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Nonlinear dynamics in photon capture and uptake
at the photosystem level may have a strong effect
on photosynthetic yield. However, the magnitude of
such effects is difficult to estimate theoretically
because nonlinear systems often cannot be repre-
sented accurately using equations. A nonanalytical
simulation was developed that used a simple deci-
sion tree and Monte Carlo methods, instead of
equations, to model how a population of photo-
systems absorbs and utilizes photons from an ambi-
ent light field. This simulation replicated realistic
kinetics in the closure and variable fluorescence
yield of PSII on the single-turnover timescale, as
well as the saturating behavior in light-driven elec-
tron flow that is observed in nature with increasing
irradiance. This simulation indicated that the trans-
fer of absorbed photon energy among PSII units
can introduce strong nonlinear enhancement in
light-driven electron flow. However, this effect was
seen only in populations with particular photo-
synthetic states as determined by physiological prop-
erties of PSII. Other populations with the same
degree of energy transfer but with different photo-
synthetic states exhibited little enhancement in elec-
tron flow and, in some cases, a reduction. This
nonanalytical approach provides a simple means to
quantify theoretically how nonlinear dynamics in
photosynthesis arise at the photosystem level and
how these dynamics may act to enhance or constrain
photosynthetic rates and yields. Such simulations
can provide quantitative insight into different physi-
ological bases of nonlinear light-harvesting dynamics
and identify those that would have the strongest the-
oretical influence and thus warrant closer experi-
mental examination.
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Several analytical equations have been used to
parameterize the photosynthesis-irradiance (P–E)
relationship of plants and algae. These include rect-
angular hyperbolae (Maskell 1928, Baly 1935,
Thornley 1998), hyperbolic tangents (Jassby and
Platt 1976), quadratics (Smith 1936), exponentials
(Webb et al. 1974), and other more complex forms
(Bannister 1979, Thornley 1998). These equations
all express the saturation of P with increasing E that
is observed in nature and are useful in ecological
models for characterizing the approximate photo-
synthetic state of plants and algae. Yet these equa-
tions do not provide a mechanistic description
of the specific physiological factors that control the
P–E relationship. The parameters in these equations
are purely empirical and lack concise physiological
definitions (Abbott 1993).

A mechanistic model for the saturating P–E
relationship can also be derived from physiological
first principles by using target theory, which
describes photon capture and uptake at the pho-
tosystem level in terms of two physiological prop-
erties of photosystems: their mean functional
cross-section (r) to absorb a photon and the time-
scale (s) with which electron acceptors drain this
photon energy away (Dubinsky et al. 1986, Cullen
1990). These two properties act jointly to establish
a dynamical balance between the flux of energy
into and out of a population of photosystems
(Han 2001). In theory, plants or algae are opti-
mally adjusted for photon capture when the rate
of exciton trapping by a population of photosys-
tems matches the rate of electron transport
(Falkowski and Raven 1997). Conversely, when
these rates are out of balance, this energy flow is
less than optimal in a dynamical sense. In empiri-
cal P–E relationships, this balance is closely related
to the difference between the ambient irradiance
and EK, an idealized irradiance that represents an
average acclimation state below and above which a
photoautotroph is light limited or light saturated,
respectively. In a target theory model, an analo-
gous parameter in a dynamical sense is the inverse
product of r and s (Falkowski 1992).
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This ‘‘dynamical’’ EK represents the threshold
irradiance at which the rate of photon capture by a
population of photosystems exceeds the rate by
which this energy is transported away by electron
acceptors. Here, constants convert the units of
(r Æ s))1 into those of irradiance (lmol quanta Æ
m)2 Æ s)1) so that this dynamical EK can be com-
pared to the ambient irradiance. This scaling pro-
vides a means to determine how dynamically well
matched the photosystems of a plant or alga are to
the current incident photon flux.

Mechanistic models for the P–E relationship like
those derived using target theory provide impor-
tant mechanistic insight into how the structure and
function of photosystems affect the dynamics of
light harvesting and photosynthetic yield. Models
like the one shown in Figure 1 quantify how
specific changes in PSII physiology, such as in the
estimates of r and s that can be determined using
variable fluorescence techniques (PSII; Kolber and
Falkowski 1992, 1993, Kolber et al. 1998), affect
photosynthetic yields and rates in vivo. Yet target
theory models as simple as these represent highly
idealized representations of photosystem-photon
interactions. They presumably omit important
aspects of the physiology or organization of PSII
that control the dynamics of photon capture and
uptake. For example, a simple target theory model
cannot account for the effect of pigment packag-
ing (‘‘self-shading’’) on photosynthetic rates.
Packaging is a common acclimative response to low
light levels that involves changes to the layering of
the thylakoid membranes (Berner et al. 1989), but
application of target theory requires the assump-
tion that all photosystems have an equal probability
to absorb ambient photons. Pigment packaging
inherently violates this assumption, as does any

physiological response in a plant or algal cell that
causes some photosystems to shade others. A quali-
tatively similar response occurs under high-light
conditions in those algae that move chloroplasts
toward the nucleus as a strategy for photoacclima-
tion (Furukawa et al. 1998). It might be possible to
approximate such physiological responses analyti-
cally and embed these approximations into existing
target theory models for the P–E relationship, but
any resulting loss in realism may be difficult to
quantify as would be any dynamical inaccuracies
that such approximations introduce.

Recent studies suggest that dynamical aspects of
the photosynthetic light reactions may be more
important than previously thought. A range of feed-
back, threshold, and lagged behaviors have been
identified (e.g., Nedbal and Březina 2002, Nedbal
et al. 2003, Fragata and Dudekula 2005) that indi-
cate strong nonlinear dynamics in light harvesting
at the photosystem level. In other physiological sys-
tems, such behaviors are known to reflect important
modes of regulation (Glass 2001, Strogatz 2001),
and a reasonable hypothesis is that nonlinear
dynamics at the photosystem level may introduce
similarly important but as of yet unexamined effects
on photosynthetic rates or yields. Models are power-
ful tools for identifying potential enhancements or
regulations that arise from nonlinear dynamics, but
modeling how nonlinear dynamics arise in light har-
vesting and quantifying their potential effect
remains challenging. Most nonlinear systems are dif-
ficult or impossible to represent appropriately using
equations (May 1976, Strogatz 1994, Glass 2001),
and simple target theory models are not adequate
for representing such nonlinear dynamics.

