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ABSTRACT

Recent fine- and microstructure observations indicate enhanced finescale shear and strain in conjunction with
bottom-intensified turbulent dissipation above rough bathymetry in the Brazil Basin. Such observations implicate
the bottom boundary as an energy source for the finescale internal wave field. Simple analytical and numerical
solutions to an equation governing the spatial and temporal evolution of the finescale wave field are described
here. The governing equation implicitly treats the effects of wave breaking on the vertical propagation of internal
waves through a flux representation of nonlinear transports associated with internal wave–wave interactions.
These solutions identify the rate of dissipation of turbulent kinetic energy with downscale energy transports at
high vertical wavenumber, resulting in an estimate of dissipation versus depth. The sensitivity of the turbulent
dissipation depth profile to various environmental parameters is examined. Observed dissipation profiles and
shear spectra are compared with these solutions, and an effort is made to relate the solutions and observations
to extant models of internal wave generation and scattering.

1. Introduction

The rate of diapycnal mixing relates through the
buoyancy equation (McDougall 1991) and vorticity dy-
namics (Stommel and Arons 1960) to the intensity of
upwelling and horizontal circulation in the abyssal
ocean. The strength of the thermohaline circulation (the
processes by which dense water is formed in polar re-
gions, sinks to great depths, and then upwells across
isopycnals) is directly related to the rate of diapycnal
mixing (e.g., Huang and Chou 1994). In turn, the in-
tensity of diapycnal mixing relates to the ability of the
abyssal ocean to store heat and greenhouse gases and
to the influence of climate change on centennial-to-mil-
lennial time scales.

The intensity, spatial distribution, and causes of dia-
pycnal mixing in the deep ocean have been the subject
of much speculation. Advective heat budgets in semi-
enclosed basins (e.g., Hogg et al. 1982) typically return
estimates of K ù (1–10) 3 1024 m2 s21, similar to
estimates of K ù 1 3 1024 m2 s21 obtained from vertical
advection/diffusion models (Wyrtki 1961; Munk 1966).
These abyssal estimates, however, do not appear to be
appropriate for the stratified upper ocean, for which a
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purposeful tracer release experiment (Ledwell et al.
1993) and microstructure measurements (Gregg 1987)
suggest K ù 0.1 3 1024 m2 s21. Validation studies
(Polzin et al. 1995; Gregg 1989) of internal wave–wave
interaction models indicate that the background internal
wave state described by the empirical Garrett and Munk
[GM: Garrett and Munk (1975) as modified by Cairns
and Williams (1976)] spectrum supports only weak (K
# 0.1 3 1024 m2 s21) mixing that is independent of
the background stratification rate N 2. This implies that,
in order for internal wave–driven mixing to close ad-
vective heat budgets in abyssal basins, the internal wave
spectrum needs to depart substantially from the GM
specification.

Spatial variability is apparent in the abyssal ocean.
Full-depth fine- and microstructure measurements from
the Brazil Basin (Polzin et al. 1997) indicate weak (K
# 0.1 3 1024 m2 s21) mixing that is approximately
independent of depth above the smoothly sloping abys-
sal plains and continental rise of the western part of the
basin. In contrast, above rough topography associated
with the Mid-Atlantic Ridge, levels of turbulent mixing
are orders of magnitude larger and increase with depth.
The turbulence was sufficiently strong there to lead Pol-
zin et al. (1997) to postulate that mixing in the eastern
part of the basin was large enough to close Hogg et al.’s
(1982) Brazil Basin abyssal heat budget. Data obtained
during two additional cruises to the Brazil Basin further
support this inference (Ledwell et al. 2000). Moreover,
the abyssal flow in the southeast corner of the Brazil
Basin appears to be forced by vortex stretching asso-
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FIG. 1. Characteristic vertical profiles of horizontal (eastward) ve-
locity obtained from the Brazil Basin. Greater velocity variance and
smaller vertical coherence scales are apparent above rough topog-
raphy (b) associated with the Mid-Atlantic Ridge (21.888S, 16.368W)
than above smooth bathymetry on the western side of the basin (a)
(25.008S, 38.188W).

ciated with this turbulent mixing (St. Laurent et al.
2001).

The above-cited investigators note enhanced velocity
and density finestructure in conjunction with the in-
creased levels of turbulent dissipation in stratified water
above bottom (Fig. 1). As internal waves typically dom-
inate the finescale flow field (e.g., Polzin et al. 2003),
the association of enhanced fine- and microstructure im-
plicates internal wave breaking as the source of tur-
bulent energy. In particular, Polzin et al. (1997) pro-
posed that the elevated finestructure levels were asso-
ciated with a bottom-generated internal tide having hor-
izontal scales that were characteristic of the bottom
topographic roughness (&1000 m).

The scattering of waves incident upon bottom rough-
ness (including an internal tide returning from the sur-
face) transfers energy in wavenumber space and may
also play a role in the local enhancement of velocity
finestructure near sloping bathymetry (e.g., Müller and
Xu 1992). However, such transfers are ultimately limited
by the amplitude of energy sources for the incident in-
ternal wave field. In a one-dimensional (vertical) energy
balance, the energy fed locally into the internal wave
field by boundary sources is approximately equal to the
local, depth-integrated dissipation rate. The spectral
transfer by wave scattering results in a redistribution of
dissipation versus depth without altering the depth-in-
tegrated dissipation rate. With values of 3–4 m W m22,
depth-integrated dissipation rates are a factor of 5 larger

over the Mid-Atlantic Ridge than in the western part of
the Brazil Basin. This implicates additional energy
sources as being responsible for the enhanced dissipa-
tion over the rough bathymetry. Circumstantial evidence
for a 1D balance is provided by the observation that the
depth-integrated dissipation above rough bathymetry
exhibits a fortnightly modulation that is phase locked
to the spring–neap transition in the barotropic tide (Led-
well et al. 2000). The predisposition in this study is to
interpret the observations of enhanced fine- and micro-
structure above the Mid-Atlantic Ridge in terms of a
local wave generation process over rough bathymetry.

This work examines the energy balance of the fine-
scale internal wave field in the abyssal ocean. A non-
linear closure presented in a companion article (Polzin
2004) is used to examine the evolution of the internal
wave spectrum with distance from the bottom boundary
and predict the decay of wave energy into turbulent
dissipation.

After defining equations and boundary conditions
governing the spatial and temporal evolution of the fine-
scale internal wave field (section 2), the thrust of the
paper is to examine the parameter dependence of ap-
proximate solutions to this equation for a highly-ide-
alized situation (section 3). The intent in doing so is to
understand the processes that affect the magnitude and
structure of the turbulent dissipation depth profile. These
solutions are considered in the context of the Brazil
Basin observations (section 4). The relationship of the
idealized solutions and observations to extant models
of internal wave generation and scattering is then dis-
cussed in section 5. The findings are summarized in
section 6. Ancillary analysis of wave generation models
and a scale analysis motivating the use of a one-di-
mensional version of the radiation balance equation are
presented in an appendix.

