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1 Introduction

Patterns are abundant in Nature. Some, for example, the stripe pattern on a zebra (or
zebrafish!) arise for biological reasons, perhaps to serve as camouflage. However, essentially
identical patterns are found in a variety of different physical and chemical systems. Figure 1
shows stripe patterns on a sand dune and in the atmosphere while Fig. 2 shows labyrinthine
patterns in a ferrofluid system and on a pufferfish. The similarities between these patterns
suggest the existence of general principles behind pattern formation that are independent of
the detailed physics responsible for their presence. This is so for spatially localized patterns,
too. In this lecture we shall look at spatially localized structures in a number of different
physical systems in an attempt to illustrate the universal properties of such structures. We
also introduce the Swift-Hohenberg equation that turns out to be very useful for studies of
such structures, and show, using a multiple-scale analysis, how such an equation may arise
in a fluid dynamical context, in this case as a description of gravity-capillary waves on the
surface of an inviscid fluid.

Figure 1: This image shows the stripe patterns on a sand dune (left), and in the cloud layer
in the atmosphere (right). The patterns in these disparate systems bear strong resemblance.
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Figure 2: Labyrinthine patterns in a ferrofluid system (left), and on a pufferfish (right).

2 Localized structures in physical systems

There are many physical systems which show the presence of localized structures under
appropriate conditions. In these lectures we shall be interested in localized structures in
driven dissipative systems. Such structures are frequently referred to as dissipative solitons

[22]. Structures of this type can be stationary or move. Here, we shall look at a few
examples, and then introduce the Swift-Hohenberg equation that is a prototypical equation
that exhibits structures of this type.

Figure 3: Displacement (left) and stress (right) patterns in a cylinder under axial loading.
The displacement is the outward radial displacement measured from an unbuckled state.
Both figures show a cellular pattern. From [15].

2.1 Cellular buckling in long structures

Hunt et al. [15] showed that when a tall structure, in their case a cylindrical shell, is loaded
axially, the buckling of the structure may be confined to mid-section. The internal stress
and displacement patterns formed are both cellular, and the number of these structures
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increases with the magnitude of the load. Figure 3 shows the resulting cellular pattern,
and in particular the localization of the displacement field for loads slightly larger than
threshold. These buckled states may be stable, and although they are weaker than the
unbuckled state, they are still able to support a load. However, when this load exceeds
a critical value the structure collapses further, leading to a progression of buckled states
consisting of more and more rows of cells.

The above results are best summarized in terms of a bifurcation diagram that tracks
changes in the response of the system as a parameter changes. The variation in the pa-
rameter must be quasi-static; in simulations the parameter value is fixed for the duration
of the simulation. The final state may then be used as the initial condition for a nearby
parameter value. This process is laborious and numerical techniques have been developed
to follow different states of the system without resorting to time-stepping. This approach
offers considerable advantage in that unstable states can be followed as easily as stable
states.

Figure 4: Bifurcation diagram for the buckling of an axially loaded cylinder. From [15].

Figure 4 shows the bifurcation diagram for the buckling problem. The diagram shows
steady solutions of the system in terms of the end displacement as a function of the load
parameter λ (plotted vertically). The unbuckled state loses stability at the linear buckling
load. The bifurcation is strongly subcritical, meaning that for larger loads the buckling is
catastrophic. For smaller λ, however, a variety of steady buckled states is present. These
differ in the number of rows of cells generated, and these increase by two as the solution
branch is followed. The states with positive slope are stable and can support increasing
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load despite being buckled. When the load is increased too far a dynamic jump occurs to a
state with an additional pair of rows etc. Thus there is a range of λ within which multiple
stable solutions exist. The figure shows that these solutions are organized around a special
value of the load parameter, called the Maxwell load. The significance of this parameter
value will become apparent as the lectures proceed.

