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1 Introduction

Structures in the atmosphere and ocean such as hurricanes, storms and the path of jet
streams that have large human impact like They provide insight into better sub-grid-scale
parameterization. Most structures cannot be derived from underlying PDE’s and to learn
about their details requires observations and numerical simulations. There are several in-
teresting and important structures present in two-dimensional fluid dynamics. One major
motivation for examining such 2D fluid dynamics is to further understand the anisotropy
that is present in atmosphere and ocean. These lecture notes are organized as follows:

In section 2, we introduce the point vortex model. This idealized model provides mathe-
matical and physical insight. The equations for point vortex dynamics define a Hamiltonian
system. However, their singular nature gives no insight into the dynamics of vortex shape,
and filters out processes that depend on the shape dynamics.

Thus in section 3, we present a model of compact and well-separated vortex. The vortex
moments are defined and the equations of the motion of the centroid are given. Asymptotic
analysis leads to an infinite system of coupled ordinary differential equations for physical-
space moments of the individual regions. If truncated to a finite number of moments, a
self-consistent closed model is obtained at any order. Nonzero 2nd order moments yields
the ”elliptical moment model”.

In section 4, we examine an important process in fluid mechanics: same-sign vortex
merger. A threshold for the merger of equal-sized vortices is given. We also discuss the
situation when diffusion is present, as well as the interesting phenomenon of the onset of
chaotic motion in the elliptical moment model. Statistical mechanics give some predictions,
but there are some constrains in actual fluids that prevent vortices from exploring the phase
space as described by statistical mechanics.

In section 5, we briefly introduce the cascade theory of turbulence, focusing on 2D tur-
bulence. We describe four different types of vortex interactions in 2d decaying turbulence:
two-vortex merger, dipole propagation, vortex scattering, and tripole merger. The conser-
vation laws of energy and enstrophy are crucial in the study of cascade theory. We also
examine the relationship of cascade and vortex merger and the role of energy and enstrophy
fluxes.

In section 6, we look into structure-based temporal scaling theory, which is quite different
from traditional cascade theory. Our goal is to construct scaling theory guided by vortex
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statistics from numerical simulations. We make several assumptions in the theory resulting
in relationships between the exponents of the power law evolution of vortex properties.

2 Point Vortices

First we will examine point vertices in greater detail; the setting here is inviscid dynamics.
A point vortex system is closed: the vorticity of the system will always remain concentrated
at the point vortices. This no longer holds, however, with the addition of viscosity, which
causes the vorticity to spread out across the system. We will examine this case later.

Recall, the vorticity evolution equations

∂tω + J [ψ, ω] = ν∇2ω

ω = ∇2ψ,

while the definition of a point vortex is

ω(~x) =
N∑
i=1

Γiδ(~x− ~xi).

This expression may depend on time t. From the above, we obtain

Dωt
Dt

=
N∑
i=1

[∂tΓiδ(~x− ~xi)− Γi∇δ(~x− ~xi) · ~̇xi] +
N∑
i=1

~U · ∇(Γiδ(~x− ~xi)) = 0.

The gradient of a delta-function is infinite. Reinterpreting these equations for a small but
finite-size Gaussian vortex of size r0 renders these terms O(1/r0). Considering only the
order one term yields

∂tΓi = 0,

while the O(1/r0) term gives
~̇xi = ~U(~xi),

and the point vortex is advected by the velocity field.
Another important fact to observe is that a collection of point vortices is Hamiltonian.

Denoting the Hamiltonian by H, we can write

H = −
∑
i 6=j

ΓiΓj
4π

ln |~xi − ~xj |.

(In the above, the natural logarithm is a result of Green’s function for the Laplacian in two
dimensions.) The equations of motion for this system are

Γi

(
ẋi
ẏi

)
=

−
∂H

∂yi
∂H

∂xi

 .
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A physical interpretation of the Hamiltonian is that of the “interaction energy for an infinite
domain.”

As this is a Hamiltonian system, we can observe both regular and chaotic dynamics.
Depending on the boundary conditions, there may be other invariants as well, such as
translation symmetries that yield linear momentum conservation, and rotation symmetries
that yield angular momentum conservation. Exploration in this direction reveals that a
system on an infinite domain with three vortices is regular, while a system with four is
chaotic.

3 Elliptical vortices

Elliptical vortices exhibit particular interesting behavior, and there is a lot of literature on
this subject. One of the first papers on the subject is the 1986 paper on vortex interactions
by Melander, Zabusky and Styczek [1].

Figure 1: Two compact, separated vortices.

In this setting we are considering compact, well separated vortices, such as the two
vortices above. In such systems, the vorticity is zero outside of these compact structures.
Each vortex has its own constant vorticity ωi, area Ai, and circulation Γi, defined by

Γi := ωiAi.