2. A radiation balance equation

a. Description

1) THE RADIATION BALANCE EQUATION

The spatial and temporal evolution of the internal
wave field can be expressed as an energy conservation
statement (Polzin 2004) in the spectral domain:1

6 6 6 6]E ](C E ) ]F ]Ggz6 1 1
]t ]z ]m ]v

7 61 1 (G 2 G ) ]w
7 65 (F 2 F ) 1 . (1)

2m 2 w ]v

1 E6 [ E6(m, v, z, t) is the vertical wavenumber–frequency energy
density with direction of energy propagation denoted by either 1 or
2. In the following, the depth (z) and time (t) dependence is regarded
as implicit. Here E6 is the sum of kinetic ( ) and potential ( )6 6E Ek p

energy, E6 5 5 . The notation E6(m) [or F6(m)] denotes6 6E Ek p

integration over the frequency domain, E6(m) 5 # E6(m, v) dv.
Similarly, E [ E1 1 E 2.
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Here the vertical group velocity Cgz 5 | (v2 2 f 2)(N 2

2 v2)/vm(N 2 2 f 2) | , and the propagation direction is
given explicitly. This equation defines the evolution of
the energy density in vertical wavenumber–frequency
space as a function of vertical coordinate and time. The
wave field has been assumed to be horizontally ho-
mogeneous; thus (1) represents a vertical balance for
the energy spectrum. A scale analysis of the associated
2D radiation balance equation (appendix) justifies this
approximation. The first term in (1) is the time rate of
change of energy density, the second is the spatial flux
divergence. The functions F and G are flux represen-
tations of spectral transports in the vertical wavenumber
and frequency domains associated with wave–wave in-
teractions. In this representation of the energy equation,
there are no explicit sources of energy associated with
wave generation or sinks associated with turbulent dis-
sipation. Internal wave generation is prescribed as a
boundary condition on the energy flux, and wave dis-
sipation is equated with the transport F(m) at high wave-
number.

Wave–wave interactions encompassed by the closures
F and G rearrange energy in the spectral domain. The
right-hand-side of (1) ensures that these rearrangements
also conserve linear wave momentum [P 5 kE/v, in
which k is the 3D wave vector (k, l, m)] and can be
interpreted as a backscattering of wave energy at a rate
proportional to the transports F6 and G6.

A prescription for the transport F6 is (Polzin 2004)

6 4 21 6F (m, v) 5 Am N f(v)E (m, v)E(m), (2)

with A 5 0.10 and

2 2 2 2 1/2f(v) 5 [(v 2 f )/(N 2 v )] .

Representation (2) has been constructed with two prop-
erties in mind. The first is that the transport F(mc) [5

F(mc, v) dv] is consistent with the model validationN# f

study presented in Polzin et al. (1995): (1 2 R f )F(mc)
accurately predicts the rate of dissipation of turbulent
kinetic energy e to within a factor of 2 [R f , the flux
Richardson number, expresses the partitioning of tur-
bulent production into potential energy fluxes and dis-
sipation (R f ù 0.2)]. The second property is that (2)
represents a relaxation principle that will tend to pro-
duce a white shear spectrum Ek } m22, with Ek being
the vertical wavenumber kinetic energy spectrum.

The intended domain of applicability of the closures
F and G is m , mc, where mc is a high wavenumber
cutoff in the shear spectrum (Gargett et al. 1981; Duda
and Cox 1989) defined by

mc

2 22 m9 E (m9) dm9 5 0.7N . (3)E k

0

At higher wavenumber, observed spectra roll off as Ek

} m23 in response to strong nonlinearity or instability
(Polzin 1996) not captured by the flux scheme (2).

Agreement between dissipation measurements and

predictions based upon expressions similar to (2) was
noted by Polzin et al. (1995) for datasets that exhibited
non-GM characteristics. Deviations from the GM spec-
tral model [spectral amplitude, spectral shape in both
the vertical wavenumber and frequency domain, an-
isotropy (nonequal distribution of energy with respect
to direction), and inhomogeneity (spatial gradients in
N-scaled spectral amplitude)] were cataloged. In order
of decreasing importance, the dissipation rate was de-
termined to depend upon N 2, the spectral amplitude,
and the average frequency content of the internal wave
field. Notably, the dissipation rate appeared to be in-
sensitive (within the factor of 2 uncertainty of the ob-
servations) to variations in the shape of the vertical
wavenumber spectrum, anisotropy, and inhomogeneity.
Thus, use of (2) in the following to examine the spatial
evolution of an anisotropic wave field is not a purely
speculative extrapolation.

2) THE BOTTOM BOUNDARY CONDITION

Estimates of the energy spectra E6 and the vertical
profile of turbulent dissipation (1 2 R f)F(mc) can be
obtained by solving (1) given boundary conditions on
the energy spectrum. The boundary conditions at the
bottom and surface for the upward- and downward-
propagating waves are, respectively,

1 2C E 5 C F(E ) 1 E (m, v, z 5 0) and (4)gz gz source

2 1C E 5 C E 2 E (m, v, z 5 H ), (5)gz gz source

where F(E 2) represents a scattering transform (e.g.,
Müller and Xu 1992) and Esource is prescribed by models
of internal wave generation at the bottom (z 5 0) and
the surface (z 5 H).

b. Simplifying assumptions

1) THE RADIATION BALANCE EQUATION

The intent here is to simplify the evolution equation
(1) sufficiently that it can be solved analytically, with
the express intent of understanding the processes that
affect the magnitude and structure of the dissipation
profile. First, the focus is upon steady-state solutions;
that is, ] tE6 5 0. Second, only the case of constant
stratification is examined below. Inclusion of the back-
scattering term on the right-hand-side of (1) stymied
analytic progress in the variable N case. Third, (1) is
integrated over the frequency domain, (1) dv, withN# f

no-flux boundary conditions of G(m, v 5 f ) 5 G(m,
v 5 N) 5 0. An intermediate expression for the energy
balance results:
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N

6] C (m, v)E (m, v) dvE gz[ ] 6f ]F (m)
6 1

]z ]m
N 7 61 1 (G 2 G ) ]w

7 65 [F (m) 2 F (m)] 1 dv.E2m 2 w ]vf

Further simplification is possible. The factor w 5 [(v2

2 f 2)/v2(N 2 2 v2)]1/2 and is independent of v in the
limit f K v K N. Thus, in the hydrostatic-nonrotating
regime, ]vw 5 0 and the evolution of the energy spec-
trum is independent of G. Note also that the frequency
dependence of Cgz matches that of f in the hydrostatic-
nonrotating regime. [The same linear dependence of F

upon v also characterizes the diffusive representation
for F derived in McComas and Bretherton (1977).] So-
lutions to (1) in this regime are therefore independent
of frequency. In particular, solutions for a broad-fre-
quency-band wave field are identical to narrow-fre-
quency-band solutions for which E(v) 5 d(v 2 ),ṽ
where the frequency is identified as a weighted av-ṽ
erage: 5 v9E(v9) dv9. This narrowband represen-Nṽ # f

tation is invoked and backscattering associated with fre-
quency domain transfers neglected below. In the fol-
lowing, v should be regarded as an average frequency.

These assumptions define a pair of coupled, nonlinear
partial differential equations governing the vertical evo-
lution of the vertical wavenumber spectrum:

1 4 1 1 2 4]E (m) Ab(v)m ]{m E (m)[E (m) 1 E (m)]} Ab(v)m
2 1 1 21 1 5 [E (m) 2 E (m)][E (m) 1 E (m)] (6)

2 2]z N ]m 2N

and
2 4 2 1 2 4]E (m) Ab(v)m ]{m E (m)[E (m) 1 E (m)]} Ab(v)m

1 2 1 22 1 5 [E (m) 2 E (m)][E (m) 1 E (m)]. (7)
2 2]z N ]m 2N

The factor b(v) 5 v(N2 2 f 2)/[(v2 2 f 2)(N2 2 v2)3]1/2

attains its minimum value of 1.0 in the limit f 2 K v2

K N 2. Given the closure scheme presented in (2), ro-
tation diminishes the vertical flux of energy in relation
to the downscale transfer of energy so that wave energy
is trapped closer to its source. For nonhydrostatic waves,
(2) implies that downscale fluxes increase more rapidly
than the rate of increase of vertical energy flux with
wave frequency so that nonhydrostatic waves are again
dissipated closer to their source. Absent rotational and
nonhydrostatic effects, b(v) 5 1.0, and (6)–(7) state
that the vertical evolution of the vertical wavenumber
energy spectrum is independent of wave frequency.
Thus, within the hydrostatic and nonrotating limits, the
evolution of vertical wavenumber spectra of narrow-
and broad-frequency-band internal wave fields will be
identical.