2.2 Solitons on the surface of a ferrofluid

A ferrofluid is a suspension of small magnetic dipoles. The free surface of this fluid undergoes
a buckling instability, called the Rosensweig instability, when a uniform magnetic field of
sufficiently large strength is applied in a direction normal to the surface [23]. This instability
results in a hexagonal array of stationary peaks. Like the buckling of the cylindrical shell this
instability is also strongly subcritical, leading to a broad region of magnetic field strengths
for which the hexagonal pattern coexists with the flat surface. Within this region there
is a subregion where multiple localized states can be created [23]. This can be done by
bringing a bar magnet towards the surface, pulling out a peak, and removing the bar
magnet. Remarkably, in this subregion the peak remains, and the process can therefore
be repeated, pulling out more and more peaks. Figure 5 shows an example of a structure
created in this way. Thus at every point in this subregion a number of different states,
consisting of one, two, three or more peaks coexists with the flat and the hexagonal states,
and all are simultaneously stable.

Figure 5: Two-dimensional localized structures on the surface of a ferrofluid. From [23].

Figure 6 shows the resulting bifurcation diagram. The diagram shows the surface energy
as a function of the applied vertical magnetic field B. When B is increased from B = 0,
the solution remains qualitatively unchanged until a threshold is reached at B ≈ 9mT. At
this value, a subcritical instability generates a hexagonal pattern of peaks. Since this is an
experiment the small amplitude but unstable hexagons present for smaller B are not seen
and the system jumps instead to a large amplitude hexagonal state. When B is decreased the
hexagonal pattern persists until B ≈ 8mT, where the peaks collapse and the flat interface is
restored. The above process thus describes a hysteresis loop within which two stable states
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coexist, the flat interface and the hexagonal pattern. The multi-peak states are present at
B = 8.91mT, multi-peak states with n = 1, 2, . . . peaks were created by the process just
described, leading to a large number of coexisting stable states at this parameter value.

Figure 6: Bifurcation diagram for two-dimensional solitons on the surface of a ferrofluid
showing the surface energy as a function of the imposed magnetic field B. Stable steady
states with n = 1, 2, . . . peaks are present at B = 8.9mT. From [23].

2.3 Oscillons

Spatially localized oscillations called oscillons were found by Lioubashevski et al. [17] in
experiments on a clay suspension subjected to vertical vibration. Figure 7 (left panel) shows
an oscillon at several different times, while the right panels show different bound states of
this type of oscillon. All states oscillate with twice the period of the forcing, i.e., all are
subharmonic. Very similar behavior is present in vertically vibrated granular systems [26].
Figure 8 shows the interaction of two or more subharmonic oscillons created in this system.

Similar structures, called cavity solitons, are present in photonic systems [1]. Figure 9
shows how a cavity soliton is written and erased using a localized laser pulse.

2.4 Self-organized patterns in planar DC gas-discharge systems

Strumpel et al. [24] found that the discharge current in a DC-driven planar semiconductor
gas discharge system is able to self-organize into a variety of nonlinear structures, including
in some cases localized current filaments that interact in a manner similar to point vortices
in fluid mechanics, i.e., via the Biot-Savart law. Figures 10 and 11 show some of these
structures.
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Figure 7: Oscillons on the surface of a clay suspension vibrated harmonically in the vertical
direction. Figure (a) shows a single oscillon while (b) and (c) show different bound states
of these oscillons. From [17].

2.5 Localized structures in fluid flows

There are many rich fluid dynamical systems where localized structures can be found. Some
of them are briefly described here.