Many nonlinear systems can be well modeled
using nonanalytical approaches (e.g., Lavorel 1986,
Kevrekidis et al. 2004) including systems that can be
thought of as a collection of targets, but where tar-
get theory does not adequately describe the system’s
dynamics (e.g., Andreo 1991). To understand better
how the dynamics of photon-photosystem interac-
tions at the photosystem level may affect photon
capture and light harvesting, a simple, intuitive non-
analytical approach was developed to simulate how
an idealized population of PSII interacts with a pho-
ton flux. This simulation can quantify the theoreti-
cal effect of changes in specific properties of
individual PSII on rates and yields of light-driven
electron flow, as well as the effect of population-
wide changes such as the spatial density of PSII
associated with pigment packaging or chloroplast
movement within a cell. We applied this nonanalyti-
cal simulation in three different contexts to assess
its utility for exploring basic dynamical aspects of
light harvesting that cannot be readily modeled
using equations. First, we quantified how specific
changes in PSII structure, function, and organiza-
tion would theoretically affect the dynamics of pho-
ton capture and light-driven electron flow in

Fig. 1. A saturating relationship between irradiance (E) and
photosynthesis (P) can be derived mechanistically from first prin-
ciples using a target theory model of light-driven electron flow.
Dashed lines indicate how 50% increases and decreases in the
mean effective photosystem cross-section (r) or the electon turn-
over timescale (s) affect electron flow rate.
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idealized PSII populations. Second, we used this
simulation in an applied context to estimate how
measured changes in the PSII properties of a phyto-
plankton culture would presumably affect its light-
harvesting rates and yields. Third, we used this
simulation as an exploratory tool to estimate how a
basic nonlinear aspect of photosynthetic light har-
vesting, the transfer of absorbed photon energy
among PSII (Falkowski et al. 1988), may introduce
unpredicted enhancements or constraints on light-
driven electron flow simply due to dynamical inter-
actions among photosystems.

MATERIALS AND METHODS

Design of the simulation. PSIIs in this simulation are repre-
sented as circles, with a number of PSIIs (nPSII) randomly
distributed in a two-dimensional model domain of length scale
L (Fig. 2). A given simulation run involves passing photons
through this model space and assessing how this idealized PSII
population absorbs and utilizes this photon flux. Before each
run, every PSII is assigned a functional cross-section (rPSII) that
describes its circular area and thus establishes its effective
radius within the model space. A single time constant (sPSII) is
used to represent the turnover timescale of the electron
acceptors that service these PSIIs, which for simplicity is
assumed to be identical for all PSIIs within the model domain.
A fraction of these PSIIs can be considered nonfunctional
photochemically to represent photodamage or other factors
that affect PSII functionality. This fraction is represented by a
term fPSII where a value of 0.6 indicates that 60% of simulated

PSIIs are functional photochemically. The simulation also
allows photon energy absorbed by one PSII to be transferred to
another in a form of photosystem connectivity, which is
parameterized by a probability of transfer (p) such that p = 0
represents a simple separate-units model (Bernhardt and Trissl
1999). The actual mechanism for this connectivity is not
specified in this simulation, and no distinction is made between
energy transfer at the thylakoid level (sensu Joliot and Joliot
1964) and transfer within cells via fluorescence emission and
reabsorption (sensu Huot et al. 2005), although the latter in
nature may be a less important source of energy transfer.

Once these properties are assigned to the PSIIs in a given
population, PSIIs whose centers are located within one radius
of the boundary of the model domain are repositioned back
into the domain so that no part of any PSII is outside the
domain. Next, the dynamical and steady-state behaviors of this
population are determined at a particular irradiance, E, using a
Monte Carlo method. Here, individual photons are passed
sequentially through the model domain, and their energetic
fates are recorded. The number of photon events to be
simulated (nphotons) is computed from the simulated irradi-
ance, E; the area of the model domain, L2; and the turnover
timescale, sPSII.

nphotons ¼ E � L2 � 50sPSII � 10�3 ð2Þ

Running the simulation for a period 50 times longer than sPSII

ensures that a dynamical equilibrium is reached and also helps
to reduce statistical noise in the results. The factor of 10)3

converts the units of sPSII (ms) into seconds.
These nphotons are directed through the model domain

randomly in space using the ‘‘ran1’’ algorithm of Press et al.
(1992). The numerical period of this algorithm is greater than
108, much larger than number of photons required to simulate
the highest E in this study. Therefore, the locations of photons
passing through the model domain are effectively randomized
without repetition. Photons are passed through the model
domain regularly in time, and although this is not strictly
realistic, for simplicity, we ignored any effect that this differ-
ence would have over the relatively long timescales of a given
simulation run.

The energetic fate of each of these nphotons photons is
determined using a decision tree (Fig. 3). If a photon’s
randomly chosen coordinates in the model domain are
located within the circular area of a particular PSII, this
photon is considered to be absorbed by that PSII. If two or
more PSIIs overlap this location, the PSII that was positioned
first over those coordinates is considered to be the absorbing
photosystem. The fate of an absorbed photon depends first
on the immediate photochemical state of the PSII that
absorbed it. If that PSII was designated as nonfunctional, the
absorbed photon is considered to be dissipated as heat. If that
PSII is photochemically functional, then its photochemical
state is next evaluated. If it has not absorbed a photon within
the prior 3sPSII, then that PSII is considered closed to
photochemistry for a subsequent period of 3sPSII, and the
absorbed photon counts toward photochemistry. For the
purposes of this simulation, closure of a PSII is equivalent to
the photochemical reduction in the associated primary
quinone electron acceptor, QA, that occurs in actual organ-
isms (Kolber et al. 1998, Samson et al. 1999), a definition
often used in other modeling studies (e.g., Zhu et al. 2005).
Photons absorbed by a closed PSII are considered to be
dissipated via fluorescence, unless this photon energy is
transferred to another PSII. Whether such transfer occurs for
this particular photon is determined by a uniformly distrib-
uted random number generated between 0 and 1. If this
number is less than p, this photon energy is redirected to
another PSII randomly chosen within the model domain.