2) THE BOTTOM BOUNDARY CONDITION

In a linear problem, one obtains solutions to the dif-
ferential equation and then these solutions are summed
to meet specific boundary conditions. That approach
will not work for this nonlinear problem. In order to
make progress, the bottom boundary condition (4) will
be simplified to match the interior solutions:

E (m, v)source

1 25 C (m, v)[E (m, v, z 5 0) 2 E (m, v, z 5 0)].gz

(8)

Physically, the downgoing wave field is assumed to re-
flect as from a flat bottom, for which F(E 2) 5 E 2.

3. Idealized solutions

The effort below is to find solutions to the idealized
equation set (6) and (7) representing the vertical evo-
lution of the finescale internal wave field.

a. Uncoupled solutions

The coupling between upward- and downward-prop-
agating fields through the right-hand side of (6) and (7)
adds considerable complexity to the analysis. It is in-
structive to consider solutions to the energy balance that
neglect these terms. Note, however, that these solutions
do not conserve momentum. Without the backscattering
term, (6) becomes

4 2]E(m) Ab(v)m ][m E (m)]
1 5 0, (9)

2]z N ]m

in which E 5 E1 represents a unidirectional field prop-
agating away from the bottom boundary.

A solution to (9) can be found by the separation of
variables, specifying that only the amplitude, not the
shape, of the vertical wavenumber spectrum evolves
with distance from the bottom boundary:

2 21 bm m0 0E(m, z) 5 1 2 . (10)
22 4 2 21 21 1 4Ab(v)N bm z m m0

The solution has two characteristic parameters: m0 rep-
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FIG. 2. Typical energy spectra for the sum [s(m), thick] and dif-
ference [d(m), thin] functions. The unidirectional solution (10) is
overplotted on the sum spectrum as a white line. The parameters are
those of the observed spectrum: m0 5 0.02 m21, c1 5 c2 5 5.4 3
1028, N 5 1 3 1023 s21, and A 5 0.1.

resents the low-wavenumber limit of a bandwidth-lim-
ited spectrum and b is a spectral amplitude. Note that

can be directly interpreted as the level of the gra-2bm0

dient spectrum m2E(m), ù m2E(m k m0, z 5 0).2bm0

The solution exhibits the GM spectral dependence of
m22 at high wavenumber (Fig. 2). Such solutions have
the property that the rate of energy transfer to smaller
scales, F(m), is approximately independent of m at high
wavenumber. Physically, mc (3) represents the limit of
validity for (2). At higher wavenumber, observed spectra
roll off as approximately E(m) } m23. At these scales,
the downscale transfer of energy may be dominated by
processes other than wave–wave interactions. In partic-
ular, shear instability (Polzin 1996) and quasi-permanent
finestructure (Polzin et al. 2003) may shape the spec-
trum. Significantly, these finescale processes are too
large to be classified as 3D turbulence. Thus, the so-
lutions determined here do not link continuously in the
vertical wavenumber domain to the inertial subrange of
3D turbulence. The rate of dissipation of turbulent ki-
netic energy e, however, can be defined in terms of the
downscale flux F(m) in the limit as m → `:

21 2 4(1 2 R )Af(v)N b mf 0e 5 lim (1 2 R )F(m) 5 . (11)f 22 4 2[1 1 4Ab(v)N bm z]m→` 0

Note that the dissipation estimate at the bottom bound-
ary is proportional to the square of the high-wavenum-
ber shear spectrum, consistent with the model validation
study presented in Polzin et al. (1995).

With (11), the dissipation scale height he 5 2e(de/
dz)21 is

2e N z
h 5 lim 2 5 1 , (12)e 4de/dz 4Aab(v)bm 2m→` 0

with a 5 2. Larger spectral amplitude ( ) implies2bm0

larger dissipation and smaller scale height at the bottom
boundary, which stems from the fact that the decay of
wave energy by wave–wave interactions is a nonlinear
process. The scale height increases with distance from
the bottom boundary. As the spectrum decays in am-
plitude, wave–wave interactions are weaker and, as a
consequence, the transport of energy toward dissipation
scales and thus the relative decay of the spectrum with
height above bottom are less rapid. The scale height can
also be interpreted as the ratio between the vertical en-
ergy flux and the downscale energy transport F. For
constant high-wavenumber shear spectral density ( 2bm0

5 const), smaller m0 implies both greater internal wave
energy and vertical energy flux, while the specification
of constant spectral amplitude implies a constant drain
of energy to smaller scales. As a consequence, the ver-
tical wavenumber energy spectrum evolves more slowly
with distance from the bottom. Last, note that relations
(11) and (12) converge rapidly. If, for example, mc .
2m0, 0.75 , F(mc)/F(m 5 `) , 1.0.

b. Coupled solutions

The coupled (momentum conserving) solution is ap-
proached by assuming the sum (E1 1 E 2) and differ-
ence (E1 2 E 2) spectra are separable. With [E1 1 E 2

[ S(z)s(m)] and [E1 2 E 2 [ D(z)d(m)], manipulation
of (6) and (7) returns

2] N
2D(z) 1 c S (z) 5 0, (13)1[ ]]z Ab

]
4 2m [m s (m)] 5 c d(m), (14)1]m

2] N
S(z) 1 c S(z)D(z) 5 0, and (15)2[ ]]z Ab

]
5[m s(m)d(m)] 5 c s(m). (16)2]m

The factors c1 and c2 are the separation constants.
The vertical structure equations (13) and (15) can be

combined to obtain a second-order nonlinear equation
for D(z):

2c Ab2D0(z) 1 D(z)D9(z) 5 0. (17)
2N

This equation can be solved by noting that (i) it is ‘‘ex-
act,’’ and integration returns a Ricatti equation; (ii) the
Ricatti equation can be transformed into a Bernoulli
equation with the substitution D(z) 5 D̂(z) 1 c3, where
c3 is proportional to the integration constant obtained
from (i); and (iii) transforming the Bernoulli equation
for D̂(z) into a first-order, linear equation [e.g., Bender
and Orzag (1978) sections 1.5 and 1.6]. Two distinct
sets of solutions result from this manipulation.
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1) REFLECTING UPPER BOUNDARY

The first set of solutions is appropriate for a bounded
ocean with upper surface at z 5 H. After applying
boundary conditions of D(z 5 H) 5 0 (i.e., perfect
reflection at the upper boundary) and Cgzd(m)D(z 5 0)
5 Esource (planar reflection of the downward-propagating
wave field plus an energy source Esource at the bottom
boundary) one obtains

D(z) 5 2g tan[g(z 2 H )] and

S(z) 5 g/cos[g(z 2 H )]. (18)

The coefficient g is then determined as the smallest
eigenvalue, and the amplitude of the spectrum is set by
equating the difference spectrum with a source spec-
trum. These solutions address the depth-integrated en-
ergy balance for an ocean with constant stratification.
In the variable stratification of the ocean, decreasing
vertical wavelength associated with wave propagation
into increasing stratification will couple with nonline-
arity to efficiently transport energy from large to small
scales. As this effect is not represented in the flux law
(2), further attention is restricted to the abyssal, near-
bottom decay process for which changes in stratification
are negligible.

2) UNBOUNDED DOMAIN

The near-field decay is described by a second set of
solutions. These are obtained by setting c3 5 0 and
represent an unbounded ocean. The bottom-boundary
condition is Cgzd(m)D(z 5 0) 5 Esource, and the solution
is required to decay with height:

1
D(z) 5 S(z) 5 , (19)

1 1 z/zo

with zo 5 N 2/c1Ab 5 N 2/c2Ab so that c1 5 c2.
The structure in the vertical wavenumber domain can

be determined numerically. After specifying c1 and c2,
the coupled system of (14) and (16) was solved using
a Runge–Kutta scheme subject to initial conditions of
d(m0) K s(m0) K s(2m0). This implies initial conditions
on the gradients at m0. The resulting solutions are not
sensitive to these initial conditions as long as they are
sensibly consistent with the uncoupled solution (10).
The resulting vertical wavenumber spectra are band-
width limited and rise steeply to a peak (Fig. 2). The
sum solution s(m) then falls off with a power law of
s(m) } m22. The difference solution d(m) falls off some-
what more steeply.

