

DETECTING FLOW COARSE PATTERNS USING LAGRANGIAN AVERAGES

Marko Budisic Igor Mezic

ONR MURI Ocean 3D+1 May 1, 2013

Goal: detecting coarse-grained patterns in fluid flows.

Comparison of tracer paths can be misleading:

Two trajectories in a mixing region can never be aligned pointwise, but on average they have the same behavior.

- Approach:compare tracers according to averagesof many different scalar fields.
- **Result:** we can **quantify** when trajectories are **equal** on average, but also when they are **similar** on average.

Ergodic quotient can be used to detect similarities in a multi-scale fashion.

UC SANTA BARBARA

Ergodic quotient replaces trajectory curves by vectors of Lagrangian averages.

Curves:

UC SANTA BARBARA

engineering

$$\dot{x}_p = u(t, x_p), \quad x_p(0) = p$$
$$(p, t) \mapsto x_p(t)$$

Lagrangian averages of scalar fields:

$$\tilde{f}(p,T) := \frac{1}{T} \int_0^T f_k(\tau, x_p(\tau)) d\tau$$

Ergodic quotient map is obtained by averaging a basis of continuous functions (scalar fields on the state space): $f_k(x) = e^{ik \cdot x}$

The space of averages (finite-time quotient) naturally captures similarity.

Discrete topology (theorem):

UC SANTA BARBARA

Diffusion maps are a nonlinear coordinate reduction that preserves intrinsic geometry of Ergodic Quotient (EQ).

The dimension of EQ can be very low, if the dynamics is simple, e.g., when there is only a single gyre, or a single mixing region.

UC SANTA BARBARA

engineering

 $\widetilde{f}_j(x)$

Marko Budisic: Detecting Flow Coarse Patterns Using Lagrangian Averages

Mezić Research Group

Coloring state space by values of dominant diffusion maps reveals large scale features.

UC SANTA BARBARA

Steady state 3D flow: ABC system.

UC SANTA BARBARA

Periodic 3D+1 flow: perturbed Hill's vortex ring

Unperturbed flow is Hamiltonian at each angular slice. KAM behavior at small magnitude of swirl and perturbation. For large perturbations, flow is difficult to study analytically.

Invariant tori in Poincaré section isolated using ergodic quotient:

New bifurcation identified:

Computational demands are driven by resolution desired, not dimension of the state space.

- **1. Select the subset of the basis of scalar fields.**
- **2.** Seed N initial conditions on the state space.
- 3. Integrate trajectories and averages along them.
- 4. Evaluate Sobolev distance matrix.
- **5. Compute diffusion coordinates.**
- 6. Visualize.

The more initial conditions and scalar fields, the higher resolution of features.

Length driven by available data and application (finite time) or by a model (possibly infinite).

A numerical linear algebra computation: essentially an eigenvector computation for a matrix of size $N \ge N$.