Fig. 2. This simulation models a number of PSII with speci-
fied photosynthetic properties, distributed in a model domain of
area L2. A photon flux representing an irradiance (E) is ran-
domly directed through L2, and a relative rate of light-driven
electron flow (Pe) is computed from the number of photons that
encounter open, functional PSIIs. By simulating electron flow
rates over a range of different E-values, it is possible to generate
the Pe–E relationship of a particular population of modeled PSII
for that specific combination of photosynthetic properties.
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After the last of these nphotons is either dissipated or counted
toward photochemistry, the total number of photons that
closed PSII and therefore contributed to light-driven electron
flow (nelectronflow) is computed. The number of fluoresced
photons (nfluoresced) is also calculated. A steady-state rate of
electron flow Pe (electrons Æ s)1) is calculated by normalizing
the number of photons that closed a PSII in a given simulation
run to the run’s duration in model time (50sPSII, in ms).

Pe ¼
nelectronflow

50sPSII � 10�3
ð3Þ

The factor of 10)3 again converts the units of ms into s. These
electron flow rates have no meaning in an absolute sense, but
relative changes in Pe indicate the effect of different PSII
properties or architectures. The yield of electron flow (FP) is
computed as

UP ¼ nelectronflow

nphotons
ð4Þ

and the steady-state yield of fluorescence emission (FF) is
similarly computed as

UF ¼ nfluoresced

nphotons
ð5Þ

These yields are normalized to the number of photons directed
through the model domain, not to the number of photons
absorbed by PSII. The sum of FF and FP is not unity because of
the pathway for dissipation via heat.

This simulation does not explicitly include any allowance for
dynamical changes in processes like nonphotochemical
quenching of fluorescence. For simplicity, such processes are
assumed to be constant over the short 50 sPSII timescale of any
given simulation run. Similarly, the efficiency with which
absorbed energy is transferred to reaction centers in PSII is
also not represented in the simulation nor is the quantum yield
of charge separation. Terms for these sometimes appear in
analytical equations for light-driven electron flow (Table 1) but
are often defined as unity and included for heuristic purposes
only, not as model parameters per se.

The length scale of the model domain (L) was selected so
that Pe saturated at roughly the same E that is observed in
actual phytoplankton (i.e., on the order of 100 lmol quanta Æ
m)2 Æ s)1 for typical values of rPSII, sPSII, and fPSII). This tuning
of L introduces no bias in the simulated light-harvesting
dynamics, provided that excessive self-shading of PSII is
avoided. An additional benefit of adjusting L in this way is
that physiologically realistic values of rPSII, sPSII, fPSII, and p can
be used in the simulation, making it unnecessary to scale these
parameters as well.

Assessing steady-state and transient dynamics of the simulation.
The Pe–E relationship of a particular PSII population can be
generated by repeatedly simulating Pe over a range of different
irradiances. We determined the Pe–E relationships of a wide
but physiologically realistic range of PSII populations, which
represented the different combinations of rPSII, sPSII, p, and

Fig. 3. The decision tree used to represent the photon-photo-
system dynamics in this simulation. The photosynthetic properties
of the photosystems and their location in the model domain are
first specified, after which a Monte Carlo method is used to
repeatedly track the energetic fates of individual photons passing
through this model domain.

Table 1. Some published equations for computing
light-driven electron flow from E and from physiological
properties of PSII. Notation is not standardized: generally,
variants of P refer to an electron flow rate, variants of r
refer to a functional absorption cross-section, and I or E is
irradiance. Variants of D/ represent photochemical yields,
and F and q refer to efficiencies. Both nPSII and nPS2
represent the number of PSII.

Model equation Reference

P ¼ n � rPSII � / � I Sukenik et al.
1987 (eq. 1)

P ¼ I � rPSII � Uq � Ut � D/sat Kolber and Falkowski
1992 (eq. 1)

Pf ¼ D/m

0:65

h i
� qp � E � rPSII Falkowski and Kolber

1993 (eq. 5)
Kolber and Falkowski
1993 (eq. 12)

P B
O2
ðEÞ ¼ rPS2 � URC � qP ðEÞ�

/eðEÞ � f � nPS2 � E
Falkowski and Kolber
1995 (eq. 4)

P ¼ I � rPSII � nPSII � qP � /sat
1:7

h i
Falkowski and Kolber
1995 (eq. 9)

Pf ¼ E � rPSII � DF 0

F 0v
Gorbunov et al.
2000 (eq. 1)

P RCII ðEÞ ¼ E � rPSII � qP ðEÞ � /eðEÞ � f Suggett et al.
2001 (eq. 1)
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fPSII shown in Table 2. Increments of simulated E were spaced
unevenly to provide fine resolution at low E and progressively
coarser resolution at higher E. Two replicate sets of simulation
runs were performed over these ranges to examine how
differences in the spatial density of PSII, such as that resulting
from changes in pigment packaging or chloroplast migration,
may affect light harvesting. The first used 250 PSIIs in a model
domain of L = 50 nm, resulting in a PSII population that was
‘‘densely’’ distributed with overlap that was significant but not
extreme (Fig. 4a). The second used the same number of PSIIs
in a model domain with L = 100 nm, resulting in a more
‘‘sparsely’’ distributed PSII population with minimal overlap
(Fig. 4b). Although such ‘‘dense’’ PSII populations would
often be associated with low-light photoacclimation, such as
pigment packaging and self-shading, PSII will be to some
degree similarly self-shaded in a cell that has responded to
high-light conditions by moving chloroplasts toward the
nucleus (Furukawa et al. 1998). Modeling photon-photosystem
interactions in both ‘‘dense’’ and ‘‘sparse’’ PSII populations
provides a means to examine how PSII overlap within a cell
affects its P–E relationship in the most general sense, not just in
the manner traditionally associated with low-light acclimation
and thylakoid-level pigment packaging, which would likely
coincide with only a limited subset of the PSII property
combinations listed in Table 2.