Examination of the numerical solutions reveals that
the sum solution s(m) is quite closely approximated by
the uncoupled solution (10),

2 2bm m0 0s(m) ù 1 2 , (20)
2 21 2m m

(Fig. 2) and that

21 22 4z 5 2Aab(v)N bm .o 0 (21)

For the numerical solutions discussed below, a 5 2.31
to within 1%. Comparison of (19)–(21) with (10) shows
that the effect of backscattering is to decrease the decay
scale zo by about 15%. Use of the approximate results
(20) and (21) is made next in examining the parameter
dependence of the solutions.

c. Parameter dependence

The parameter dependence of the dissipation and
scale height he are more intuitively examined in terms
of wavenumber m0 and velocity variance. Under the
hydrostatic and nonrotating approximations, ^u2& ù
2m0b/3 and b(v) 5 1.0. With R f 5 0.2, the dissipation
and scale height at z 5 0 using (20) and (21) are

2 2 2 2e | ù 0.18vm ^u & /N andz50 0

2 3 2h | ù 0.72N /m ^u &. (22)e z50 0

This dissipation rate is more sensitive to variation in
rms velocity than peak wavenumber (Fig. 3), demon-
strating the dependence of e upon spectral level rather
than peak wavenumber. Given the quadratic scaling of
the dissipation rate with spectral level, a factor-of-2 in-
crease in rms velocity implies a 16-fold increase in dis-
sipation. The scale height exhibits a greater dependence
upon the peak wavenumber, m0, than the dissipation rate
(Fig. 3), because the energy flux is determined by the
largest scales. Profiles of turbulent diffusivity,

2 2 4R F(m 5 `) 0.2Av(bm ) /Nf 0k 5 5 , (23)r 2 22 4 2N (1 1 2AaN bm z)0

exhibit the same parameter sensitivity as e (Fig. 4).
Several broad conclusions can be drawn from Figs.

3 and 4. First, given the sensitivity of the magnitude
and vertical variability of turbulent dissipation apparent
in the model and variability in topographic roughness,
barotropic tides, and mesoscale eddy velocities that de-
termine ^u2&, and m0 at the bottom boundary, no single
answer is available to prescribe the vertical profile of
turbulent diffusivity. Second, the problem of enhanced
mixing in the near-bottom region over rough bathymetry
(Polzin et al. 1997) is not directly associated with the
generation of large-vertical-wavelength internal waves.
Data from the Brazil Basin (section 4) exhibit bottom
dissipations O(1 3 1028) W kg21 and decay scales of
approximately 150 m. Such dissipation requires a shear
spectral level at high wavenumber an order of magnitude
larger than the GM model (2m2Ek 5 7N 2/2p). The rapid
decay of dissipation with increasing height above bot-
tom necessitates a rapid decay of shear or, equivalent,
spectral level at high wavenumber. This is possible here
only if the shear spectrum is bandwidth limited to high
wavenumbers. For example, specifying the peak wave-
number as the GM mode scale [m0 5 (pj*/1300 m)(N/
3 cph) with j* 5 3 (implying mode 3)] returns dissi-



JANUARY 2004 237P O L Z I N

FIG. 3. Contours of (a) dissipation and (b) dissipation scale height at the bottom boundary
estimated from (19). The buoyancy frequency is specified as N 5 1 3 1023 s21, and v 5 1.4025
3 1024 s21. The velocity variance was determined from the sum spectrum s(m) rather than the
difference d(m).

FIG. 4. Vertical profiles of turbulent diffusivity estimated from (20) for (a) constant peak
wavenumber, m0 5 0.02 m21, as a function of rms velocity ^u2&1/2 of the difference spectrum d(m)
and (b) constant rms velocity, ^u2&1/2 5 2 cm s21, as a function of peak wavenumber, m0. The
buoyancy frequency is specified as N 5 1 3 1023 s21, and v 5 1.4025 3 1024 s21. The frequency
parameter b(v) 5 1.0, which is equivalent to invoking the hydrostatic, nonrotating limit.

pation scale heights in excess of 104 m at N 5 1 3
1023 s21 even if the spectral level is taken to be 10 times
the GM specification. A low-mode tide may, indeed,
result from the generation process. Considered in iso-
lation from the high-wavenumber response, though, a
large vertical-wavelength tide will have little shear and
will support only weak mixing.

4. A comparison

Despite the highly idealized nature of the solutions
discussed above, quantitative agreement can be found
between these solutions and dissipation data presented
in Polzin et al. (1997) (Fig. 5). A reasonable fit of e 5
e0/(1 1 z/z0)2 to the observed dissipation data can be
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FIG. 5. Dissipation vs height above bottom over rough bathymetry
in the Brazil Basin. The dissipation data represent an average over
the 30 stations that appear in Fig. 3 and east of 188W in Fig. 2 of
Polzin et al. (1997). The thin line represents a fit to the data. The
average buoyancy frequency profile decreases weakly with height
above bottom, with N 5 1 3 1023 s21 to within 630%.

FIG. 6. Shear spectra corresponding to the dissipation data in Fig.
5. The spectra are estimated using piece lengths of 512 (thick, solid)
and 2048 m (thin). In both cases the transform interval starts at a
height above bottom of 100 m. The spectrum with a piece length of
512 m thus represents conditions closer to the bottom boundary.
Overplotted is the idealized solution for the sum and difference shear
spectra (dashed lines; see Fig. 2). The idealized spectra have been
given their average amplitude corresponding to a height above bottom
of 100–612 m. The cutoff wavenumber of the observed near-bound-
ary spectrum mc and the low-wavenumber roll off of the idealized
solutions m0 are delineated above the data.

obtained with e0 5 1 3 1028 W kg21 and z0 5 150 m.
The relations (11) and (21) return a model spectral level

5 2.9 3 1025 s22 m and vertical wavelength 2p/2bm0

m0 5 315 m for v 5 1.4025 3 1024 s21 (an M2 semi-
diurnal internal tide), R f 5 0.2, A 5 0.10, N 5 1 3
1023 s21, and f 5 20.53 3 1024 s21. The observed
shear spectra (Fig. 6) exhibit the following salient fea-
tures: (i) The near-boundary spectrum is peaked at ap-
proximately ly 5 130 m. This peak is close to mc 5
9.4 3 1023 cpm (3). (ii) The shear spectrum for wave-
numbers m , mc relaxes with height above bottom to
a power law (m0 in shear and m22 in energy) consistent
with the flux representation (2). The observed spectra
exhibit a steeper roll off at high wavenumber and more
energy at low wavenumber than the solutions discussed
above. The high-wavenumber roll off likely occurs in
response to strong nonlinearity for vertical wavenumber
m . mc (3), which is not described by the flux law (2).

The enhanced energy content at low wavenumber ev-
ident in the data is believed to be associated with the
wave generation process. The consequence of neglect-
ing this low-wavenumber energy is that an estimate of
the dissipation based upon the idealized solutions will
be biased low for large z. Given its relatively low wave-

number content, the neglected energy is likely to be
dissipated in or near the thermocline where the obser-
vations indicate K ù (0.1–0.2) 3 1024 m2 s21. The
energy source associated with the model parameters is
Esource 5 1.9 mW m22, or about one-half of that inferred
from the observed depth-integrated dissipation record,
(1 2 R f )21 e dz 5 3.7 mW m22. The differenceH#0

between the energy flux estimate and the depth-inte-
grated dissipation is dominated by thermocline contri-
butions.

