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Goal: detecting coarse-grained patterns in fluid flows.

2

NASA/Goddard Space Flight 
Center

Layering: neighboring fluid 
parcels behave similarly

Comparison of tracer paths can be misleading:
Two trajectories in a mixing region 
can never be aligned pointwise, 
but on average they have the same behavior.

compare tracers according to averages 
of many different scalar fields.

Approach:

we can quantify when trajectories are equal on average, 
but also when they are similar on average.

Result:
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Ergodic quotient can be used to detect 
similarities in a multi-scale fashion.

3

Ergodic QuotientTracer paths Colored initial 
conditions

Entire trajectories
mapped to single points.

Connected segments in EQ
correspond to families of 

similar tracer paths.

Coloring initial conditions according to 
membership in connected segments 

visualizes coarse patterns.

Axes in EQ act as generalized 
energies or stream functions.

[Budisic, Mezic 
Physica D, 2012]
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Ergodic quotient replaces trajectory curves 
by vectors of Lagrangian averages.
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Curves:
P

Lagrangian averages 
of scalar fields:

f

k

(x) = e

ik·x

Ergodic quotient map is obtained by 
averaging a basis of continuous functions
(scalar fields on the state space):

Representation of 
the tracer path portrait using 

averages of scalar fields.

ẋp = u(t, xp)
f̃2(p, T )

f̃1(p, T )
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The space of averages (finite-time quotient) 
naturally captures similarity.
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Two state points p1 and p2 
are in the same ergodic set iff 

minimal invariant set

Continuous topology: Sobolev space norm.

dT (p1, p2)
2 =

X

k2Zd

���f̃k(p1)� f̃k(p2)
���
2

(1 + |k|2)s

If scalar fields are chosen 
as Fourier harmonics, 
their averages are 
Fourier coefficients of
averaging measures.

Acts as a low-pass filter: 
de-emphasizes
small scale differences.

⇡(p1,1) = ⇡(p2,1)

Tracer
trajectories

Ergodic Quotient 
(in cts. topology)

Discrete topology (theorem):

Ex.

Stagnation points on 
separatrices prevent 
ergodic quotient from 
connecting.
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Diffusion maps are a nonlinear coordinate reduction
that preserves intrinsic geometry of Ergodic Quotient (EQ).
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To disentangle the “wire” (EQ), 
sort the points by time it takes them to heat up.

A heat source is placed on 
an entangled “wire” (EQ).

The scalar fields used in averaging were chosen regardless of 
dynamics, so they can yield a high-dimensional space.

The dimension of EQ can be very low, if the dynamics is simple, 
e.g., when there is only a single gyre, or a single mixing region.

Diffusion Maps:

Implementation requires only 
deterministic matrix computations.

Topology and geometry are preserved, 
e.g., a continuous line is still a line, but the 
number of coordinates is greatly reduced.

[Coifman, Lafon, 
ACHA, 2006]
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Coloring state space by values of dominant diffusion maps 
reveals large scale features.
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State Portrait
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Diffusion Coordinates as axes

 2 1  3

Diffusion Coordinates as colors

Different colors indicate there is no 
material transport between regions.

Coordinates of higher order 
distinguish between finer features.

Number of diffusion
coordinates depends on 
complexity of dynamics, 
not dimension of the 
state space.



Mezić Research Group

May 1, 2013 Quotients by Lagrangian averages detect coarse patterns in flows.

Goal: detecting coarse-grained patterns in fluid flows.

1

NASA/Goddard Space Flight Center

We have access to 
Lagrangian trajectories: 
how do we detect which 
trajectories are similar?

Layering: neighboring fluid 
parcels behave similarly

Marko Budisic: Detecting Flow Coarse Patterns Using Lagrangian AveragesMay 1, 2013

Steady state 3D flow: ABC system.
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LCS FTLE

[Haller, 2001]

2

4
ẋ
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Analytic

[Dombre et al., 1986]

Almost-invariant sets

[Froyland et al., 2009]