2.5.1 Convectons

Convectons, a term coined by Blanchflower [4], are stationary solutions of a convection
problem consisting of convection rolls embedded in a background where heat is transported
by conduction alone. Good examples of convectons have been observed in doubly diffusive
convection. The first computation of convectons is due to Ghorayeb and Mojtabi [14] who
studied a vertically extended rectangular cavity heated from one side in the presence of a
parallel concentration gradient. When the concentration gradient is chosen appropriately
the system possesses a conduction state for all values of a dimensionless number, the Grashof
number Gr, that measures the thermal forcing of the system. However, this state loses sta-
bility at Gr = Grc to a subcritical bifurcation, and for Gr < Grc Ghorayeb and Mojtabi
found the states shown in Fig. 12. Similar structures have also been found in magnetocon-
vection [4] and in binary fluid convection [2]. Figures 13 and 14 show examples of structures
found in these systems. In all these examples the system forms convectons in response to a
finite amplitude perturbation, and does so despite spatially uniform forcing. Each example
also exhibits a multiplicity of different localized states under identical conditions.
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Figure 8: Oscillons in a granular system. From [26].

Figure 9: Writing and erasing of cavity solitons. From www.funfacs.org.

2.5.2 Shear flow

Shear flow also exhibits localization phenomena. Figure 15(a) shows a picture from an
experiment by Gad-El-Hak et al. [12]. These authors studied the response of laminar flow
over a stationary plate to a one-time perturbation generated by injecting additional fluid
through a minute hole on the plate. The flow was visualized using fluorescent dye techniques.
The tiny perturbation develops into a coherent structure whose Λ shape persists in time
(Fig. 15(a)). Despite evident localization the structure is spatially and temporally complex.

Plane Couette flow provides perhaps the simplest example of a shear flow and is therefore
of particular interest. This flow is generated by the motion of two parallel plates in opposite
directions. The resulting linear velocity profile is stable for all plate velocities and a finite
amplitude perturbation is needed to trigger persistent turbulence. The boundary in phase
space between perturbations that decay to the laminar state and those that evolve into
persistent turbulence is populated by unstable edge states. As shown in Fig. 15(b) some
of these states may be localized. States of this type and the experimentally observed state
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Figure 10: Different spatial patterns formed in a gas discharge system. From [21].

Figure 11: Point vortex-like structures found in a gas discharge system. From [21].

in Fig. 15(a) have some features in common suggesting that they may play a role in the
transition to turbulence.

2.5.3 Defects

Defects in an otherwise periodic pattern can and should also be viewed as localized struc-
tures. Such defect states are most easily identified using demodulation techniques. Figure
1 shows several examples of defects in an otherwise periodic stripe pattern. Such defects
typically move (“climb”) and undergo a variety interactions. We shall not be discussing
defects in these lectures.
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Figure 12: Different stable time-independent spatially localized structures in doubly diffu-
sive convection in a rectangular cavity obtained for identical parameter values. The solutions
are visualized using streamlines of the flow. From [14].

3 The Swift–Hohenberg equation

In the preceding section we have established a connection between the presence of spatially
localized states and a subcritical bifurcation of a homogeneous state responsible for the
coexistence of this state with a spatially periodic state. We have also seen that inside
the resulting hysteresis loop one may find a large large multiplicity of coexisting localized
states. We now turn to an explanation of this remarkable phenomenon. For this purpose
we shall analyze in some detail a model problem, the Swift–Hohenberg equation [7, 8].
This equation was originally suggested as a description of pattern formation in Rayleigh–
Bénard convection [19, 25] and it and its variants have led to substantial progress in our
understanding of localized structures in driven dissipative systems in both one and two
spatial dimensions [3, 18, 20]. However, its simplest realization is in the context of gravity-
capillary waves on the surface of a liquid as described next.

3.1 Long gravity-capillary waves

Consider a two-dimensional fluid layer unbounded in x with −H < y < ζ(x, t), where H is
the depth of the fluid and ζ(x, t) is the elevation of the surface relative to the undisturbed
free surface at y = 0. The equations describing inviscid water waves read [27]:

φxx + φyy = 0 in −H < y < ζ(x, t), (1)

φy = 0 on y = −H, (2)

ζt + φxζx − φy = 0 on y = ζ(x, t), (3)

φt +
1

2

(

φ2

x + φ2

y

)