Turbulent dissipation is associated with enhanced
wave shear more so than enhanced wave velocity. The
idealized solutions associate large dissipations (e 5 1
3 1028 W kg21) noted in the Brazil Basin data with
velocities of Urms 5 2.55 cm s21 and Urms 5 3.6 cm s21

for the difference and sum wave fields, respectively.
These are similar to the GM model at low stratification
(N 5 1 3 1023 s21). The wave shear at the bottom
boundary, on the other hand, is 20 times the shear in
the GM spectrum. The difference depends entirely on
how that 3 cm s21 is distributed in the vertical-wave-
number domain.

The idealized solutions depict the decay of a band-
width-limited finescale internal wave field propagating
away from the bottom boundary. This appears to be a
reasonable description of near-bottom observations ob-
tained above rough bathymetry in the Brazil Basin. The
bottom boundary condition Cgzd(m)D(z 5 0) 5 Esource

equates the difference spectrum with a source function
(Esource) for the internal wave field. Hitherto it has been
assumed that these two are consistent. Relationships be-
tween the difference spectrum and extant models of
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FIG. 7. A north–south section of bathymetry from the Brazil Basin
along a line extending from 218159S, 18828.2159W to 228009S,
18821.6059W. The data were obtained with a multibeam system. Thin
lines denote the ray characteristics of the semidiurnal tide and were
estimated using the observed density profile. The segment from 20
to 55 km corresponds to Fig. 3 of Polzin et al. (1997).

FIG. 8. An east–west section of multibeam bathymetry along
21812.59S from 18830.009 to 18840.009W. Internal wave ray char-
acteristics, estimated using the observed density profile, are shown
as thin lines. This section is approximately aligned with the direction
of steepest ascent/descent. Note the asymmetric nature of the topog-
raphy. These data correspond to the roughness elements in Fig. 2 of
Polzin et al. (1997).

wave generation and scattering are briefly considered in
the next section.

5. An interpretation in terms of extant models of
wave generation and scattering

a. Midocean ridge bathymetry

Midocean ridge bathymetry is highly complex. The
ridge crest represents the boundary between two plates
moving in opposing directions. New crust is being
formed at these spreading centers. In the case of the
South Atlantic, the ridge is cut by offset fractures, which
are evident as rectilinear canyons running normal to the
ridge crest and extending across the entire ridge. Mid-
ocean ridges are also textured with abyssal hills. Abyssal
hills are understood to be formed by faulting and vol-
canism at the ridge crest. Their morphology is believed
to depend upon basin-scale attributes of ridge processes
such as spreading rates and elastic thickness of the lith-
osphere adjacent to the ridge axis; see, for example,
Goff (1991).

Abyssal hills make the dominant contribution to the
topographic slope in the Brazil Basin. The slope of the
Mid-Atlantic Ridge itself is quite small, rising 3000 m
(generously) over 1500 km (slope 5 0.002). Canyons
associated with offset fractures (Fig. 7) are obvious fea-
tures on global topographic charts, but again have a
relatively small slope (relative depth change/half-width
5 800 m/20 km 5 0.04) and are spatially isolated fea-
tures. In comparison, internal tide characteristics are
steeper (Fig. 7). Abyssal hills (Fig. 8) have similar
height variations as canyons, but these occur over small-
er horizontal scales, so that typical slopes are much
larger (relative depth change/half-width 5 400 m/2 km
5 0.2) and can exceed those of the ray characteristics.
And as opposed to being isolated like offset fractures,

abyssal hills are ubiquitous features, filling in the areas
in between the offset fractures. They are not well rep-
resented in global topographic datasets [e.g., General
Bathymetric Chart of the Oceans (GEBCO), ETOPO,
or Smith and Sandwell (1997)] as a multibeam echo-
sounding system is required to sample such small scales
and multibeam coverage of the world’s ocean is spotty.

The topography depicted in Fig. 8 is crudely consis-
tent with published statistical descriptions of abyssal
hills (Goff 1992) in the South Atlantic. Rms heights of
200 m and a distance between peaks of 6–10 km are
typical. Moreover, such analyses suggest the abyssal
hills are anisotropic and asymmetric. The hills are an-
isotropic in the sense that faults are typically parallel
to the ridge axis and result in larger spatial scales in
that direction. In Figs. 7 and 8, the short scales are
oriented virtually east–west and the long scales run
north–south. (The topography depicted in Fig. 7 lies
along a series of abyssal hill crests.) The hills in Fig.
8 are asymmetric as their east-facing slopes are typically
steeper than the west-facing slopes. Such asymmetry
can be interpreted in terms of the faulting process (e.g.,
Goff 1991). The hills are additionally asymmetric in
that the peaks tend to be taller than the troughs are deep.
In terms of a Fourier decomposition, such asymmetry
translates into increased small-scale variance.

A convenient description of abyssal hills is contained
within an anisotropic parametric representation of the to-
pographic spectrum H(k, l) [Goff and Jordan (1988)]:

24pnhoH(k, l) 5 , (24)
2 2 2 2 (n11)l k (k /k 1 l /l 1 1.0)o o o o

where ko and lo are roll-off wavenumbers, n prescribes
a high-wavenumber power law, and ho is the rms height.
The work below utilizes values for the Mid-Atlantic
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FIG. 9. Shear spectra for the linear internal tide generation model
[dashed, (A3)], Bell’s quasi-linear model [thin, (25)], and the differ-
ence spectrum of the idealized solution (thick, Fig. 2). The frequency-
domain harmonics have decreasing amplitude with ascending fre-
quency. The analytic solution has been normalized to its boundary
value.

Ridge at 268S (ko 5 1.5 3 1024 m21, lo 5 5.4 3 1024

m21, ho 5 210 m, and n 5 0.86) obtained from tables
in Goff (1991).

The intent below is to consider how extant models
of internal wave generation and scattering can be used
to translate the spectral content of such topography into
the observed peaked internal wave shear spectrum (Fig.
6).

b. Wave generation and scattering

1) A QUASI-LINEAR GENERATION MODEL WITH

INFINITESIMAL AMPLITUDE TOPOGRAPHY

Barotropic tidal flow (having amplitude Uo) of a strat-
ified fluid over sloping topography induces a vertical
velocity that, in turn, represents a forcing of baroclinic
motions. If the length scale of the topography (1/k) is
large relative to the tidal displacments (Uo/v K 1/k),
the rms vertical velocity is proportional to the rms to-
pographic slope. If the length scale of the topography
is small (Uo/v k 1/k, representing the advective limit),
the rms vertical velocity is proportional to the rms to-
pographic height.

A representation of the forced response in both limits
can be obtained by including barotropic tidal advection
in the momentum equations and the resulting model is
referred to as quasi linear. For infinitesimal-amplitude
topography, the rate of conversion (Bell 1975) from
barotropic to baroclinic motions is

E (k, l, v , z 5 0, t)source n

1
2 2 2 2 2 2 1/2 2 2 21/25 nv [(N 2 n v )(n v 2 f )] (k 1 l )1 1 122p

2 2 2 2 2 2 1/23 H(k, l)J {[(k U 1 l V )/v ] }. (25)n o o 1

In (25), Esource represents the vertical flux or energy as
a 2D horizontal wavenumber spectrum, v1 is the fun-
damental frequency of the barotropic tide (M2), n an
integer such that nv1 , N, and vn 5 nv1 represents the
nth frequency harmonic. The function Jn is a Bessel
function of order n, and the factors Uo and Vo in its
argument represent the amplitude of the barotropic tide.
Equation (25) was evaluated using (24) and barotropic
tidal amplitudes from the TPXO model (Egbert et al.
1994) [(Uo, Vo) 5 (2.5, 2.1) cm s21 for February 1996
after rotating into a coordinate system aligned with the
topography]. Last, (25) was converted to a 1D horizontal
spectrum by integrating over the horizontal orientation
of the horizontal wave vector and then converted to a
vertical wavenumber–frequency spectrum by invoking
a dispersion relation (Fig. 9).