G. Haller / Physica D 149 (2001) 248–277 263

From a computational point of view, hyperbolicity time plots converged much faster than “direct” Lyapunov
exponents over short time intervals. On intermediate time scales the details of hyperbolicity time plots are more
refined, but the clarity of the structures is deteriorating. One reason is that the width of coherent structures quickly
decreases, due to the fast convergence of our analytic approach. As a result, the boundaries become more and more
susceptible to the sizable numerical errors introduced by the low order advection scheme we used (a 4th order
Runge–Kutta scheme). These errors also introduce a discrepancy between quantities associated with the velocity
field and particle trajectories that grow inconsistent with the velocity field. The numerical errors are tangible since the
velocity field is known to admit chaotic streamlines. As time approaches t = 10, the plot rendered by the maximal
direct Lyapunov exponents becomes very sharp, as it is not affected by the growing inconsistencies between the
velocity field and individual particle motions.
Hyperbolicity plots of type 7 show similar convergence properties, but reveal further structures that are not of

type 1 or 2.We show a type 6 and type 7 plot together with the maximal direct Lyapunov exponent plot for t = −8 in
Fig. 6. Note that the same coherent structures that are local maximizers in the type 6 plot show up as local minimizers
in the type 7 plot. Also note that the type 7 plot does indicate resonant tori of hyperbolic stability type (cf. [12]),
which remain hidden to the direct Lyapunov exponent calculation. The reason is the sensitivity of hyperbolicity

Fig. 6. Hyperbolicity time plots of type 6 and type 7, along with maximal direct Lyapunov exponents at t = −8 for the ABC flow. Darker colors
indicate larger values. Note the appearance of resonant hyperbolic tori indicated by the low values in the type 7 plot.

G. Froyland, K. Padberg / Physica D 238 (2009) 1507–1523 1515

Fig. 6. Thresholding of second largest eigenvector of R
n

. (a) Three-set partition (c = ±0.001). Regions of high FTLE values corresponding to segments of invariant manifolds
align with the boundaries of invariant sets as approximated by the transfer operator approach. (b) Extraction of invariant sets.

Finally, to further demonstrate the power of the transfer
operator approach we show that the individual 3D invariant sets
are easily extracted by simply displaying those grid sets with v2

n,i
values in the appropriate ranges. The results are shown in Fig. 6(b).
Thus the set-oriented transfer operator method combined with
thresholding also provides a convenient framework to visualise
and extract invariant sets. To extract further invariant sets, one
may use information from other eigenvectors vk

n

; see Remark 3.

6. Case Study II — Autonomous dissipative 3D flow (Lorenz

flow)

The Lorenz flow [31]

ẋ = � (y � x)

ẏ = ⇢x � y � xz (30)
ż = ��z + xy

arose as amodel of convection rolls in climatology. It is well known
as a simple model of a continuous-time dynamical system that
can exhibit chaotic dynamics. We choose the classical parameters
� = 10, � = 8

3 , ⇢ = 28 for which the system is known to possess
a chaotic attractor ⇤ with an SBR measure µ [54].

First, we approximate the chaotic attractor observed in the
Lorenz system using a set-oriented subdivision scheme; for
details on such computations we refer to [48–50]. We obtain an
approximation of the attractor ⇤ consisting of n = 19978 equally
sized boxes. These boxes will also be the basis for approximating
the transfer operator P⌧ , where we choose ⌧ = 0.2. As with
the ABC flow we use 1000 points per box to obtain the n ⇥ n

matrix P

n

with its leading left eigenvector p

n

and then compute
P̂

n

and R

n

. The largest eigenvalues of R
n

are found to be �1 = 1,
�2 = 0.9853,�3 = 0.9801, �4 = 0.9702, �5 = 0.9666, �6 =
0.9641. As the Lorenz flow is transitive on ⇤, we should not be
able to identify any open invariant sets, in contrast to the ABC flow.
Thus the features contained in the second eigenvector v2

n

should
correspond to almost-invariant sets rather than invariant sets. The
second eigenvector v2

n

is shown in Fig. 8(a).
Applying the thresholding ansatz to v2

n

while varying c , we find
that min{⇢

n

(A�
c

), ⇢
n

(A+
c

)} has a global maximum at c = 0, with
⇢
n

(A�
c

) = 0.9419 = ⇢
n

(A+
c

) and µ(A�
c

) = 0.5 = µ(A+
c

), see
Fig. 7. Inserting �2 = 0.9853 into Eq. (14) gives a theoretical lower
boundof 0.8285 and anupper boundof 0.9927. So the thresholding
heuristics produce sets A

+
c

, A�
c

, c = 0, with values ⇢
n

(A�,+
c

) =
0.9419 close to the theoretical upper bound.