+ gζ − κζxx

(1 + ζ2x)
3/2

= 0 on y = ζ(x, t), (4)

where φ(x, y, t) is the velocity potential, i.e., the velocity (u, v) = (φx, φy). Equation (1)
represents the incompressibility of the fluid, while Eq. (2) implies that the bottom boundary
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Figure 13: Time-independent spatially localized structure in magnetoconvection. Top panel
shows the temperature fluctuation with superposed streamlines; the bottom panel shows
contours of magnetic field strength with superposed magnetic field lines. From [5].

is impenetrable. Of the remaining equations Eq. (3) states that the interface moves with the
local vertical velocity while Eq. (4) represents the Bernoulli’s condition on the free surface.
In this equation the last term represents the increase in pressure in the liquid due to surface
deformation when the surface tension κ is nonzero.

3.2 Linear theory

The problem (1)–(4) has the trivial solution φ ≡ 0, ζ ≡ 0. We consider infinitesimal
perturbations of the free surface of the form ζ = ζ0sin(kx−ωt), where k is the perturbation
wavenumber and ω is its frequency. This expression represents a periodic wave traveling
to the right with phase speed c = ω/k. Associated with this disturbance is a velocity
disturbance given by φ = φ0(y)cos(kx−ωt), where the function φ0(y) captures the decrease
of the velocity with depth. With this Ansatz Eq. (1) yields

φ0yy − k2φ0 = 0. (5)

The boundary condition (2) implies that φ0y = 0 at y = −H and hence that

φ0 = A cosh [k(y +H)] , (6)

where A is an arbitrary constant. The perturbed velocity potential then reads

φ = Acosh [k(y +H)] cos(kx− ωt). (7)

Equation (3), linearized about y = 0, now yields

ζ0ω = −Ak sinh(kH), (8)

while Eq. (4) yields
−ωAcosh(kH) + gζ0 + κk2ζ0 = 0. (9)
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Figure 14: Coexisting stable odd and even convectons in binary fluid convection, shown in
terms of the contours of the temperature fluctuation Θ relative to the conduction profile
and of the concentration field C. From [2].

Elimination of the arbitrary amplitude A yields finally the dispersion relation for infinites-
imal gravity-capillary waves:

ω2 = (g + κk2)k tanh(kH). (10)

We are interested in long waves, i.e., waves for which kH ≪ 1. In this limit, the Taylor
expansion of the hyperbolic tangent gives tanh(kH) = kH(1− k2H2/3)+O(k5H5) and the
dispersion relation (10) becomes

ω2 = gk2H + gk4H3(Bo− 1/3) +O(k6), (11)

where Bo ≡ κ/gH2 is the Bond number. Thus long waves are nondispersive at leading order
but with a dispersive correction at higher order as described by the second term provided
Bo 6= 1/3. The special case Bo = 1/3 is thus of particular interest, and in the following we
study the weakly nonlinear regime near this special value of Bo.

3.3 Weakly nonlinear regime

Weakly nonlinear traveling waves are most easily found in the frame moving with the speed
of the wave since in this reference frame the wave becomes stationary. We therefore set
ξ = x− ct, and choose for c the long wave phase speed c =

√
gH . This will not in fact be

the speed of the traveling wave since nonlinearity will modify its speed but it is a good first
guess.
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Figure 15: (a) Two-dimensional spatially localized structure in boundary shear flow, viewed
from above (from [12]). (b) Edge solution in plane Couette flow at Re = 375 in a 2×30×200
domain. The structure is elongated in the streamwise direction, with yellow (blue) indicating
positive (negative) streamwise velocity perturbation (from [10]).