Viewed as a transfer function, J1(q) differentiates for
values of q K p/2; thus the internal wave energy density
is proportional to the topographic slope. In the advective
(kUo/v k 1, small horizontal scale) limit, the energy
density of the internal tide is no longer proportional to
the topographic slope, but rather proportional to the am-

plitude of the topographic perturbations. The roll off of
the shear spectrum predicted by (25) (Fig. 9) for vertical
wavelengths smaller than about 2pUo/N (ù100 m) is a
result of this effect. This advective limit is approached
as the horizontal excursions of the barotropic tide ex-
ceed a significant fraction of the topographic wavelength
kUo/v . 1. A simplistic interpretation is that tidal ad-
vection smoothes scales smaller than the tidal excursion.
Linear kinematics relates the ‘‘smoothing scale’’ k21 5
Uo/v to a vertical length scale m21 . Uo/N.

2) LINEAR GENERATION MODELS

Linear models of internal wave generation are ad-
dressed in the appendix. The results can be succinctly
summarized. Application of a linear generation model
to abyssal hill topography is fundamentally flawed. For
infinitesimal amplitude topography, a linear model with
continuous topography will return the result that the
energy in the resulting wave field is proportional to the
topographic slope variance. This is rather problematic
given the topological character of midocean ridge ba-
thymetry. It can be described as fractal (Goff and Jordan
1988), which implies that the topographic slope variance
is unbounded as smaller and smaller scales are included
in the slope estimate. The prediction of infinite energy
and shear is aphysical because either adiabatic or dia-
batic nonlinearity will serve to damp the smallest-scale
response. Extending a linear model to include finite-
amplitude topography only serves to further enhance
the predicted wave energy and shear variance.

3) WAVE SCATTERING

Scattering transforms derived by Müller and Xu
(1992) and Rubenstein (1988) quantify the spectral
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transfers of energy as a downgoing wave reflects from
a rough boundary. Such transforms view scattering as
a linear process, assume the topographic height to be
small relative to the vertical scale of the incident wave,
and that the topographic slope is everywhere smaller
than the ray characteristic slope. In the limit that the
horizontal scales of the topography are much smaller
than those of the incident internal wave, the scattering
transforms suggest a response proportional to the to-
pographic slope spectrum. Thus, much of the preceding
discussion about baroclinic tide generation carries over
to the scattering problem. In particular, inclusion of ad-
vection in the momentum equations may provide a phys-
ical rationale for truncating the topographic slope spec-
trum, as opposed to the ad hoc truncations invoked in
Müller and Xu (1992) and Rubenstein (1988).

c. Interpretation

In interpreting the idealized solutions, there are two
tasks. In section 3 it was assumed that the source dis-
tribution Esource was given by d(m). This relation is, in
fact, backward. The difference spectrum should be dic-
tated by the source distribution through (4). The first
task is therefore to map the idealized solutions onto the
source distribution Esource. The second task is to assess
the approximate bottom boundary condition (8) for the
idealized solutions. For those solutions, the downgoing
wave field was assumed to reflect as from a flat bottom;
thus, F(E 2) 5 E 2 was invoked.

1) TASK 1: INTERPRETATION OF THE IDEALIZED

SOLUTIONS

The interpretive context of this study is that the en-
hanced finescale velocity variance observed above
rough areas of the abyssal Brazil Basin manifests a com-
bination of wave generation and wave scattering that
results from bathymetric elements having horizontal
scales &1000 m. The idealized solutions presented in
section 3 are an attempt to interpret the vertical profile
of turbulent dissipation as an end result of the downscale
transport of energy associated with nonlinear interac-
tions of this enhanced finescale wave field. They also
permit an interpretation of the observed spectrum from
the oceanic interior relative to the boundary conditions.
It is tempting to identify the peak of the observed shear
spectrum with the idealized solutions (Fig. 6) and the
peaked shear spectrum of Bell’s model with the differ-
ence spectrum of the idealized solutions (Fig. 9): better
than a factor of 2 agreement in spectral level at the
finescale peak is apparent, and the wavenumber of the
peak is reasonably well predicted by the barotropic tidal
estimates.

With regard to Bell’s model, further consideration of
the details suggests the following: 1) The peak of the
observed shear spectrum occurs at a wavenumber some-
what smaller than N/Ubt, where Ubt is the rms barotropic

tide (2.3 cm s21 here). An alternative might be a smooth-
ing scale (N/Urms)21 with Urms . Ubt related to the sum
of the barotropic tide and the incident wave field. 2)
Regardless of the smoothing scale, the bottom energy
source estimate using Bell’s model ( ## Esource dknv ,N1Sn51

dl 5 7.6 mW m22) is a factor of 2 larger than that
inferred from the observed depth-integrated dissipation,
3.7 mW m22. Two immediate resolutions of this con-
tradiction come to mind: (i) the topographic spectrum
(24) is overestimated and/or (ii) the assumption of a
local vertical energy balance is in error. (That is, the
excess production propagates horizontally.) The latter
is not likely. Müller and Xu (1992) report (albeit on the
basis of a linear model) that scattering results in an O(1)
transformation of the incident energy flux when the ray
trajectories are equal to the topographic slope, as is the
case here for the semidiurnal tide (Fig. 8). Since the
Brazil Basin experimental site is O(10) bottom bounces
from smooth topography, it is doubtful that much in-
ternal tide energy escapes regions of rough bathymetry.
A scale analysis of the energy equation further supports
a local balance (appendix).

Accepting the vertical balance implies that the to-
pography is overestimated by the spectrum (24). But if
smaller-amplitude bathymetry is adopted, Bell’s model
produces an underestimate of the observed near-bottom
shear spectrum. This underestimate could, perhaps, be
compensated by inclusion of wave scattering effects. A
more detailed study is required.

To obtain more detailed ground truthing of the bottom
boundary condition could be difficult: The transport of
energy to turbulence implies a loss of information and,
from the degree of difference between the boundary and
interior amplitudes of the idealized solutions (Figs. 6
and 9), the information lost could make it difficult to
distinguish differences between model predictions from
simple uncertainty in the topographic spectrum.

2) TASK 2: THE APPROXIMATION (8)

The analytic solutions derived in section 3 assume
that the backscattered (E 2) wave field reflects from the
bottom as if it were flat, F(E 2) 5 E 2 in (8). Little can
be concluded on the basis of linear scattering theory for
infinitesimal amplitude topography because that ap-
proach assumes a perturbation expansion with the ver-
tical wavelength of the incident internal wave much
larger than the topographic height 1/m k ho. This con-
dition is not satisfied over rough bathymetry as m0 ù
0.02 m21 and ho ù 200 m.

The fundamental question of how the wavenumber
distribution of the downgoing wave field is rearranged
upon reflection at the bottom boundary remains. Here
we simply note that the downgoing wave field of the
idealized solutions carries an energy flux that is small
(;10%) relative to the upgoing waves with Esource 5 1.9
mW m22. While the solutions discussed above are en-
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ergetically consistent, they represent an idealized situ-
ation.

6. Discussion

The long-term goal to which this research contributes
is a robust prediction of the vertical profile of turbulent
dissipation (and diapycnal diffusivity) from a limited
number of input parameters: a spectrum of bottom to-
pography and either barotropic tidal velocity and fre-
quency or mesoscale eddy velocity. The work presented
above describes a method for assessing the vertical evo-
lution of a finescale internal wave spectrum originating
at the bottom boundary and for diagnosing the resulting
vertical profile of turbulent dissipation resulting from
wave breaking. In the long term, a more sophisticated
numerical treatment of the governing equation is re-
quired, as well as the potential revision of the transport
laws F(m, v) and G(m, v). In discussing idealized so-
lutions here, the intent was to explore the sensitivity of
the magnitude and vertical structure of turbulent dis-
sipation in response to changes in wave field amplitude,
vertical bandwidth, and frequency.