Fig. 7. Thresholding in the Lorenz system: using the second eigenvector v2
n

, we
vary c from�0.025 to 0.025 and for each c we compute ⇢

n

(A�
c

) (circles) and ⇢
n

(A+
c

)
(stars) as well as min{⇢

n

(A�
c

), ⇢
n

(A+
c

)} (line).

The partition into two sets obtained via thresholding is shown
in Fig. 8(b). Note that the symmetry in the Lorenz flow not
only affects the geometry of the attractor but it also carries over
to the transfer operator and, hence, the resulting partition into
almost-invariant sets; see [55] for an analysis of symmetries and
Perron–Frobenius operators.

In Fig. 8(c) we have also included part of the stable manifold
of the hyperbolic fixed point at the origin, approximated using
set-oriented continuation methods (see [48–50] for details). The
intersection between the attractor and the stable manifold of the
origin determinesa large part of the boundary between the two
almost-invariant sets, but because of the mutual geometry of the
manifolds they can only form a partial boundary. For a more
detailed visualisation of the interaction of the Lorenzmanifold and
attractor under parameter variation we refer to [56].

In addition we approximated low-period unstable periodic
orbits (using estimates on the periods by [57]). The lowest period
symmetric unstable periodic orbit (period T = 1.558652, see [57])
and its stable manifold determine another large part of the
boundary between the two almost-invariant sets, see Fig. 8(d).
The complete boundary between the two almost-invariant sets
appears to be determined by both the unstable equilibrium point
and this unstable periodic orbit and their stable manifolds.
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(a) Six clusters in the state space. Chaotic sea

(cluster 1) cropped for clarity.
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(b) Projection of the ergodic quotient

onto di�usion modes �k, k = 2, 4, 6.

Figure 4.2: Six primary vortices extracted by k-means clustering (k = 7) of projection

of the ergodic quotient onto first 30 di�usion coordinate. (Parameters in Tab. 4.2)

boundary plane, which act as Poincaré sections for each of primary vortices. There- 2299

fore, we were able to reduce the initialization set even further, focusing the initial 2300

conditions on the x = 0 plane. Of course, any other x = const. plane could have 2301

been chosen with the same e�ect. 2302

Fig. 4.3 shows the results of the simulation focusing on a single vortex. 2303

Again, the convex hulls of clusters in the ergodic quotient are disjoint, allowing for 2304

an easy detection of k = 5 clusters. We see in Fig. 4.3a that primary vortices do not 2305

have a homogeneous internal structure: they consist of a core vortex (green), and 2306

Observables k ⇤ [�10, 10]3 ⌅ Z3

Initial conditions
N = 1002, uniformly with x = 0,

(y, z) ⇤ [0.35, 0.8]⇥ [0.6, 0.9]

Averaging Tmin = 500, Text = 500, ATOL = 2⇥ 10�4

Di�usion Maps Nmin = 70

Table 4.3: Parameters of the analysis of a primary vortex of the ABC flow.

98

Vortices identified as clusters of 
points in diff. coord. space.

State space coloring EQ in Diffusion Coordinates
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Periodic 3D+1 flow: perturbed Hill’s vortex ring
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Unperturbed flow is Hamiltonian at each angular slice.
KAM behavior at small magnitude of swirl and perturbation.
For large perturbations, flow is difficult to study analytically.

2

4
˙R
ż
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Invariant tori in Poincaré 
section isolated using ergodic 
quotient:
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(a) ⇥ = c = 0.280, k = 8 (b) ⇥ = c = 0.349, k = 6

(c) ⇥ = c = 0.352, k = 7 (d) ⇥ = c = 0.355, k = 11

Figure 4.11: Invariant partitions of the forced Hill’s vortex, showing the secondary

vortex (red in left column, blue in right) as it travels with changing ⇥ = c. Level set

partition of �k shown.
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New bifurcation identified:
crescent shaped secondary torus appears and disappears
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Computational demands are driven by resolution desired, 
not dimension of the state space.

10

1. Select the subset of the basis of scalar fields.

2. Seed N initial conditions on the state space.

3. Integrate trajectories and averages along them.

4. Evaluate Sobolev distance matrix.

5. Compute diffusion coordinates.

6. Visualize.

The more initial conditions and 
scalar fields, the higher resolution 
of features.

Length driven by available data and 
application (finite time) or by a 
model (possibly infinite).

A numerical linear algebra 
computation: essentially an 
eigenvector computation for a 
matrix of size N x N.


