of peaks or cells, one on either side,
in the vicinity of r = r(E−). As one proceeds up the branch to the next fold on the right,
at r = r(E+), the peaks or cells grow to the height of the coexisting periodic state P and
the branch turns around to repeat the process. Thus as one proceeds up the intertwined
L0,π branches the localized states repeatedly add cells on either side while preserving their
parity, each back-and-forth oscillation increasing the width of the state by two wavelengths
2π/qc. On the real line this process continues indefinitely as both branches approach the
periodic state P .

Figure 7(a) is a close-up view of Fig. 6, focusing on the rung states which connect the
L0,π snaking branches. These states are asymmetric with respect to the reflection x→ −x
(Fig. 7(b)). In generic translation-invariant systems such states would drift. This is not
so here because of the gradient structure of Eq. (52) and the rung states correspond to
stationary states. The rungs are created in pitchfork bifurcations which break the u(x) →
u(−x) symmetry of the L0,π states. Consequently each rung in the figure corresponds to
two states related by reflection symmetry and hence of identical L2 norm.

The location of these pitchfork bifurcations is determined by linearizing Eq. (52) about
a localized solution u = u0(x) and solving the eigenvalue problem

L[u0(x)] Ũ ≡ {r − (q2c + d2x)2 + 2b2 u0 − 3u20}Ũ = σŨ (53)

for the eigenvalues σ and for the corresponding eigenfunctions Ũ . This problem has to
be solved numerically; if the domain used is much larger than the length of the localized
structure the resulting eigenvalues will be independent of the boundary conditions imposed
at the boundary. The eigenvalues comprise the spectrum of the linear operator L[u0(x)] and
this spectrum consists of two components depending on the symmetry of the eigenfunctions.
Even eigenfunctions share the symmetry of u0(x) and correspond to amplitude modes. These
modes are neutrally stable (σ = 0) at saddle-node bifurcations. Odd eigenfunctions will be
called phase modes. There is always one neutrally stable phase mode, the Goldstone mode.
To see this we consider two stationary solutions of Eq. (52), u0(x+d) and u0(x), i.e., a pair
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Figure 7: (a) Close-up view of Fig. 6(a) showing two rungs connecting the snaking branches
L0 and Lπ. Solid (dotted) lines indicate stable (unstable) states. (b) The profiles (i) and
(viii) lie on L0 while (iv) and (v) lie on Lπ. The remaining profiles are asymmetric and lie
on the rungs. From [4].

of solutions related by translation. We subtract the equations satisfied by these solutions,
divide by d and take the limit d→ 0. The result is

L[u0(x)]u′0 = 0, (54)

implying that u′0 is a neutrally stable eigenfunction of L[u0(x)] for all parameter values.
Evidently the presence of this mode is a consequence of the translation invariance of the
system. In addition, there is a discrete set of neutrally stable phase modes associated with
symmetry-breaking bifurcations of u0(x), i.e., the creation of the rung states. Figure 8(b)
shows each of these eigenfunctions, computed as described above, for a relatively long local-
ized state high up the snakes-and-ladders structure. We make two important observations:
the amplitude and phase modes are localized in the vicinity of the fronts bounding u0(x); by
adding and subtracting these modes we construct eigenfunctions localized at one or other
front. This observation implies that both the saddle-nodes and the pitchfork bifurcations
are associated with instabilities of individual fronts. This picture becomes better and better
as the length of u0(x) becomes longer, i.e., for long localized structures the fronts at either
end can be treated independently, and in this regime the localized structure u0(x) can be
considered to be a bound state of a pair of fronts.

Figure 9 shows the eigenvalues σ along the L0,π snaking branches starting from the
primary bifurcation at r = 0 and moving upward along each branch. The phase and
amplitude modes are labeled. We see that close to r = 0 both states are amplitude-
unstable, as expected of a subcritical bifurcation. In contrast, the phase eigenvalues are
almost zero, with L0 phase-stable and Lπ phase-unstable. Each zero of the amplitude
eigenvalue generates a saddle-node bifurcation and since σ oscillates about zero each solution
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Figure 8: (a) A localized state u0(x) at E− high up the L0 snaking branch. (b) From
top to bottom, the corresponding amplitude, phase, and translational modes. Parameters:
b2 = 1.8, r = −0.3390. From [4].

gains and loses amplitude stability at successive saddle-nodes. The phase eigenvalue also
oscillates about zero and tracks ever more closely the amplitude eigenvalue. Thus as one
proceeds up the snaking structure the bifurcations to the rung states approach ever closer
to the saddle-nodes (in fact exponentially rapidly), although they always remain on the
unstable part of the branch. Thus near a saddle-node of a long localized structures one
finds three near-marginal modes, the amplitude and phase modes, as well as the Goldstone
mode. This fact will be useful in interpreting the dynamical behavior one finds just outside
of the snaking region as discussed in lecture 8.

