
Problem Set #3 Solutions        12.744 2012 
 
Question 1.1 
 
An ion current of 10-11 ampere (A = C s-1; Ampere = Coulomb per second) corresponds to 62,415,096 
elementary charges arriving at the detector per second, taking the elementary charge of e = 1.6021765 
10-19 C into account.  Assuming identical transmission between SEM and Faraday detectors, the ratios of 
the 18O and 16O ion beams are: 
 
0.00206678 for glacial forams and 
0.00206346 for interglacial forams. 
 
Question 1.1.1 (5 points) 
 
Normalizing to the VPDB standard, the delta values for glacial and interglacial forams are -0.20 (-0.203) 
and -1.81 (-1.809) per mil. 
 
The saturated mixing ratio at 20°C air temperature and 1000 mbar is 14.86 gram per kilogram.  The 
saturated mixing ratios at -5°C and -22°C at the same pressure and starting temperatures (assuming 
saturation) are 2.63 grams/kg and 0.65 grams/kg.  This means that the water vapor fractions remaining 
for both scenarios are 0.17698 (0.177) 0.04374 (0.044), respectively (calculated using the Mixing Ratio 
calculator at www.srh.noaa.gove/epz/?n=wxcalc_mixingratio). 
 
Question 1.1.2 (5 points) 
 
Note that the universal gas constant R needs to be in units of cal mol-1 K-1 (i.e. 1.9858775), and that the 
temperature values (in degree Celsius) need to be converted to Kelvin.  The alpha values for the relevant 
temperatures are: 
20°C 1.009201 
7.5°C 1.010421 (this is the mean temperature of 20°C and -5°C) 
-1°C 1.011316 (this is the mean temperature of 20°C and -22°C) 
-5°C 1.117563 
-22°C 1.013788, 
indicating greater fractionation at lower temperatures. 
 
Question 1.1.3 (5 points) 
 
Calculate delta values for the condensate from Willi Dansgaard’s formula #6 in his 1964 Tellus (4, 436-
468) article.  These values (relative to SMOW) are: 
-15.4 (-15.398) per mil for the Emiliani (cooling from 20°C to -5°C) case and 
-30.4 (-30.405) per mil for the Dansgaard & Tauber (cooling from 20°C to -22°C) case. 
 
These values are the values of ice locked in the 130 meters of ice-equivalent water that melted since the 
last glacial maximum.  The 69 meters of water-equivalent ice existing during the current interglacial is 5 
per mil heavier, i.e. 
-10.4 per mil for the Emiliani case 



-25.4 per mil for the Dansgaard & Tauber case. 
 
Question 1.2 (20 points) 
 
Charette and Smith (2010, The Volume of Earth’s Ocean, Oceanography 23, No. 2) have determined the 
volume of the ocean at 1.3324 109 km3 (area: 361.84 106 km2, mean depth: 3682.2 m).  Neglecting 
changes in density, thermal expansion, topography and changes in the area of the ocean on G-IG time 
scales, 130 meter water-equivalent ice has a volume of 47.04 106 km3, whereas the remaining 69 meters 
of water-equivalent ice correspond to a volume of 24.97 106 km3.  The remaining (IG) ice is 5 per mil 
heavier than the corresponding glacial ice. 
 
The simple mass balance is then: 
 

Emiliani:   18Osw = 
ሺସ଻.଴ସ	∗	ଵହ.ସሻ	ା	ሺଶସ.ଽ଻	∗	ହሻ

ሺଵଷଷଶ.ସ	–	ସ଻.଴ସሻ
 = 0.66 per mil 

 

Dansgaard & Tauber:  18Osw = 
ሺସ଻.଴ସ	∗	ଷ଴.ସሻ	ା	ሺଶସ.ଽ଻	∗	ହሻ

ሺଵଷଷଶ.ସ	–	ସ଻.଴ସሻ
 = 1.21 per mil 

 
With a total change of 1.61 per mil, Emiliani’s scenario attributes 41 (40.99) % to changes in ice volume 
and composition, whereas Dansgaard & Tauber argue that it is 75 (75.16) %. 
 