In this frame Eqs. (1)–(4) become

φξξ + φyy = 0 in −H < y < ζ(ξ, t), (12)

φy = 0 on y = −H, (13)

ζt + cζξ + φξζξ − φy = 0 on y = ζ(ξ, t), (14)

φt + cφξ +
1

2

(

φ2

ξ + φ2

y

)

+ gζ − κζξξ

(1 + ζ2ξ )
3/2

= 0 on y = ζ(ξ, t). (15)

Mass conservation requires that we impose the additional condition
∫

∞

−∞

ζ dξ = 0 (16)
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on all our solutions.
We begin by defining a small parameter ǫ in terms of the departure of the Bond number

away from its critical value, i.e., we write κ = κ0 + ǫ2κ2, where κ0 ≡ gH2/3 (corresponding
to Bo = 1/3). Next we look for long waves with O(ǫ) wavenumber, i.e., waves whose
wavelength λ satisfies the relation H/λ = O(ǫ). To do so, we introduce a large spatial scale
X = ǫξ and a slow time scale T = ǫ5t that describes the evolution of the wave in the moving
frame. The next step is harder because one needs to identify the scaling of the magnitudes
of φ and ζ with ǫ that will lead to a balance between nonlinearity and the assumed weak
dispersion. The correct choice is φ → ǫ3φ and ζ → ǫ4ζ, yielding the scaled problem

ǫ2φXX + φyy = 0 in −H < y < ǫ4ζ(X,T ), (17)

φy = 0 on y = −H, (18)

ǫ6ζT + ǫ2cζX + ǫ6φXζX − φy = 0 on y = ǫ4ζ(X,T ), (19)

ǫ4φT + cφX + ǫ2
1

2

(

ǫ2φ2

X + φ2

y

)

+ gζ

−ǫ2(κ0 + ǫ2κ2)ζXX = O(ǫ12) on y = ǫ4ζ(X,T ). (20)

We now expand φ and ζ in powers of ǫ2: φ = φ0 + ǫ2φ2 + ... and ζ = ζ0 + ǫ2ζ2 + ....
The leading order of Eqs. (17)–(18) indicates that φ0 = f0(X,T ), where f0(X,T ) is to be
determined. At O(ǫ2), we obtain φ2yy = −f0XX with the boundary condition φ2y = 0 on
y = −H. Thus

φ2 = −1

2
(y +H)2f0XX + f2(X,T ), (21)

where f2(X,T ) is unknown. Equations (19)–(20) on the boundary y = ǫ4ζ(X,T ) give at
leading order:

cζ0X = −Hf0XX , (22)

cf0X + gζ0 = 0. (23)

In view of the mass conservation condition (16), Eq. (22) can be integrated and gives
cζ0 = −Hf0X which, when combined with equation (23), gives the dispersion relation for
long waves, viz., c2 = gH.

At next order, Eq. (17) yields

φ4yy = −φ2XX =
1

2
(y +H)2f0XXXX − f2XX , (24)

which can be integrated twice with respect to y:

φ4 =
1

24
(y +H)4f0XXXX − 1

2
(y +H)2f2XX + f4(X,T ), (25)

where the boundary condition φ4y = 0 at y = −H has been used to eliminate one constant
of integration. The following order gives

φ6yy = −φ4XX = − 1

24
(y +H)2f2XXXX − f4XX , (26)
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leading to

φ6y = − 1

120
(y +H)5f0XXXXXX +

1

6
(y +H)3f2XXXX − (y +H)f4XX . (27)

These expressions are to be complemented with corresponding boundary conditions from
Eqs. (19)–(20). At O(ǫ4), Eq. (19) reads:

cζ2X = φ4y =
1

6
H3f0XXXX −Hf2XX , (28)

or

cζ2 =
1

6
H3f0XXX −Hf2X , (29)

where we have again used the mass conservation relation (16) to fix the constant of inte-
gration. At O(ǫ2), Eq. (20) reads:

cφ2X + gζ2 − κ0ζ0XX = 0, (30)

or equivalently,

c

(

−1

2
H2f0XXX + f2X

)

+ gζ2 +
cκ0
g

f0XXX = 0. (31)

Notice that Eqs. (29) and (31) are identical provided κ0 = gH2/3. This fact confirms that
we have scaled the linear terms correctly.