RESULTS

Dynamical and steady-state behavior of the simulation.
Examining the step response of this simulation is

one way to evaluate how accurately it replicates pho-
ton capture and uptake dynamics. When dark-
adapted plants and algae experience a high-intensity
step increase in irradiance, virtually all PSIIs rapidly
close due to reduction in the primary electron
acceptor, QA. Given adequate intensities, this action
can result in a transient rise in variable fluorescence
on the sub-ms timescale (Kolber et al. 1998, Samson
et al. 1999, Kromkamp and Forster 2003). This time-
scale is much shorter than that of a single photo-
chemical turnover, and so this fluorescence
transient is often referred to as the ‘‘photochemi-
cal’’ phase of fluorescence induction (Samson et al.
1999). The fluorescence maximum attained on
these scales is variously referred to as J, I1, Fm, or
Fm(ST) in the literature (Strasser et al. 1995,
Kromkamp and Forster 2003), and for notational
convenience, we will refer to this level heretoafter as
Fm. A model of light harvesting that is dynamically
realistic on this timescale should be able to repro-
duce this transient rise in fluorescence to Fm as well
as this full closure of PSII.

Both of these dynamical behaviors can be seen in
the output of this nonanalytical simulation during
the first 100 ls of a simulated run at very high E
(20,000 lmol quanta Æ m)2 Æ s)1, Fig. 5). To examine
these transients more clearly over these short model
timescales (<<sPSII), it was necessary to use a larger
model domain (L = 4e ) 7 m) and a greater num-
ber of PSIIs (nPSII = 4,000) to reduce nonanalytical
noise. On these timescales, fPSII is an appropriate
proxy for the variable fluorescence yield Fv ⁄ Fm

described by the Kolber et al. (1998) physiological
model of variable fluorescence, where Fm is defined
as above. The variable fluorescence kinetics pro-
duced by this simulation were well fit by the Kolber
et al. model, with fitted estimates of rPSII and fPSII

(Fv ⁄ Fm) within 2.5% and 12% of the values assigned
to them for this particular simulation run. The
number of open PSII decreased to zero during this
period, indicating that this fluorescence behavior
coincided with complete photochemical closure of
the entire PSIIs population, as would be expected
to occur on such timescales due to the complete
reduction in QA at such high irradiance levels. It
should be noted that experimentally measured fluo-
rescence transients may be faster or slower than the
simulated one in Figure 5, but that this discrepancy
does not indicate that the simulation is dynamically
inaccurate. In reality, a given PSII population can
exhibit a wide range of timescales in this photo-
chemical phase fluorescence transient simply due to
the intensity of the light source used to stimulate
fluorescence. Bright sources will result in faster
saturation and PSII closure than dimmer sources,
and these same dynamics can be observed in this
simulation.

The shape of the steady-state Pe–E relationships
predicted by the simulation further suggested that
it reproduced realistic dynamics in light harvesting.

Table 2. The ranges of PSII properties and irradiance
examined in this simulation.

Parameter Simulated values Units

nPSII 250 dimensionless
L 0.5Æ10)7 (50)

or 1Æ10)7 (100)
m (nm)

E 0.1, 0.2, … 50, 60,
… 200, 250 … 500

lmol quanta
Æ m)2 Æ s)1

rPSII 200, 300, … 1,200 Å2 Æ quanta)1 Æ PSII)1

p 0, 0.05, … 0.5 dimensionless
sPSII 1, 2, … 10 ms
fPSII 0.05, 0.1, … 0.65 dimensionless

Fig. 4. Two example PSII populations having the same nPSII

but (a) with some degree of overlap among PSII (L = 50 nm), to
simulate pigment packaging or PSII overlap, and (b) with mini-
mal packaging or overlap (L = 100 nm). The PSIIs in these two
examples are scaled appropriately to indicate their relative size
compared to the model domain.
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We observed that for a simple PSII population with
minimal overlap and no energy transfer between
PSII, the Pe–E relationship of this population was
best fit by a rectangular hyperbola (Fig. 6a). Other
functional forms for P–E (see Table 3) did not fit
as well, or they required additional ‘‘shape’’
parameters whose best-fit estimates effectively
reduced them all to rectangular hyperbolae. The
PSII population we used for this initial examina-
tion (i.e., minimal overlap, p = 0) is simple enough
so that its energetic dynamics can be represented
analytically with differential equations whose solu-
tion is a hyperbola (Han 2001). Good agreement
between theory and simulation with this simple
case provides assurance that the simulation will
reproduce realistic dynamics when modeling more
complex PSII architectures whose dynamics may
not have an analytical solution.

A simple sensitivity study with this simple PSII
population demonstrated how independent
changes in these PSII properties each affected
overall electron flow rates. Independent decreases
in either fPSII (Fig. 6b, + symbols) or rPSII (4 sym-

bols) both resulted in decreases in steady-state Pe.
This change was expected because decreased
numbers of functional PSII and smaller functional
cross-sections each act to reduce electron flow.
Shortening sPSII (, symbols) led to an increase in
steady-state Pe, a response that reflects a funda-
mental difference between how sPSII acts in this
dynamical simulation and how s acts in the quasi-
mechanistic model of Figure 1. Small changes in s
in the model of Figure 1 primarily affect EK only
and not the steady-state Pe, whereas in this dyna-
mical model, changes in sPSII do affect Pe because
they alter the effective energy throughput for all
PSII.