The above results account for the stability changes indicated in Figs. 6 and 7; no other
eigenvalues are ever involved. A similar calculation shows that the asymmetric rung states
are always unstable. Altogether, the results show that in the snaking region one finds
an infinite number of coexisting stable symmetric localized structures of different lengths.
These come in two types, with maxima or minima in their symmetry plane. Each state
can be realized in the time-dependent problem by selecting an appropriate finite amplitude
(localized) initial condition. The results for SH35 are essentially identical.

7.1 Multipulse states

In fact things are much more complicated. This is because the snaking region also contains
a variety of multipulse states [6]. The term multipulse refers to the fact that the phase space
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Figure 9: Spectrum of growth rates σ along the (a) L0 and (b) Lπ branches of localized
states in SH23 as a function of the arc length s along each branch, measured from the
bifurcation at the origin. The lower panels show the location in r of the corresponding
branches. Parameters: b2 = 1.8. From [4].

trajectory comes close to the origin after the first localized state (pulse) but only forms a
homoclinic orbit to the origin after a second (two-pulse) or more (multipulse) excursions.
Multipulse states should be thought of as (weakly) bound states of two or more localized
structures of the type we have been discussing.

Multipulse states can be equispaced forming a periodic array of identical localized struc-
tures. Such states are not very different from the single pulse states and it will come as no
surprise that they also snake (Fig. 10). But one can also find two-pulse states consisting
of identical pulses that are separated by a distance that is less than the average interpulse
spacing. The locations of such pulses are ‘quantized’ in terms of half wavelengths π/qc.
Specifically, two identical L0 pulses can have a local maximum or a local minimum at the
half way location between them [6]. On a periodic domain of a large but finite period there
is thus a finite number of such these states. These do not snake but instead lie on nested
isolas. The nested isolas in turn form a vertical stack of like states, each stack consisting
of bound states of localized states of ever increasing length (Fig. 11). The break-up of
the two-pulse states into isolas as soon as they are not evenly spaced is a consequence of
asymmetry in the interaction between the pulses.

In addition, one can also find two-pulse states consisting of different localized states [6].
Thus the snaking region consists of an unimaginable variety of different localized structures
a large fraction of which can be stable.

7.2 Finite size effects

Figure 10(a) reveals two additional insights. The figure is computed on a periodic domain of
length Γ with periodic boundary conditions. We see that for Γ <∞ the multiple bifurcation
at r = 0 breaks up into a primary bifurcation to a periodic wavetrain, together with a
secondary bifurcation from this state to the (two) branches of localized states that takes
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Figure 10: Bifurcation diagrams showing (a) a L0 single-pulse snaking branch, and (b) a
two-pulse snaking branch consisting of two evenly spaced copies of L0, both on the same
periodic domain of period Γ. (c,d) Sample profiles at the points indicated in the bifurcation
diagrams; the states in (d) are separated by Γ/2. Similar branches consisting of Lπ pulses
are omitted. Parameters: b2 = 1.8, Γ = 118. From [6].

place at small but nonzero amplitude. This is almost certainly the reason why spatially
localized states have been discovered only recently: almost all textbooks on hydrodynamic
instability immediately impose periodic boundary conditions when studying the instability
of a homogeneous base state. This inocuous assumption pushes the bifurcation to localized
states to finite amplitude where its discovery requires not only knowledge of the finite
amplitude periodic state but also a linear stability analysis of a nontrivial periodic state
requiring Floquet theory. As we have seen the problem becomes so much easier if posed on
the whole real line!

Figure 10(a) also reveals that on a finite periodic domain snaking does not continue for
ever. Once the localized structure has grown to fill the domain no additional growth is
possible and the branch of localized states exits the snaking region and terminates near the
fold on the branch of periodic states. The details of this transition are in general complex
since they depend on exactly how much space is left, i.e., on Γ mod λc, where λc is the
critical wavelength [1]. Observe, however, that near the fold the localized states resemble
holes in an otherwise periodic wavetrain. We shall come across hole states in subsequent
lectures. For now the lesson learnt is that holes are related to secondary bifurcations near
the fold of the periodic state.

Note, finally, that Fig. 10(b) shows that on a smaller domain, here Γ/2, a single pulse
state bifurcates from the periodic states at a larger amplitude, and that the resulting branch
also terminates further from the fold.
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Figure 11: (a) Bifurcation diagram showing isolas of symmetric but unevenly spaced two-
pulse states. In the main diagram, only one isola at each level of the isola stack is plotted
to avoid clutter. (b) Profiles at the points labeled in the bifurcation diagram; the states are
separated by distances less than Γ/2. Parameters: b2 = 1.8, Γ = 118. From [6].
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