Isotopes and Gases

Isotopes as constraints to air-sea gas exchange, gas exchange time-scales, the various time-scales of carbon (isotope) exchange

Isotope effects in gas solution and molecular diffusion

Using the natural radiocarbon budget

- A long term, large scale average
- Natural radiocarbon is...

very slow exchanger (T ~ 10 y)*

*more later...

- globally distributed
- produced by cosmic rays in the atmosphere only
- basic premise:flux in = decay of inventory

Challenges:

- 1. Gas exchange model?
- 2. Isotope effects
 - a) In solution
 - b) During gas exchange

A gas exchange model

- Gas exchange is a "first order" process
 - flux proportional to degree of disequilibrium
- Slabs of water presented to atmosphere
 - to be removed in time "T" before reaching equilibrium
 - volume "filled" = Area x thickness "L" reached by diffusion (D)
 - depth reached in time T related to molecular diffusion rate
 - Scales like a random walk effect $L = \sqrt{DT}$
 - mass flux related to frequency of slab replacement (θ) times the volume replaced each time $F = \sqrt{DT}\Delta C = \sqrt{\frac{D}{\theta}}\Delta C \qquad \qquad \Delta C \equiv C C^*$
 - frequency of slab replacement is related to viscosity of water (ν)

(where k is a constant of proportionality) $F = k \sqrt{\frac{D}{\nu}} \Delta \Delta v$

- Define the Schmidt Number: $S_c = \frac{v}{D}$ So now the G.E.R. becomes $F = (k Sc^{-0.5})\Delta C$

A gas exchange model

$$F = \left(k \, Sc^{-0.5}\right) \Delta C$$

 $kSc^{-0.5}$ is commonly called a "piston velocity" and is modeled as a function of U₁₀ (wind speed at 10 m height above ocean)* →

Premises

A first order process

Usually plotted for Sc = 600 →

- Separate "water" (k, T) and "gas" (Sc, ΔC) dependencies
 - So you can derive a "general" relationship and predict for various gases
 - Generally formulate k as a non-linear function of wind-speed
 Also dependent on surfactants, fetch, wave spectra, etc.
- Schmidt number for various gases and temperatures

T(°C)	He	Ne	Kr	Xe	Rn	H_2	CH ₄	CO ₂
0	378	767	2045	2700	3168	633	1908	1922
5	292	578	1477	1929	2234	472	1399	1396
10	230	445	1090	1408	1610	360	1047	1036
20	150	276	626	793	885	219	618	600
30	102	180	380	472	516	141	385	369

*Wanninkhof, 1992. Journal of Geophysical Research 97, 7373-7382.

$F = (k Sc^{-n})\Delta C$ In more general terms...

Range of physical models & situations dependent on wind

situations dependent on wind speed

- (a) Beaker: stagnant film *n=1*
- (b) Weak turbulence *n=2/3*
- (c) "Normal" oceanic n=1/2
- (d) Strong forcing: bubble dynamics & spray (all hell breaks loose)

Beware:

- 1. Wind speed measured at 10 m above sea level
- 2. Choice of paremeterization depends on whether "instantaneous" or "average" wind speed

The Radon Deficit Technique

Gas Exchange Flux = **Production - Decay**

$$F = H(A_{226} - A_{222})$$

$$F = \left(k \, Sc^{-0.5}\right) \Delta C$$

$$H(A_{226} - A_{222}) = kSc^{-1/2} \frac{A_{222}}{\lambda_{222}}$$

What is the characteristic timescale of this determination???

If determined k using Rn at 10°C, using n=1 flux of CO₂ would differ by 25%

- flux of N₂ would differ by a factor of 1.9
- flux of He would differ by a factor of 2.6

Warning: original literature (1974) used stagnant film model (n=1), which is morally incorrect and punishable by revocation of J.P. PhD

Gas exchange timescales

- Adjustment time w.r.t. a change T_{GF} =H/K where **K** is piston velocity = $kSc^{-0.5}$, **H** is mixed layer depth
 - a physical time-scale
 - examples U_{10} = 10 m/s, H = 100 m, Temp = 20 C
 - He (Sc = 150), $T_{GE} \sim 11$ days
 - O_z (Sc = 450), $T_{GE} \sim 18$ days
 - CO₂ (Sc = 600), T_{GE} ~ 23 days???*
- CO₂ is actually much longer due to "chemical inertia" of huge buffer system effect

$$T_{GE} = \left(\frac{H}{kSc^{-0.5}}\right) \times \frac{\partial \left[\Sigma CO_{2}\right]}{\partial \left[pCO_{2}\right]} = \left(\frac{H}{kSc^{-0.5}}\right) \times R$$