These Pe–E relationships do not exhibit any
reduction in electron flow at very high E, that is,
the ‘‘photoinhibition’’ often seen in nature that is
sometimes represented in empirical P–E models by
the b parameter (Platt et al. 1980). This apparent
lack of photoinhibition is to be expected, because
these Pe–E relationships arise from PSII populations
the physiological properties of which are fixed.
Without changes in physiology, a PSII population
can only be undersaturated or effectively saturated
at any given photon flux, and so there should be no
expectation that Pe decreases at supraoptimal E in
this model.

Fig. 5. The simulated step response of a low spatial density
(L = 400 nm) population of PSIIs (nPSII = 4,000) to a strong step
increase in E from 0 to 20,000 lmol quanta Æ m)2 Æ s)1. A fit of a
theoretical model for fluorescence yield kinetics (a) produced
estimates of rPSII and fPSII similar to those used to generate this
transient. The fraction of open PSIIs (b) decreased from the ini-
tial fPSII of 0.5 to zero during this transient, indicating complete
photochemical closure of this PSII population. In this situation,
the variable fluorescence yield Fv ⁄ Fm measured from actual tran-
sients was considered equivalent to fPSII.

Fig. 6. (a) Fits of six different functional forms for P–E to a
Pe–E relationship simulated from a simple PSII population. A sim-
ple hyperbola provides the best fit with the fewest parameters.
(b) Examples of Pe–E relationships predicted for the same popu-
lation showing how independent changes to fPSII, rPSII, sPSII, and
p each affect the simulated electron flow rate in that particular
population.
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Potential enhancement in electron flow due to PSII energy
transfer. The Pe-values that were computed from
these simulation runs indicated that the transfer of
absorbed photon energy between PSIIs could have a
strong nonlinear effect on light-harvesting rates and
yields. In two representative runs, PSII populations
with a p of 0.5 exhibited an enhancement in Pe

by � 8% to 10% compared to populations that were
identical in all respects except for having no ener-
getic connectivity (Fig. 7a). In these two cases, the
enhancement was higher in the PSII population
that saturated at lower E (Fig. 7b), and in both pop-
ulations, this enhancement was maximal at irradi-
ances below the ‘‘dynamical’’ EK that would be
predicted from the population’s rPSII and sPSII using
equation 1 (arrows). In neither case did this
enhancement decrease to zero at irradiances that

would typically be considered light saturating,
remaining instead � 3% to 6%.

More complex differences in p-driven enhance-
ment of Pe occurred in the simulations run over the
broader physiological ranges of rPSII, sPSII, p, fPSII,
and E in Table 2. To concentrate on the more

Table 3. Functional forms of P–E fitted to the simulated Pe–E relationships. Similar equations may substitute EK for
Pmax Æ a)1, or I for E. The m in Bannister (1979) and n in Thornley (1998) are shape parameters that reduce these equa-
tions to simple hyperbolae when m = 1 or when n = 0.

PðEÞ ¼ aEPmax

aE þ Pmaxð Þ
Rectangular hyperbola (Maskell 1928, Baly 1935)

PmaxaEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P 2

max þ aEð Þ2
q Quadratic (Smith 1936)

vmI

I m
p þ I m

� �1
m

Generalized empirical form (Bannister 1979)

Pmax 1� e
aE

Pmax

� �
Saturating exponential (Webb et al. 1974)

Pmax tanh aE
Pmax

� �
Hyperbolic tangent (Jassby and Platt 1976)

1
2n aE þ Pmax �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aE þ Pmaxð Þ2� 4naEPmax

q� �
Nonrectangular hyperbola (Thornley 1998)

Fig. 7. Enhancement in Pe over a range of E-values due to
energy transfer between PSII. In (a), two specific PSII physiologi-
cal states are shown (I and II), the former having a larger func-
tional cross-section and therefore exhibiting saturation in Pe at a
lower E. Having a p of 0.5 (diamonds) compared to one of zero
(dots) results in an up to 10% enhancement in Pe (b), with the
greatest enhancement occuring at irradiances lower than would
be predicted by computing the ‘‘dynamical’’ EK from equation 1
(arrows).

Fig. 8. Percent enhancement of Pe due to energy transfer
between PSIIs for a model domain that is sparsely populated with
PSII (left column, i.e., Fig. 3b) and one that is densely populated
(right column, i.e., Fig. 3a). Solid lines show results for p = 0.25
and dotted lines for p = 0.5. Histograms in the top row include
all Pe–E curves simulated between 10 and 200 lmol quanta Æ
m)2 Æ s)1. The bottom three rows show subsets of these curves at
specific irradiances relative to EK: E = 1.0 EK (row 2), E = 0.5 EK

(row 3), and E = 1.5 EK (row 4).
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ecologically relevant range of E around EK, we
examined this enhancement only in those simula-
tions with 10 < E < 200 lmol quanta Æ m)2 Æ s)1. We
determined that the level of enhancement in Pe dif-
fered in these 28,600 simulations between the
‘‘sparse’’ and ‘‘dense’’ PSII populations. In a sparse
PSII population, the enhancement due to p = 0.25
was distributed in a roughly Gaussian fashion � 2%
(Fig. 8a, solid trace). The positive tail of this distri-
bution indicated enhancement in excess of 10% for
certain combinations of rPSII, sPSII, and fPSII. The
negative tail indicated that nonzero energy transfer
between PSII could actually act to decrease Pe given
other combinations of these PSII properties. Dou-
bling the degree of energy transfer (p = 0.5, dashed
trace) resulted in a broader distribution with a peak
located slightly higher at � 3%. In dense PSII popu-
lations, this p-driven enhancement was stronger and
more broadly distributed, � 4% and 9% for p = 0.25
and 0.5, respectively (Fig. 8b). The tails of these dis-
tributions indicated a potential enhancement in Pe

of up to 20% for certain physiological combinations,
and a reduction by � 15% for others.