As shown in the elliptical vortex on the right in the above illustration, we can put local
coordinates (ξi, ηi) on each vortex. The centroid ~xi of each vortex is then given by

Ai~xi =
∫

vortex i
~x dξi dηi

Each vortex also has moments, which are given by

J
(m,n)
i =

∫
vortex i

ξmi η
n
i dξi dηi.

We can glean various bits of information by choosing m and n in specific ways. For example,
setting m = n = 0 yields the area of the vortex. If m = 1 and n = 0, we obtain the x
component of the centroid, while if m = 0 and n = 1, we obtain the y component of the
centroid. If m = 2 and n = 0, we obtain the variance in ξ of the size of the vortex, while if
m+ n = 2 then we obtain the covariance matrix for the size of the vortex. The sum m+ n
defines the order of moments.
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There are a couple of assumptions which are key to the development of these ideas. In
particular, we have a small parameter

ε =
size of a vortex

separation between vortices
<< 1.

In other words, we assume that the separation between vortices is O(1), with the size of
each vortex much smaller. As the size of each vortex is small, the moments bring in power
of ε:

J (m,n) ∼ O(εm+n+2),

where the additional 2 in the exponent comes from the integration in the definition of Ji.
Therefore, each higher moment is higher order in ε than lower order moments.

The above definitions are focused on a single vortex within the system. We have not yet
addressed the interaction of the vortices. It is important to note that we do not need any
assumption that vortices maintain the same shape; instead we describe vortices in terms of
their moments.

Since the area Ai is constant, the motion of the centroids is given by

Ai~̇xi =
d

dt

∫
vortex i

~x dξi dηi

=
∫

vortex i

~U(~x) dξi dηi.

The velocity ~U(~x) is the velocity induced by all of the other vortices, which we recall are far
away from our basic assumption on the separation distance between vortices. Asymptotic
analysis can show that in the same way that point vortices do not have any self advection,
the centroid position does not have any self advection.

We can now Taylor expand the velocity ~U(~x) around the centroid of a vortex. Here ~xi
is in vortex i, and its velocity induced by vortex j becomes

~̇xi =
1
Ai

∞∑
q=0

q∑
p=0

1
p!(q − p)!

J
(p,q−p)
i

∂p

∂xp
∂q−p

∂yq−p
~U

∣∣∣∣∣∣
~xi

.

Recall that
U(~x) =

∑
j

Uj(~x),

where Uj(~x) is the velocity induced by vortex j at ~x.
One can repeat similar steps to get an equation for ∂

∂tJ
(m,n)
i , from which one can perform

asymptotic analysis. We do not go into details here, see Melander et al. 1986 [1] for more
information.

A result of this analysis is that we can truncate at any order and get a closed system.
In other words, if we keep all moments through the kth order in the initial condition, then
the time evolution of those moments up through the kth order will not generate moments
of order greater than k.
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If we keep only the centroid, then this is exactly the point vortex model. The first order
moment is zero by definition. For the second order moments, we need m+ n = 2. In other
words, we set the pair (m,n) to be (2, 0), (1, 1), and (0, 2).

Here we can get a good idea of what it means for a system of point vortices to be closed.
If we truncate at order two, then closure implies that all higher order moments depend
completely on the 2nd order moments. As long as the second order moments are nonzero,
this yields an ellipse, called the “elliptical moment model.” In addition to the position
and location parameters we have already seen, the elliptical model yields two additional
parameters, illustrated below.

Figure 2: Two additional parameters for the elliptical moment model.

One of the additional parameter is the angle φi, while the other parameter is the ellip-
ticity ratio a

b of lengths of the major and minor axes. These parameters completely describe
the ellipse. The result is a Hamiltonian dynamical system with four degrees of freedom (as
the area is fixed).

4 Same-sign vortex merger

Same-sign point vortices co-rotate. We will see that two finite-size vortices with the same
sign which are “close enough” will merge together. Such same-sign merger can be illustrated
with numerical simulations and observed in laboratory experiments.

There is a threshold for merger which can make this notion of “close enough” more
precise. In general, if the separation between two vortices of equal size is larger than 3.3
times the radius of those vortices, then they will rotate around each other for all t and never
merge. However, their behavior changes dramatically once the separation distance is less
than 3.3 times their radius; in this case, they will merge quite quickly.

If there is diffusion present in the system, then vortices will alway merge. This behavior
happens because the radii will grow slowly on a diffusive time scale. As a result, the ratio
between their radii and the separation is eventually small enough to cross the threshold.