Question 1.3 (20 points) 
 
The Erez & Luz (1983, best-fit constants below are from their table 2) equation for paleotemperature (in 
°C) is: 
 
T (°C) = 16.998 – 4.52 (18Ocarb – 18Osw) + 0.028 (18Ocarb – 18Osw)2 
 
Note that this equation requires delta values normalized to VPDB, not VSMOW.  The equation also 
relies on measurements of CO2 released from carbonates upon decomposition with phosphoric acid 
(18Ocarb), and on equilibrating CO2 with seawater (18Osw) at a constant temperature (18O of seawater 
is very difficult to measure directly, because water is such a sticky molecule in mass spectrometers).  
The 18Osw term in the equation (relative to VPDB) can be related to our VSMOW scale by: 
 
18Osw-VPDB = 18Osw-VSMOW – 0.27 
 
The relevant differences (parentheses) in the Erez & Luz equation are therefore: 
 
Interglacial:    (18Ocarb – 18Osw) = -1.539 
Emiliani glacial:   (18Ocarb – 18Osw) = -0.593 
Dansgaard & Tauber glacial: (18Ocarb – 18Osw) = -1.143 
 
With this, the interglacial temperature is 24.02°C.  The glacial temperature with the Emiliani scenario is 
19.69°C, whereas the glacial temperature with the Dansgaard & Tauber scenario is 22.20°C.  The 
glacial-interglacial temperature differences derived for these two scenarios are 4.3°C (Emiliani) and 
1.8°C (Dansgaard & Tauber). 



 
Note: the above conversion deal with measurements of CO2 gas (real life, CO2 measurements generated 
by reacting carbonate with phosphoric acid, or by equilibrating CO2 gas with seawater at 25°C in so-
called Kiel devices – originally developed at GEOMAR in Kiel, Germany), as our foram data were 
generated in this fashion.  If you want to convert delta values from VPDB to VSMOW scales or vice 
versa, the following equations have to be used (the numbers in parentheses are alternative values – 
different conversion schemes have slightly different constants (i.e. 1.03086 (92) means that one study 
uses a value of 1.03086 whereas another uses a value of 1.03092), giving you a sense of the uncertainty 
associated with these conversions: 
 
18OVSMOW = 1.03086 (92) 18OVPDB + 30.86 (30.92) 
 
18OVPDB = 0.97006 (01) 18OVSMOW – 29.94 (29.29) 
 
  



Question 2 (15 points) 
We start by realizing that the measurement will be limited by the count-rate of the less abundant isotope. 
This is C18O16O, which is 0.4% of the more abundant C16O16O. Put another way, the 16O count will be 
250 times greater than the 18O count, and hence measured to 16 times greater accuracy. Considering the 
implied “imprecision” of the other factors given and the way errors propagate in the isotope ratio 
calculation, ignoring this contribution to measurement error is justified. Now since the measurement is 
ion current limited, and the target precision is 0.01‰ (one part in 105), it would at first seem that we 
would need to acquire 1010 counts (recall that counting precision goes as N-0.5). However, since we need 
to measure both unknown and standard, we need to now both better due to the propagation of errors. 

That is, we need to have a precision that is 1
2

 better for both. (Think about computing the ratio of the 

two and propagating the errors!) Thus we need to count twice as many ions for both standard and 
unknown. Inasmuch as the standard will likely be unlimited in size and we’re asked to determine how 
much unknown we need, we proceed with that. Working backwards from that, there will be 
approximately 250 ions delivered to the detectors for every one C18O16O ion received. Thus we need to 
deliver 250 x 2 x 1010 = 5 x 1012 CO2

+ ions (remember the factor of two because of the 
standard/unknown symmetry. Now we need to feed the source 900 atoms for every ion sent to the 
detectors, so the requirement now becomes 4.5 x 1015 CO2 molecules. Finally, the gas delivery system is 
only 50% efficient so we need to have 9 x 1015 CO2 molecules in our sample. Given Avogadro’s 
number, this means that we require  
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Now the over-fastidious student might consider the contribution of C13O16O17 and C12O17O17 to the mass 
46 channel. The presence of other ions, that can and would be subtracted, will “pollute” the ion counts 
and inflate the error. Fortunately, the contributions (an exercise to the student) are extremely small. 
 