We proceed next to O(ǫ6) in Eq. (19):

ζ0T + cζ4X + f0Xζ0X = − 1

120
H5f0XXXXXX +

1

6
H3f2XXXX −Hf4XX − ζ0f0XX . (32)

The last term in this equation arises from the ζ contribution to φ2y. Equation (20) at O(ǫ4)
yields:

φ0T + cφ4X +
1

2
f2

2X + gζ4 − κ0ζ2XX − κ2ζ0XX = 0, (33)

where φ4 is to be evaluated at y = 0 using Eq. (25). Eliminating f4 and ζ4 from the resulting
equations we obtain a solvability condition which can in turn be simplified by eliminating
f0 in favor of ζ0. We obtain

2c

H
ζ0T − 3g

H
ζ0ζ0X + κ2ζ0XXX +

1

30
gH4ζ0XXXXX = −κ0ζ2XXX − 1

3
cH2f2XXXX . (34)

The right hand side of this equation can be evaluated in terms of ζ0 with the help of Eq.
(31) and the relation κ0 = gH2/3 leading finally to an evolution equation satisfied by ζ0:

2c

H
ζT − 3g

H
ζζX + κ2ζXXX − 1

45
gH4ζXXXXX = 0. (35)

In writing this equation we have dropped the subscript 0 on ζ0. The resulting equation
generalizes the Korteweg–de Vries equation by retaining higher order dispersion.

Solitary waves traveling to the right with speed V and without change of shape may now
be obtained by writing z ≡ X − V T to boost the reference frame by just the right amount
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so that the nonlinear solution remains stationary. In this frame such a wave satisfies the
ordinary differential equation

1

45
gH4ζ ′′′′ − κ2ζ

′′ +
2cV

H
ζ +

3g

2H
ζ2 = 0 (36)

obtained after one integration with respect to the variable z. Here the prime denotes a
derivative with respect to z. The resulting equation is the simplest case of the Swift–
Hohenberg equation, hereafter SH20, because it only includes a single nonlinearity of second
order. Despite its simplicity this equation has a remarkably rich solution structure that
includes a large number of solutions homoclinic to ζ = 0, i.e., solitary waves [6, 11].

We remark that Eq. (36) is dissipative in space although the time-dependent problem
from which it was derived is conservative, with an energy that is conserved in time.

4 The Korteweg–de Vries equation

The Korteweg–de Vries equation (named after [16]) can be derived from Eqs. (17)–(20)
using a different scaling that is valid for all values of Bo that are not close to the critical
value Bo = 1/3. This time we write X = ǫξ, T = ǫ3t, φ = O(ǫ), ζ = O(ǫ2) and assume
that κ − κ0 = O(1). Thus, the small parameter ǫ is now defined by the ratio H/λ instead
of being defined in terms of the Bond number. Proceeding as in the preceding section we
obtain at second order

ζT + ζζX + ζXXX = 0, (37)

where T and X have been rescaled to eliminate constants.
Waves of constant form can be found by writing ξ ≡ X − V T and integrating the

resulting equation twice. The Korteveg–de Vries equation (37) then takes the form of an
equation for a particle in a potential,

1

2
ζ2ξ + U(ζ) = E, (38)

where E is a constant and
U(ζ) ≡ ζ3/6 − V ζ2/2. (39)

The potential U(ζ) is represented in Fig. 16. Sinusoidal oscillations are present around the
local minimum of the potential provided E + 2V 2/3 ≪ 1. As E increases the oscillations
become more and more nonlinear and their (spatial) period increases.1 When E = 0 the
solutions have infinite period, i.e., they are solitary waves. These form a one parameter
family,

ζ = a sech2
[

a

2
√
3

(

X −
√

gHt− a

3
T
)

]

, (40)

parametrized by the wave amplitude a. Thus all finite amplitude solitary waves travel
faster than

√
gH and larger solitons travel faster than smaller solitons. These solutions

interact in a particle-like manner, i.e., they are in fact true solitons [13, 28]. This is a

1A second constant of integration must be included in U(ζ) in order to satisfy the mass conservation
condition (16).
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Figure 16: Potential U(ζ) in Eq. (39) when V = 1. The gray region indicates periodic
solutions and the horizontal line delimitating this region at the top corresponds to a solitary
wave.

consequence of complete integrability of the Korteweg–de Vries equation as an infinite-
dimensional Hamiltonian system.