These summary histograms contain information
on how this p-driven enhancement depends on vari-
ous combinations of the four specified PSII physio-
logical properties, but this multidimensional
variability is difficult to interpret in such summaries.
To explore this better, we used equation 1 to com-
pute the photosystem-level EK for each of these
28,600 simulated PSII populations from its specified
rPSII and sPSII. We selected from these populations
only those runs that fit into one of the following three
categories: (i) runs where E was half of this computed
EK, (ii) runs where E was equal to EK, and (iii) runs
where E was 1.5 times greater than EK. These catego-
ries correspond to PSII populations that in theory are
either dynamically undersaturated by, equilibrated
to, or oversaturated by the ambient photon flux. We
observed that in sparsely distributed PSII popula-
tions, the enhancement in Pe due to energy transfer
decreased as E surpassed EK (e.g., for p = 0.25 in
Fig. 8c, e, and g, solid lines). This effect was more evi-
dent in a similar PSII population with twice the
degree of energy transfer (p = 0.5, dashed lines). In
dense populations, the enhancement in Pe was less
sensitive to the relationship between ambient E and
EK (Fig. 8, d, f, and h), although in general it dis-
played a broader distribution.

Using this simulation to interpret measured time series of
PSII variability. Repeated simulation of Pe over the
ranges of PSII properties in Table 2 effectively gen-
erates a look-up table of Pe at specific combinations
of rPSII, sPSII, p, fPSII, and E. Because our definitions
for these parameters are roughly analogous to those
used by experimentalists, this table provides a
means to predict how measured changes in rPSII,
sPSII, fPSII, and p in actual phytoplankton may affect
their light-driven electron flow rates. We used this
approach to predict relative changes in Pe in a

nutrient-limited culture of Thalassiosira weissflogii,
the PSII physiological properties of which were con-
tinuously measured using fast repetition rate (FRR)
fluorometry (see Laney et al. 2005). This variable
fluorescence technique can generate highly resolved
time series of proxies for rPSII, sPSII, and p, but it
does not provide direct measurements of fPSII (Kol-
ber et al. 1998). For this assessment, we used the
variable fluorescence yield Fv ⁄ Fm as a proxy for fPSII,
realizing that changes in this yield often, but not
always, reflect changes to the fraction of functional
PSII (Falkowski and Kolber 1995, Parkhill et al.
2001). To correct better for measurement biases,
variable fluorescence data from the 2005 study were
first reprocessed using a more recent improved
approach (Laney and Letelier 2008).

Considerable variability was observed in the mea-
sured PSII properties in this culture, presumably
reflecting diurnal cycles as well as longer-term
responses to a deliberate increase in E that occurred
halfway through this study (Fig. 9). Despite such
independent variability in specific PSII parameters,
the overall Pe–E relationships predicted by the simu-
lation were similar to those expected for algae

Fig. 9. Photosynthetically active growth irradiance (PAR, a)
and PSII physiological properties (b–f) measured in a 10 d cul-
ture culture of Thalassiosira weissflogii (for experiment details refer
to Laney et al. 2005). Arrows and vertical dashed lines indicate 3
specific days that were examined with this simulation to predict
relative changes in Pe (see Fig. 10). Thick bars on the abscissa
indicate periods in (a) when the growth lamps were off.
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under low- and high-light conditions. On a day early
in the time series when the culture was acclimated
to low light levels, the Pe–E relationship displayed a
generally linear trend in the morning period
(Fig. 10a, solid lines). This linear relationship was
maintained despite considerable physiological vari-
ability in PSII during this several-hour period (see
day 257 in Fig. 9, a–e). Four days later, after a shift
to higher E, this linear relationship became more
like what is expected of light-saturated cells
(Fig. 10b), with a slight midday reduction in Pe also
apparent. The Pe–E relationship 3 d later continued
to exhibit this same saturating behavior (Fig. 10c),
although its shape had changed slightly. Unlike the
Pe–E relationships generated from ‘‘static’’ PSII pop-
ulation (e.g., Fig. 7), the relationships generated
from actual time series of PSII physiology do exhibit
a reduction in Pe at high E. This finding indicates
that PSII physiology in these cultures changes dur-
ing the day as the cells acclimate, experience photo-
damage, or are otherwise altered by being exposed
to high irradiance around solar noon. These
changes affect the shape of these Pe–E curves and
lead them to differ from those exhibited by popula-
tions with fixed PSII physiology.

Using these same experimental observations, we
examined the degree to which these predicted
Pe-values would differ due to the effect of energy
transfer between PSIIs. We recreated a duplicate
time series of Pe using our look-up table as
before, but by fixing p at 0 regardless of its actual
measured value. We then calculated the percent
difference between these predicted Pe-values and
those predicted using the p that was actually mea-
sured. Ignoring PSII energy transfer in this simula-
tion resulted in estimates of Pe that were smaller
by � 5%–10% in both sparsely and densely mod-
eled populations of PSII (Fig. 10, dashed lines)
for this particular time series of PSII properties.
The enhancement in Pe due to connectivity was
most pronounced in the region immediately
around the irradiance that would represent EK in
empirical P–E models.

DISCUSSION

Simulating light-harvesting dynamics among PSIIs.
Experimental techniques such as variable fluores-
cence analysis have provided valuable insight into
how aspects of PSII physiology affect photosynthetic
rates and yields. This insight is limited, however,
because only a few aspects of PSII physiology can be
reliably measured in laboratory cultures and even
fewer in natural assemblages. Despite this fact,
models have been developed to interpret this
incomplete view of PSII physiological variability in
phytoplankton in metabolically and ecologically
meaningful terms. Equations that estimate how mea-
sured changes in PSII physiology should affect light-
driven electron flow rates (e.g., Table 1) are in
essence PSII-based equations for the Pe–E relation-
ship. Such equations have the potential to assess the
general photosynthetic state of phytoplankton
directly from PSII properties, yet it is unclear how
accurately these equations are in modeling the
physiological control of PSII on light harvesting.
Improving PSII-based models for light harvesting
involves not only identifying aspects of photo-
synthetic physiology that are currently missing, but
also identifying ways in which the real relationship
between PSII physiology and Pe might not be accu-
rately represented. An important criterion for these
models is whether they are dynamically realistic in
their descriptions of photon capture and uptake.