The internal wave field was taken here to be a narrow
band process in the frequency domain. This is an ad
hoc characterization of the oceanic wave field rather
than a limitation of the theory. Yet this characterization
is not believed to significantly alter the results presented
above as the evolution of the vertical wavenumber spec-
trum is independent of wave frequency in the hydro-
static and nonrotating limits.

Steady solutions to the governing equation were
found. The assumption of a steady balance is clearly an
idealization as near-boundary dissipation rates are large
enough that the decay time for the total internal wave
energy is the same order as the expected temporal var-
iations in the forcing [e.g., a fortnightly period in the
case of internal tide generation (Ledwell et al. 2000)].

Of greater concern than the assumption of a steady
balance is the treatment of the bottom boundary con-
dition. A downward-propagating wave field associated
with either surface sources, reflection of the upward-
propagating wave field from the surface, or backscat-
tering of the upward-propagating wave field by nonlin-
ear processes was assumed here to reflect as from a flat
bottom. While this bottom boundary condition is en-
ergetically consistent, if a rough bottom is an efficient
generator of finescale internal waves, one might rea-
sonably expect it to be an efficient scatterer of incident
waves as well. The present interpretation of the idealized
solutions in terms of wave generation or scattering mod-
els is thus problematic.

A further idealization was the assumed constant strat-
ification. In the thermocline, decreasing vertical wave-
lengths associated with wave propagation into increas-
ing stratification should transport finescale waves to suf-
ficiently small scales where even weak nonlinearity will
cause them to dissipate.

Implementing internally consistent boundary condi-
tions with top and bottom boundary sources, allowing
for variable stratification, a broad-frequency-band wave
field, and time dependence of the source functions at
the boundaries, and examining more detailed closure
schemes require a more sophisticated numerical tech-
nique than employed here and are beyond the scope of
this work.

Analytic solutions to the radiation balance equation
(1) were obtained for the idealized situation described
above. The vertical wavenumber energy spectrum is

2 21 bm m0 0E(m, z) 5 1 2 . (26)
22 4 2 21 21 1 2aAb(v)N bm z m m0

The spectrum is bandwidth limited to wavenumbers m
. m0. The gradient spectrum has an amplitude of
m2E(m) 5 for wavenumbers m k m0 at the bottom,2bm0

z 5 0. The corresponding dissipation profile is

e0e 5 , (27)
2(1 1 z/z )0

with

21 2 4e 5 (1 2 R )Af(v)N b m and0 f 0

21 22 4z 5 2aAb(v)N bm .0 0

The idealized solutions are not a complete description
of the generation and scattering processes: they are too
bandwidth limited and, as a consequence, do not capture
the entire energy flux associated with the generation
process. The ability of the idealized solutions to describe
a two-parameter summary of the observed shear spec-
trum (m0 and ) in terms of a two-parameter summary2bm0

of the observed dissipation profile (e0 and z0) is likely
a product of the following two reasons: First, internal-
tide generation from rough bathymetry produces a shear
spectrum with a peak at vertical wavenumber m } N/
Ubt, where Ubt is the amplitude of the barotropic tide.
The finescale shear field resulting from internal wave
scattering is likely peaked in a similar manner and, ar-
guably, the spectral peak occurs at a vertical wavenum-
ber related to N/Urms, with Urms representing the com-
bined flow due to the barotropic tide and incident wave
fields. Second, the flux representation of the spectral
transports translates this peak into an abrupt decay of
wave energy with height above bottom without refer-
ence to larger scales. The robust feature of the idealized
solutions is that the peaked character of the observed
vertical wavenumber shear spectrum can be mapped
onto the idealized solutions. If the idealized solutions
make any sense, it is because they capture the initial
decay process of a peaked shear spectrum.

The important feature in determining the rapid ver-
tical decay of the dissipation is the presence of a fine-
scale peak having large spectral level. The large spectral
level dictates large wave–wave interaction-induced en-
ergy transports to small vertical scale and, in turn, large
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dissipation rates. This translates into a rapid spatial de-
cay of an enhanced finescale wave field because waves
at these scales have a limited ability to propagate ver-
tically. The rapid vertical decay of finescale energy, in
turn, implies a rapid decay of turbulent dissipation with
height above the bottom. The analysis presented in this
paper is an attempt to put this scenario into the simplest
possible dynamical framework. This analysis agrees rea-
sonably well with fine- and microstructure data obtained
from the Brazil Basin.

Future work will feature more sophisticated numer-
ical treatments of the governing equation along with the
specification of the lower boundary condition of E6(m,
v) in terms of wave generation and scattering models.
For the purpose of modeling the decay of turbulence as
a function of height above bottom, a realistic description
will likely need to address the impact of advection in
the bottom-boundary condition and finite-amplitude ba-
thymetry on the processes of internal wave generation
and scattering. However, such work need not be com-
pleted to infer the importance of small-scale bathymetric
features. The observed spectral peak corresponds to a
horizontal wavelength of lh ù 2pUbt/v ù 1 km. This
horizontal wavelength is smaller than that characterizing
the distance between typical abyssal hills (6–10 km).
At present, information at these scales is not currently
represented in global bathymetric datasets.
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APPENDIX

The 1D Approximation to the Radiation Balance
Equation and Three Models of Internal

Tide Generation

a. The 1D approximation

St. Laurent and Garrett (2002) interpret these same
data in terms of a fundamentally 2D balance. In short,
they suggest that less than 30% of the total internal wave
energy source at the bottom, which they estimate as 3–
5 m W m22, dissipates near the bottom boundary with
the rest assumed to propagate away from the Mid-At-
lantic Ridge. Here, the interpretation is 1D and, con-
sequently, all the wave energy input at the bottom
boundary is assumed to dissipate locally. The 1D bal-
ance is supported by the following scaling for the steady
energy balance:

]E ]E eflux flux1 5 1 S , (A1)o]z ]x 1 2 Rf

in which Eflux(x, z) is the energy flux vector, Eflux 5
Cg(m, v)E(m, v) dm dv, and So(x) is the energy

`N# #f 0

source at the bottom boundary. Assuming that the hor-
izontal length scale (L) of So dictates the horizontal
length scale of the other variables and that the height
scale H is given by vertical variation of e, the ratio of
the vertical to horizontal energy flux divergence is

vE /mH Lv
ù . (A2)

NE /kL HN

The source So varies by an O(1) amount over the
entire ridge, which has a half-width of 108–158 longi-
tude, so L ; 1000 km. In the deep ocean, the stratifi-
cation is weak (N/v ù 10) and the dissipation varies
by an O(1) amount over 200 m in height above bottom;
thus H ; 200 m. The ratio of the horizontal to vertical
flux divergences is thus O(1/500). In the thermocline,
N/v ù 100 and dissipation varies by an O(1) amount
over 500 m. Thus the ratio of horizontal to vertical flux
divergences in the thermocline is O(1/20). On this basis,
the energy balance is clearly one dimensional.

The justification given by St. Laurent and Garrett
(2002) for their partition of the source into local and
nonlocal dissipation appears to be an evaluation of wave
scattering effects that suggested wave scattering is in-
efficient. Despite assertions to the contrary, their as-
sessment is qualitatively inconsistant with the scattering
transform of Müller and Xu (1992), which results in an
O(1) transformation of the incident energy flux when
the internal wave ray trajectories are similar to the to-
pographic slope, as is the case for the Mid-Atlantic
Ridge.

b. Models of wave generation

1) A LINEAR MODEL WITH INFINITESIMAL

AMPLITUDE TOPOGRAPHY

For infinitesimal-amplitude topography, a linear mod-
el of internal-tide generation using continuous topog-
raphy will return the result that the energy density is
proportional to the topographic slope variance. This is
rather problematic given the topological character of
midocean ridge bathymetry. It can be described as frac-
tal (Goff and Jordan 1988), which implies the topo-
graphic slope variance is unbounded as smaller and
smaller scales are included in the slope estimate. Using
a linear model and a continuous representation of mid-
ocean ridge bathymetry, the predicted result will have
infinite energy density and infinite shear. This is aphys-
ical as either adiabatic or diabatic nonlinearity will serve
to damp the smallest-scale response.