Soliton behavior of the solutions of the Korteweg–de Vries equation is shown in Fig. 17.
The left figure shows one soliton drifting to the right without change of shape. The second
figure shows the collision between two solitons with different amplitudes and hence different
speeds. During their collision, they pass through each other and resume their course at the
same speed after a slight delay.

5 Spatial eigenvalues and localization

In the Korteweg–de Vries problem one cannot tell the direction of propagation of the wave
from the solution profile or even that the wave is traveling. This is a consequence of the
invariance of the water wave problem under Galilean transformation, but this is not the
case in driven dissipative systems. In such systems a solitary wave travels whenever it is
not reflection symmetric. Generically, only reflection-symmetric states are stationary.

For solitary waves in driven dissipative systems, we therefore need to distinguish between
stationary solitary waves and traveling ones. Suppose that ut = g(u, ux, uxx, ...), where g is
real-valued and g(0) = 0. Then, g(u, ux, uxx, ...) = 0 is a dynamical system in space, with
phase space (u, ux, uxx, . . . ), and its solutions represent steady states. Of particular interest
is the fixed point u = 0 in this phase space. This point represents a spatially homogeneous
state and this state must have at least one unstable and one stable direction in space in order
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Figure 17: Left: spatio-temporal visualization of a Korteweg–de Vries soliton. Right: same
type of visualization but for two different solitons. The soliton with larger amplitude travels
faster as indicated by Eq. (40). After the collision the solitons continue their course with
the same velocity but with a slight delay due to the collision. Courtesy L. Gelens.

that a solitary wave be present. Thus a necessary condition for the existence of solitary
waves biasymptotic to the homogeneous state u = 0 is that u = 0 is a hyperbolic fixed
point. To determine conditions for this to be so we must examine the spatial eigenvalues of
u = 0. For this purpose we linearize g(0) = 0 around u = 0,

gu(0)u+ gux
(0)ux + guxx

(0)uxx + ... = 0, (41)

and look for solutions with u = u0 expλx. The spatial eigenvalues λ are thus given by

P (λ) = 0, (42)

where P is real-valued so that P (λ) = 0 ⇒ P (λ̄) = 0. If, in addition, the system is spatially
reversible, meaning that it is invariant under spatial reflection, x → −x, u → u,2 then
P (λ) = 0 ⇒ P (−λ) = 0. Thus, if u = 0 has two negative real eigenvalues it also has two
positive real eigenvalues. Likewise, if λ is a complex root of P (λ) = 0 then so are −λ and
±λ̄ and the eigenvalues form a quartet in the complex plane. Thus, unless an eigenvalue has
a zero real part, u = 0 has a two-dimensional unstable manifold W u and a two-dimensional
stable maniold W s. If these manifolds intersect it is possible to find a trajectory that leaves
u = 0 as x increases from −∞ and returns to u = 0 as x → ∞, i.e., a spatially localized
solution. The likelihood of such an intersection is very much less when u = 0 has only one
negative eigenvalue (and hence one positive eigenvalue), with the remaining eigenvalues on
the imaginary axis.