The equations in Table 1 are dynamically linear
because changes in a particular property of a PSII
population, such as the PSII functional cross-
section, have a direct and proportional effect on
photosynthetic rates and yields. Recent studies, how-
ever, suggest that the photosynthetic light reactions
are not so clearly linear in this manner but rather
can exhibit strong nonlinear dynamics (Nedbal and
Březina 2002, Nedbal et al. 2003, Fragata and
Dudekula 2005, Rascher and Nedbal 2006). If the
capture and uptake of photons at the photosystem
level is sufficiently nonlinear in a dynamical sense,
then small changes in a particular PSII property

Fig. 10. Predicted Pe–E relationships for the forenoon of the 3 d indicated in Figure 9: (a) acclimated to low light, low nitrate condi-
tions; (b) transiently acclimating to higher E; and (c) further acclimated to high E. Solid lines represent Pe–E relationships when all physi-
ological parameters were included. Dashed lines indicate simulations where the effect of PSII connectivity was ignored and p was fixed to
0. The enhancement in Pe is most evident in these curves around the irradiance that would correspond to EK in an empirical P–E curve.
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may actually have a disproportionately strong effect
on light-harvesting rates or yields, which would not
occur in a dynamically linear system. Nonlinear
dynamics are now known to play important regula-
tory roles in many physiological systems (Korn
2005), and a reasonable hypothesis is that they also
play an important role in regulating photosynthesis
in plants and algae. Analytical models will probably
not help us identify nonlinear dynamics in the Pe–E
relationship because many nonlinear systems cannot
be represented accurately using equations (May
1976, Strogatz 1994). Even in instances where it may
be possible to approximate a particular nonlinear
behavior analytically, it can be difficult to identify or
quantify any dynamical artifacts that might result
from such an approximation.

Nonanalytical approaches such as agent-based
modeling and kinetic Monte Carlo simulation have
proved useful for modeling the dynamics of nonlin-
ear systems and for identifying nonlinear inter-
actions within them (Kevrekidis et al. 2004). We
used such an approach to replicate physiologically
realistic steady-state and transient behaviors in PSII
closure and fluorescence, using only a simple deci-
sion tree and Monte Carlo techniques (Fig. 5). The
simulated dynamics of a simple PSII population that
had an equivalent analytical representation matched
closely those of the analytical solution, indicating
that the design of the simulation was dynamically
accurate (Fig. 6a). This is strong evidence that any
nonlinear behavior that is observed in slight varia-
tions on this basic PSII population is also likely to
be dynamically realistic and not simply numerical
artifact resulting from improper simulation design
or execution.

A nonanalytical approach is particularly valuable
for examining a number of physiological changes in
PSII the dynamical effects of which cannot be read-
ily described using analytical equations. An example
is with phytoplankton the PSIIs of which are self-
shaded at the thylakoid level due to pigment pack-
aging or otherwise shielded due to the spatial
arrangement of chloroplasts within the cell. Equa-
tions of basic target theory typically require an a pri-
ori assumption that all PSIIs have an equal
probability to absorb ambient photons. Yet with self-
shading in actual cells, this assumption is inappro-
priate. A nonanalytical approach can directly
express and quantify the dilatory effect of self-shad-
ing on PSII electron flow rates and yields, and it
can also estimate the mitigating effect that processes
like energetic connectivity among PSIIs could poten-
tially have in such situations. PSII connectivity can
in theory redistribute absorbed photon energy
among the entire PSII population and deliver exci-
ton energy to PSIIs that do not directly absorb a
photon. Our simulations suggest that this mitigating
enhancement effect can be substantial, exceeding
20%, given certain combinations of rPSII, sPSII, and
fPSII.

This mitigating effect of PSII connectivity on light
harvesting is not a new idea, yet quantitative esti-
mates of this effect have remained elusive. Because
it is a nonlinear effect, it cannot be assumed that
this connectivity-driven enhancement of Pe would
exhibit a simple distribution in the parameter space
of rPSII, sPSII, and fPSII. Our results indicated that
connectivity-driven enhancement not only was
strongly skewed (Fig. 8), but that the same process
could also act to constrain Pe in PSII populations
with certain physiological combinations of proper-
ties, that is, those associated with the negative tails
of these distributions. To the best of our knowledge,
a potential for connectivity-driven constraint of Pe

has not before been suggested, yet our simulation
demonstrates that it arises from the same physiologi-
cal mechanism that generates enhancements in Pe.
These complex and counteracting nonlinear effects
would be difficult to predict using analytical models,
yet they can be computed straightforwardly with
such a nonanalytical approach.

Apparent changes in the measured connectivity
parameter p that are observed in cultures and in
nature (e.g., Fig. 9f) presumably reflect alteration to
PSII connectivity and not artifact (Laney 2003).
Future experimental studies to assess these observed
changes in actual phytoplankton, among different
taxa and under realistic growth conditions, may con-
sider examining not only its potential enhancing
effect on Pe, but also the possibility that it may act
to constrain Pe under other photosynthetic states.
A wide range of similarly complex aspects of PSII
populations can also be examined using a nonana-
lytical approach like ours, simply by modifying the
simulation’s decision tree and model domain. How
the Pe–E relationship is affected by changes in
photosystem stoichiometry and organization (Kim
et al. 1993), different modes of photoprotective
response (e.g., Lavaud et al. 2004), heterogeneity
among PSIIs (Kaftan et al. 1999), differences in
antenna organization (Bernhardt and Trissl 1999),
spectral variability in light utilization (Falkowski and
LaRoche 1991), or the potential role for reabsorp-
tion of PSII fluorescence by PSI can all be exam-
ined using this type of nonanalytical simulation.
Nonanalytical approaches were computationally
prohibitive in the past, but the affordability of calcu-
lations on modern computers allows for inexpensive
and quick simulation of complex PSII dynamics. We
did not attempt to optimize for computational
efficiency in our preliminary study, but used simple
methods to keep the simulation clear and intuitive.
Future simulations can take advantage of computa-
tional methods that improve the speed and effi-
ciency without losing dynamical accuracy.