One interesting phenomenon is the onset of chaos in an elliptical model. If a system
begins with two elliptical vortices whose separation is above the threshold, as expected they
rotate around each other. Visually, they appear to wiggle as their ellipticity rotates, and
they become essentially circular. If however, their separation is below the threshold, the
distance between their centers quickly collapses. As a result, the ellipticity of the system
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Figure 3: Measured two-vortex merger time as a function of separation 2D normalized to
vortex diameter 2Rv, by C. F. Driscoll, et al. 1991 [4].

becomes infinite. As the equation for the model has a term of 1
r , where r denotes the

separation between the vortices, the model blows up. This singular behavior is analogous
to vortex merger.

There are several theories that give correlations with merger, yet do not seem to fully
explain the threshold. One can argue that the threshold is still something of a mystery. It
is interesting to note that statistical mechanics predicts that vortices always merge if the
system is allowed to fully explore the phase space. According to this prediction, a system
with an initial condition of two vortices will always result in a single vortex as the most
probable state. However, there are constraints in the actual fluid dynamics that prevent
vortices from exploring the phase space as described by statistical mechanics. But if the
fluid dynamics allows the vortices to merge, then statistical mechanics calculations give the
correct predictions.

We can connect the ideas of the last three sections with the following observation. Point
vortices do not exhibit merger at all, whereas the elliptical moment model, which allows
shape oscillations gives the signature for vortex merger. Hence the elliptical model is the
simplest inviscid model that provides information about this important dissipative process.

5 Cascade Theory

5.1 2d turbulence cascades

We now give a brief overview of two-dimensional turbulence cascades. First we note that
fluids in this context have small viscosity v, and large dimensionless Reynolds number given
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Figure 4: Vortex separation squared R2(t) from the elliptical-moment model for initially
circular vortices with Γ1 = π/4, Γ2 = π and initial separations R0 = 2.746− 2.751 in steps
of 0.001. The trajectories are successively offset by 4R2 = 0.25, by J. B. Weiss and J. C.
McWilliams, 1993 [2].

by

Re =
UL

v
>> 1,

where U is the velocity and L is the length scale. From the Laplacian dissipation, we get a
term of

− k
2

Re
,

in wavenumber space, where k is the wavenumber.
Classical cascade theories are based on physical models of how energy flows through

wavenumber space coupled with dimensional analysis of Navier-Stokes equations. There
are a few typical assumptions for cascade theory. The first is to assume that a system
has some forcing concentrated along a particular forcing scale, kf . Due to the form of the
dissipation operator, dissipation occurs at large wavenumbers. There is an inertial range
(perhaps more than one inertial range, in fact) determined by values of k where forcing and
dissipation are both small. Lastly, the fundamental concept of local cascade theory is that
energy is transferred locally in scale.

5.2 3D Cascades

When we consider 3d homogeneous isotropic turbulence, we assume that we have forcing
at large scales and dissipation at small scales.

Let ε represent the energy flux of the system. If we assume that we are in a statistically
steady state, then ε moves from large scales to small scales. In a statistically steady state
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ε for a turbulent cascade must be constant in inertial range as there is no large forcing or
dissipation terms. Dimensional analysis yields the Kolmogorov scaling relation

E(k) ∼ k−5/3,

which represents a direct transfer from large scales to small scales.

5.3 2D Cascades

5.3.1 Conservation of Energy and Enstrophy

Two-dimensional homogeneous isotropic turbulence is different from the 3D case because
there is conservation of enstrophy. Denote enstrophy by Z, then

Z =
1
2

∫
d2~x|~ω|2.

Statistically, enstrophy represents the mean square of the vorticity. It can also be seen
though as analogous to the kinetic energy of the system.

Now let us examine the role that energy conservation plays. First, note that the time
derivative of energy E depends on the enstrophy:

dE

dt
= −2νZ.

A fact about 3d turbulence is that the energy dissipation is constant as the viscosity goes
to zero because the enstophy of the system grows. The resulting vortex stretching is crucial
in 3D. The major difference when we switch to 2D is the lack of a vortex stretching term.
(Later, we will see quasigeostrophic dynamics in 3D that will resemble 2D as there is a
similar lack of vortex stretching.)

The time derivative of the enstrophy is

dZ

dt
=
〈
ωiωj

∂Ui
∂xj

〉
− 2νP,

where ωiωj is the vortex stretching term, and P is the “palinstrophy” given by

P =
1
2

∫
dx|∇ × ~ω|2.