It follows that in spatially reversible systems P is in fact a function of λ2 and the simplest
nontrivial case yields P (λ) ≡ λ4 + bλ2 + a = 0. Figure 18 depicts the location of the four
eigenvalues of the spatial problem in the complex plane as a function of the parameters a
and b. Below the curve C2 ∪ C3, the eigenvalues lie on the axes, meaning that either their

2We remark that the Korteweg–de Vries equations (35) and (37) have a different type of spatial reversibil-
ity: x → −x, ζ → −ζ.
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Figure 18: Roots of the equation λ4 + bλ2 + a = 0 in the (a, b) plane. From [9].

real part or their imaginary part is zero. Above this curve the eigenvalues form a complex
quartet. We focus on the transition occurring at C2. In the region labeled 4 in Fig. 18, all
the eigenvalues lie on the imaginary axis, meaning the eigenmodes are purely oscillatory in
space. As a or b increase the eigenvalues collide on the curve C2 and move into the complex
plane forming a quartet as anticipated above. This transition will provide a key to the
appearance of spatially localized states as discussed in the next lecture.

In the Korteweg–de Vries case (37), the phase space of the equivalent particle-in-
potential problem is two-dimensional and the fixed point (u, ux) = 0 has a one-dimensional
stable manifold W s and a one-dimensional unstable manifold W u. Consider the surface Σ
representing ux(x = 0) = 0 which is intersected by all spatially reversible solutions. Its
dimension is dim(Σ) = 1. The intersection W u ∩Σ is then a point and by reversibility this
point is also onW s∩Σ. Thus the pointW u∩Σ lies on a homoclinic orbit to (u, ux) = 0. This
result also follows from “energy conservation” since both manifolds lie in the energy surface
E = 0. Moreover, if E 6= 0 no homoclinic orbit is present implying that the homoclinic
orbit is present at a single parameter value only.

The situation is quite different in the generalized Korteweg–de Vries equation such as
Eq. (35) because this equation is of fifth order in space. Here the phase space of the
equivalent dynamics problem is four-dimensional and in region 4 of Fig. 18 the fixed point
(u, ux, uxx, uxxx) = 0 has a two-dimensional stable and a two-dimensional unstable man-
ifold. In four dimensions these manifolds will not intersect in general but we can find a
large number of homoclinic orbits to (u, ux, uxx, uxxx) = 0 by examining the vicinity of a
heteroclinic cycle between this point and a symmetric periodic orbit Γ when such an orbit
is present and is hyperbolic. This cycle consists of a heteroclinic connection from 0 to Γ
followed by a heteroclinic connection from Γ back to 0. Note that if one can establish the
presence of the first connection then the return connection follows using spatial reversibil-
ity. The periodic orbit plays a vitally important role in the generation of spatially localized
states. The reason is that Γ has one zero eigenvalue (more correctly a Floquet multiplier
equal to one) that is doubled by spatial reversibility. For Γ to be hyperbolic there must in
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addition be one stable Floquet multiplier and one unstable Floquet multiplier. Under these
conditions Γ has a three-dimensional center-stable manifold W cs and a three-dimensional
center-unstable manifold W cu. Since an intersection between the two-dimensional unstable
manifold W u of 0 and the three-dimensional center-stable manifold W cs of Γ is generic in
four dimensions such an intersection cannot be perturbed away by making small changes to
the parameter values (or indeed the equation). We call such intersections structurally stable

and conclude, invoking spatial reversibility, that under these conditions the dynamical sys-
tem g = 0 possesses a structurally stable heteroclinic cycle. Since such a heteroclinic cycle
is associated with nearby homoclinic orbits (such orbits in fact accumulate on the cycle)
it follows that near such a cycle one will find a plethora of homoclinics that persist over a
finite parameter interval. We call such solitary waves robust.

In the next lecture we shall provide a concrete illustration of this abstract geometric ar-
gument. However, the argument suggests that the key to finding time-independent spatially
localized states in reversible systems is provided by the presence of a heteroclinic connection
0 → Γ, i.e., of a front connecting a spatially homogeneous state to a spatially periodic state.

We mention that if spatial reversibility is absent then a heteroclinic cycle of the above
type becomes of higher codimension and the situation becomes quite different. This is
why the properties of traveling solitary waves differ substantially from those of stationary
structures in spatially reversible systems.
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