One representation of the above comments is a spec-
tral model (Fig. 9) of the internal wave response to
oscillatory flow over infinitesimal-amplitude topogra-
phy:
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FIG. A1. A schematic representation of the bottom-boundary con-
dition at points 1a, 1b, 2, 3a, and 3b of the triangular planform. Two
of the points are close together at the base of the triangle, two are
located next to each other but on different sides of the apex, and one
is on the middle of the slope. (top) The forcing barotropic velocity
is given, and (bottom) the vertical velocity obtained from w 5 Ubt]h/
]x is plotted in both Eulerian and Lagrangian coordinates.

FIG. A2. A linear solution for the triangular bump planform using
the method described in Baines (1973). The thin lines to the left of
the bump represent ray characteristics. The thick lines represent the
real (solid) and imaginary (dashed) parts of the velocity profile. The
velocity profiles are discontinuous or sharply peaked where the rays
can be traced back to points where the topographic slope is discon-
tinuous. This behavior is characteristic of the solution for infinites-
imal-amplitude bathymetry and is consistent with the linear spectral
model in Fig. 9.

E (k, l, v, z 5 0)source

1
2 2 2 2 1/2 2 2 21/25 v[(N 2 v )(v 2 f )] (k 1 l )

22p

2 2 2 2 23 H(k, l)[(k U 1 l V )/4v ]. (A3)o o

Here Esource(k, l, v) is the horizontal wavenumber–fre-
quency spectrum for the vertical energy flux spectrum,
v is the fundamental frequency of the barotropic tide
(M2), and the factors Uo and Vo represent the amplitude
of the barotropic tide.

Apparent in Fig. 9 is a blue shear spectrum that rises
with wavenumber as approximately m1.3. The corre-
sponding energy spectrum is ‘‘pink,’’ tending weakly
downward as m20.7. The integrals of both spectra di-
verge as the upper limit of integration becomes infinite.
Thus both predicted wave energy and wave shear are
infinite.

Why a linear inviscid model gives rise to a large-
amplitude response at small scales is easy to discern.
The vertical velocity at the bottom boundary induced
by oscillatory flow over sloping topography is propor-
tional to the product of the magnitude of the oscillatory
flow and the topographic slope w[x, z 5 h(x), t] 5
Uo(t)]h/]x, for example, where h represents the height
of a topographic feature. Thus a discontinuity in the
topographic slope will induce a discontinuity in the re-
sponse. Consider an example of the response to flow
over a triangular bump (Fig. A1). The time history of

the vertical velocity at five positions is shown, as is the
forcing oscillatory flow. Adjacent sites exhibit different
time histories of vertical velocity where the topography
is piecewise continuous, and it should be relatively ap-
parent that these differences will translate into spatial
discontinuities in the induced flow field (Fig. A2).

This example represents the fundamental limitation
of the bottom boundary condition in a linear model. A
linear model is not a physically realistic representation
of internal tide generation from midocean ridge topog-
raphy as its predicted flow fundamentally contradicts its
adiabatic premise. While the triangular bump is an ide-
alized description of bathymetry superimposed upon
midocean ridges (Fig. 8), it cannot be dismissed as ir-
relevant because of the abrupt changes in slope. The
spectrum of the triangular planform has a high-wave-
number power law of k24. Observed midocean ridge
bathymetry (24) is somewhat rougher with a high-wave-
number power law of (k2 1 l2)23/2 to (k2 1 l2)21 for
(k2 1 l2)1/2 . lo [cf. (24)].

2) THE QUASI-LINEAR REPRESENTATION OF BELL

(1975)

Quite a different picture of the bottom boundary con-
dition is obtained following a water parcel moving with
the imposed flow field. Consider prescribing the vertical
velocity at the bottom boundary as
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FIG. A3. Linear solutions for a cosine-squared planform. The cur-
vature of this topographic planform is piecewise continuous; thus the
velocity profiles are well behaved. Note that the ray tubes emanating
from the far side of the topography are compressed and result in
enhanced shear as the topographic height increases.

FIG. A4. Spectra of the velocity profiles (solid lines) estimated
from an FFT procedure. The dashed line represents the topographic
slope spectrum. All spectra have additionally been multiplied by
wavenumber to the fourth power (k4) so that the roll off of the linear,
infinitesimal-amplitude solution is white; (a) and (b) correspond to
the identical panels in the previous figure.

t

w 5 w x(t) 5 x 1 U (t9) dt9, z 5 h[x(t)], to E o5 6
0

5 U (t)]h[x(t)]/]x.o

Neighboring points now have similar time histories of
vertical velocity (Fig. A1). The spatial domain discon-
tinuities in the Eulerian formulation of the bottom
boundary condition have been transferred to the time
domain in the Lagrangian framework. Energy and shear
variance are consequently finite. The discontinuities in
the time domain are described as a sum of harmonics
in the frequency domain (25).

3) A LINEAR MODEL WITH FINITE-AMPLITUDE

TOPOGRAPHY

Bell’s Lagrangian formulation of the bottom bound-
ary condition, however, is not a panacea as it assumes
the bathymetry to be of infinitesimal amplitude. That
is, the condition of no-flow through the bottom bound-
ary is applied at z 5 0 rather than the bottom boundary
z 5 h(x, y). Baines (1973) discusses a method for solv-
ing the linear generation problem subject to the appli-
cation of the bottom boundary condition at z 5 h. That
method utilizes the fact that waves propagate along
characteristic paths. For the small-amplitude bathymetry
in Fig. A3b, the characteristics emanating from the peak
and lower edge of the topography are evenly spaced.
As the topography increases in height (Fig. A3a), the
wave amplitude increases, and the characteristics com-
ing from the peak and far side contract, with the im-
plication that the wave shear increases. A spectral de-
composition (Fig. A4) reveals that the Baines solution
is proportional to the topographic slope spectrum when
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the topographic height is small. This result also applies
at low wavenumber as the topographic height increases.
However, there is a range of wavenumbers for which
the solution is enhanced and the shear spectrum is
peaked. This range of wavenumbers corresponds rough-
ly with 1/L , k , 1/(L 2 ho/q), where L is the half-
width of the topography, ho the height, and q the ray
characteristic slope. The ratio ho/Lq represents the rel-
ative contraction of ray characteristics from the topo-
graphic peak and the far side of the bump as ho increases.

Contrast the better than factor of 2 agreement between
the observed shear spectral peak, the level of the ide-
alized solution (Fig. 6), the idealized solution’s differ-
ence spectrum, and Bell’s quasi-linear, infinitesimal am-
plitude model prediction (Fig. 9) with the two order-of-
magnitude enhancement of shear associated with the
finite-amplitude bottom boundary condition (Fig. A4).
This degree of shear enhancement is not apparent in the
observed spectra, nor is it consistent with the observed
dissipation profile. The Baines model using the finite-
amplitude bottom boundary condition returns a predic-
tion that is clearly not present in the data. Such an
inference from this simple calculation is easily criti-
cized. Major shortcomings include 1) the bathymetry is
3D and the model is restricted by its nature to being
2D, 2) the topographic planform is much smoother than
the oceanic topography, and 3) the bathymetry is pos-
sibly supercritical (it is in the direction of steepest ascent
depicted in Fig. 8) whereas the calculation is for sub-
critical topography. Clearly, the problem requires fur-
ther investigation, but it does appear that the more so-
phisticated and much more technically complicated ap-
proach of applying the bottom boundary condition at z
5 h(x, y) rather than z 5 0 does not necessarily provide
a better description of the interior response.
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