One may wonder why the vortex stretching term ωiωj is zero in two dimensions. This is due
to the fact that the vorticity and the velocity are always in perpendicular directions, which
prevents vortex stretching. As a result, the enstrophy time derivative is always negative.
Taking the limit as viscosity vanishes, we see that the enstrophy cannot grow. Hence the
energy is conserved in 2D.
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5.3.2 Cascade Theory and Mergers

Now we examine what happens if we add energy and enstrophy fluxes to the system. Due
to the conservation of energy, there are separate energy and enstrophy cascade regimes with
cascades in opposite directions. Energy cascades to large scales, while enstrophy cascades
to small scales, where it then dissipates. Dimensional analysis gives the slope of spectrum
in these cascades, and the inverse energy cascade results in large scale structures.

Several typical numerical simulations of decaying 2d turbulence have shown that in
relatively short times periods, individual vortices self organize into a collection of coherent
vortices. Afterwards, the vortices advect each other around, and same-sign vortices merge,
whence there are fewer vortices. After a much longer period of time, the system ends with
a dipole which slowly decays through diffusion.

The dominant dissipative mechanism in decaying 2d turbulence is vortex merger. Most
merger events are two-vortex mergers, which are often catalyzed by a third vortex, but
occasionally three-vortex mergers occur. Conservative vortex interactions include dipole
propagation and vortex scattering. The idea of scattering is illustrated in the following
example: imagine two dipoles, A translating with opposite sign vortex A′, and B translating
with opposite-sign vortex B′, and the dipoles propagate to bring them close together. When
A and B are close together, they may be near an unstable co-rotating periodic state. Then
they will “switch partners” so that A is now rotating with B, and A′ is rotating with B′.
The trajectories of these new pairs depart near unstable manifolds of the are near unstable
orbits of the periodic state. Varying the impact parameters, which governs how the pairs
approach, changes how close the incoming dipoles are the stable manifold of the periodic
orbit. The closer the dipoles approach the periodic orbit, the longer they remain in its
vicinity, and the more they co-rotate before leaving its neighborhood. In this case, the
angle at which they exit becomes sensitive to the impact parameter and is unpredictable.
This example is a case of “chaotic scattering.”

Figure 5: Energy spectra for the solution at high Re for times t=1,2,...,11. Solid line shows
the k−3 classical prediction, by A. Bracco et al. 2000 [4].

9



6 Structure-Based Temporal Scaling Theory

Structure-based scaling theory address the properties of the vortex population, as well as
the global quantities like energy and enstrophy. This differs from traditional cascade theory
which ignores the coherent structures. Simulations of 2d decaying turbulence exhibit spectra
that are steeper and an enstrophy time decay that is slower than cascade theory predicts.

In numerical simulations, we see three phases: vortex formation, vortex interaction, and
the final dipole. The first phase is poorly understood compared to the vortex interaction
phase. The goal here is to construct a scaling theory guided by vortex statistics from
numerical simulations. First, however, we must measure vortex statistics, which is inevitably
based on a subjective census algorithm (as there is no entirely precise definition of a vortex).
The output this census is the number of vortices and the distribution of their properties,
such as vortex size and enstrophy, over the course of the simulation.

6.1 Vortex Scaling Theory

For scaling theory we have a few assumptions. The first assumption, based on inviscid
dynamics, is that energy is conserved. Let ωp denote the peak vorticity, as illustrated
below.

Figure 6: Typical vortex shape indicating the peak vorticity.

The second assumption, also based on inviscid dynamics, is that ωp is conserved. More-
over, we assume that all of the vorticity is inside the coherent, well-formed vortices and the
vorticity outside these vortices is zero.

Observations from numerical simulations show that the number of vortices N decays
with a power law:

N ∼ t−ξ, ξ ≈ 0.72.

Each individual vortex is characterized by a location ~xi, a size ri (the notion of size can
be made precise), and a vorticity ωi. The population of vortices is then characterized by a
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probability density function
p(r, ω, t),

which represents the probability if finding a vortex of size r and with vorticity ω at time t.
For convenience we assume that r and ω are independent. With this assumption we can

write
p(r, ω, t) = pr(r, t)pω(ω, t).

In fact this assumption is not necessary, but it simplifies the following equations, as we
reduce the number of variables from two to one.

The final assumption is that the probability density functions evolve self-similarly. In
other words, the time dependence of the pdf depends only on the time dependence of the
average

〈r〉 (t).

Thus if we define a new variable
X :=

r

〈r〉 (t)
,

then the assumption is that p(X) is independent of time. (This could be done for the joint
distribution as well.)

The assumption of self-similarity allows one to write the moments of the pdf in terms
of the average. In particular, the average of the nth power of the radius is equal to the nth

power of the average multiplied by a constant depending on n:

〈rn〉 (t) = cn 〈r〉n (t).

Thus the time dependence of all moments can be related to the time dependence of the
average.
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