  



Question 3 (15 points) 
The first step is to list the isotopologues of N2O, and then give the normalized ion currents, given by 
isotope ratios relative to the most abundant isotopes: 
 
Mass      Isotopologues                                      Ratios 
  44        14N14N16O       =1 
  45        15N14N16O + 14N15N16O + 14N14N17O   2*R15/14

  + R17/16 

  46        15N15N16O + 14N15N17O + 15N14N17O + 14N14N18O  R15/14
2 + 2*R15/14

 * R17/16 + R18/16 

 
Substituting the atmospheric isotopic ratios for 15N/14N = 3.6765 x 10-3, 17/16O = 3.799 x 10-4, and 
18O/16O = 2.0052 x 10-3, we can substitute into the istopologue list above to get  
 
45/44 = 7.733 x 10-3 and 46/44 = 2.02151 x 10-3 for the N2O distributions. 
 
This is what we actually measured. We then do the same for the CO2 distributions, which have a slightly 
greater number (5) of isotopologues at mass 46, we create the following equations: 
 
45/44 = R13/12 + 2*R17/16 = 3.65765 x 10-3 

46/44 = 2*R13/12R17/16 + 2*R18/16 + R17/16
2 = 2.0052 x 10-3 

 

This is two equations in three unknowns, so we need to use a third constraint to solve for all three 
variables, which is that since δ17O = 0.516 δ18O. Substituting into the definition of δ referenced to 
SMOW, we have 

 
 

 
 

17/16 18/16

17/16 18/16

0.516 0.484Unknown Unknown

SMOW SMOW

R R

R R
   

 
And substituting in the values for SMOW, this reduces to  
 
     4

17/16 18/160.095530 1.8387 10
Unknown Unknown

R R      

 
 
Now we have three equations in three unknowns, which can be solved either iteratively (the hard way), 
by substitution of the third equation into the first two combined with a little algebra, or with a non-linear 
equation solver (e.g., in MATLAB). We get 

13
13/12 0.00717 359PDBR C     ‰ 

18
18/16 0.001009 496SMOWR O     ‰ 

 
You could also solve the above problem using 45/44 and 46/45, but it would be more complicated. 
  



Question 4 (15 points) 
I preface this solution with an apology: Kyrstin pointed out an error in the ∆G units used (they were 
listed as kJ/mol) in the table, but they should be in the older units of kCal/mol. This means that those 
who did not receive correct guidance on the error were off by a factor of ~e4, or an order of magnitude. 
Students were not penalized for this, although I need a good flogging…. 
 
We first write out the reaction equation: 2 2H +HDO HD+H O  which allows us to write the reaction 

constant as  
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where the un-subscripted R is the gas constant (not to be confused with the isotope ratios). We can 
rewrite this as  
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Now we can calculate from the table values that  

       0 0 0 0
2 2 0.735f f f f

kCalG G HD G H O G H G HDO mol         

Substituting the value for RT  

 1.987 298 0.5921
Cal kCal

RT K
mol K mol

  


  

we get  

 
 

1.2413

0.735
ln 1.2413

0.5921

3.4603e





 

 

  

Since the original gas has δD= -60‰ with respect to VSMOW, it’s ratio is 0.940 (remember you should 
always convert to and work in terms of isotope ratios, and then compute delta values). This means the 
final ratio of the water vapor with respect to VSMOW is 0.940 x 3.4603 = 3.2526 (note that this is a 
huge effect, while typical values for other isotopes are much closer to unity). That is, there is a strong 
affinity for D to concentrate preferentially in the water molecule. Using the delta notation, we arrive at  
  

2
3.2526 1 1000H OD    ‰ = 2526‰ 

If you write the original equation in reverse, i.e.,  2 2HD+H O H +HDO  

it still works out the same because the different summation/difference would lead to the sign in the 
exponent for α being the opposite and we would have to use 1/α to have the correct sense. That is, the 
equations have symmetry.  