Some caveats and concerns. This simulation was
developed primarily as an exploratory tool to
identify and quantify how changes in PSII physiol-
ogy could introduce complex nonlinear dynamics
in light harvesting in a PSII population. It need
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not be predictive in a traditional sense to be valu-
able; guiding development of testable hypotheses
and providing theoretical motivations for experi-
mental studies are appropriate uses of such
simulations (e.g., Franks 2002). This approach
does have several limitations, however, that merit
discussion.

By focusing on the dynamics of PSII alone and
omitting other aspects of the light reactions, such as
PSI and the electron transport chain, we have effec-
tively restricted the types of dynamics that this simu-
lation can replicate. For example, the simulation
performs reasonably well in predicting the dynamics
of PSII closure and variable fluorescence during the
sub-ms photochemical phase, but it cannot repro-
duce any of the fluorescence transients that are
known to occur in the subsequent several ms in the
thermal phase. Whether the simulation’s dynamical
predictions can still be considered valid despite
omitting PSI and other important elements of the
light reactions depends to a large extent on how
these different elements are related to one another
dynamically. It does not appear at present that these
later thermal phase transients are associated with
closure of PSII (Strasser et al. 1995, Samson et al.
1999), and thus we assume that the physiological
bases of thermal phase fluorescence transients do
not affect any of basic aspects of the simulation
(e.g., nPSII, rPSII, sPSII, p, fPSII, the structure of the
model domain, or the decision tree). If so, we can
expect that the predicted dynamics of PSII closure
and fluorescence should be independent of the
thermal phase. In this case, incorporating additional
aspects of the light reactions would not improve or
affect the light-harvesting dynamics that the simula-
tion predicts.

A number of recent analytical models do explic-
itly include other major components of the light
reactions (e.g., Nedbal et al. 2005, Zhu et al. 2005,
Kroon and Thoms 2006), and PSII-specific simula-
tions like ours are important complements to these
more complex models. Processes that are only
parameterized in the former are explicitly defined
in the latter, and vice versa. One limitation with
these more complex models is that they remain dif-
ficult to apply in an ecological context because a
more complete description of the light reactions
requires numerous parameters that are either diffi-
cult or impossible to measure experimentally. Sim-
pler PSII-based Pe–E models may be advantageous
because they estimate relative changes in Pe from
observed variability in a small number of measur-
able PSII properties. Yet when applying these sim-
pler models in this manner, special care must be
taken to ensure that the measured PSII properties
used as input are appropriate proxies for the ideal-
ized PSII properties as defined in the model. For
example, when we used this simulation to interpret
measured changes in PSII from a T. weissflogii cul-
ture, we made the simplifying assumption that Fv ⁄ Fm

was a reasonable proxy for fPSII over the timescale of
interest. On other timescales or under other growth
conditions, Fv ⁄ Fm may not be such an appropriate
proxy for fPSII. When the same diatom is grown
under intermittent light instead of a steady diurnal
cycle (Fig. 11a), rapid transient responses can be
observed in many PSII properties including Fv ⁄ Fm

(Fig. 11, b–f). Incautious analysis of these data using
our simulated Pe–E relationships would suggest that
these rapid transient responses act to increase the
yield of electron flow by as much as 2-fold (Fig. 11g).

Fig. 11. Growth irradiance (a), measured PSII physiological
properties (b–f), and simulated yield of electron flow FP (g) of a
nutrient-replete Thalassiosira weissflogii culture exposed to brief,
transient reductions in growth irradiance. The physiological prop-
erties were determined identically as in Figure 9, by continuously
passing a portion of the culture through the ‘‘dark’’ chamber of
a Fasttracka fast repetition rate fluorometer. The transient behav-
ior of these PSII properties, therefore, reflects only the physiolog-
ical response to these changes in light, not any direct artifact of
light levels on the measurement per se. Interpreting these tran-
sient responses in PSII in the context of the simulation would
suggest that these responses led to increases in FP of 2-fold at
most.
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A nutrient-replete diatom with the capacity for
strong, rapidly reversible energy-dependent quench-
ing (Lavaud et al. 2004) might be expected to alter
rPSII and sPSII to such a degree, but the concurrent
changes in Fv ⁄ Fm most probably do not reflect
rapid changes in the number of functional PSIIs.
On these scales, Fv ⁄ Fm is probably a poor proxy for
fPSII, and the predicted transient increases in FP are
questionable.

Finally, it is important to note that there is a
wide body of empirical data that present observed
relationships between changes in PSII physiology
and cotemporal changes in light-driven electron
flow. The predictions of a simple dynamical simu-
lation might not be readily reconciled to some of
these empirical observations. Our simulation’s
incomplete description of a complex physiological
system is an obvious potential source of such
discrepancy, yet in this situation, failures to recon-
cile model output with observations cannot be
attributed solely to models. Empirical studies do
not measure all of the relevant physiological fac-
tors that control the rates or yield of light-driven
electron flow, and a plant or alga’s photosynthetic
‘‘state’’ cannot be determined with certainty from
a limited number of measured properties. If
photon capture and uptake are sufficiently non-
linear at the photosystem level, we can expect that
past paradigms for how changes in PSII physiology
affect light harvesting may not be as simple as
previously thought. The predicted dual role of
PSII connectivity as either an enhancer or
constrainer of Pe is one such example; presum-
ably, there are others yet to be discovered. An
intelligent combination of experimental and
modeling approaches may shed valuable insight
into how nonlinear interactions in light harvesting
arise in actual phytoplankton and which of those
interactions are important enough to warrant
being incorporating into improved models for
P–E. Nonanalytical approaches such as the one
presented here have the potential to contribute
meaningfully to this synthesis of model and
experiment.
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