R is "Revelle Factor" and is a function of pCO₂ and carbon system parameters, as well as temperature ~ 10 So $T_{GF} \sim 0.7$ years for CO_2

CO₂ Gas Exchange and Radiocarbon

- 14CO₂ has an even larger "isotopic inertia"
 - to change p¹⁴CO₂ you have to flux much more ¹⁴CO₂ into the water due to huge ΣCO_2 reservoir

$$T = \left(\frac{H}{kSc^{-0.5}}\right) \times \frac{\left[\Sigma CO_{2}\right]}{\left[pCO_{2}\right]} = \left(\frac{H}{kSc^{-0.5}}\right) \times 180$$

- this "Broecker Factor" arises because you have to move 14C throughout the entire carbon reservoir (unlike CO₂ and the Revelle factor)
- the gas exchange residence time for ¹⁴CO₂ is 180 X 23 days ~ 10 years!!!

Observation of the Broecker Factor?

Surface ocean response to bomb ¹⁴C transient seen in coral records

Long time-scale related to "reservoir age"

Surface Ocean "Response"

Druffel, E. R. M. and Suess, H. E., 1983. Journal of Geophysical Research 88, 1271-1280.

Isotope effects in solution and diffusion **Gas Solubility**

- Dalton's Law of Partial Pressures:
 - individual "partial pressures" are additive
 - gases behave independently
- Henry's Law:
 - gas concentration in water proportional to partial pressure of gas above the water

 $\left[A_{Aq}\right] = \frac{K_{eq}}{RT} P_A$

- [A_{aq}] = "aqueous activity" (gas concentration)
 - expressed in molar units
- Solubility expressed in terms of Bunsen Solubility Coefficient*

$$\left[A_{Aq}\right] = \beta_A P_A$$

Relates concentration directly to partial pressure in gas phase

*sometimes referred to as α

"heat of solution" depends on

- 1. work required to create cavity in solvent
- work required to contain solute in the cavity
- energy gained from solutesolvent attraction

Unlike in rocks, smaller atoms or molecules are less soluble than the larger ones!

- Gas solubility generalities:
 - heavier, more polar gases are more soluble (3rd)

*unlike salts,

all gases are more soluble at *lower* temperatures*

for example

- more soluble gases have greater temperature dependence
- Increasing salinity depresses solubility

Gas Solubility

- Solubilities determined in the laboratory under controlled conditions
 - reported in quasi-thermodynamic equations, e.g.,

$$\ln \beta = A_1 + A_2 \left(\frac{1}{T}\right) + A_3 \ln T + S \left[B_1 + B_2 T + B_3 T^2\right]$$

 just a convenient form to calculate solubility as a function of T& S

Isotope Effects in Solution

- Heavier isotopes are more soluble (enriched in water)
 - Due to 2nd (solute) and 3rd (solute-solvent) energy terms (former more important?)

Gas	Molecular Wt	Isotope Ratio	Mass Difference	Isotope Effect
Helium	4	³He/⁴He	-28.6%	-1.5%
Neon	20.2	²⁰ Ne/ ²² Ne	-9.5%	-0.5%
Oxygen	32	¹⁸ O ¹⁶ O/ ¹⁶ O ₂	6.1%	+0.1%
Argon	40	⁴⁰ Ar/ ³⁶ Ar	10.5%	+0.05%

 Proportional to fractional mass difference, inversely to solubility (more soluble gases less affected)

 $^{14}\text{CO}_2/^{12}\text{CO}_2 \rightarrow 1.5\%$

Isotope Effects in Diffusion

- Heavier isotopes move more slowly
 - Related to but not explicable by kinetic gas theory (complicated reduced mass effect with multiple water molecules)

Gas	Molecular Wt	Isotope Ratio	Mass Difference	Isotope Effect
Helium	4	³ He/ ⁴ He	-28.6%	5.0%
Neon	20.2	²⁰ Ne/ ²² Ne	-9.5%	1.4%
Oxygen	32	¹⁸ O ¹⁶ O/	6.1%	-0.3%
Argon	40	⁴⁰ Ar/ ³⁶ Ar	10.5%	-0.8%

 Proportional to fractional mass difference, inversely to solubility (more soluble gases less affected)

 $^{14}\text{CO}_2/^{12}\text{CO}_2 \rightarrow -0.2\%$

Bourg and Sposito (2008) GCA, 72, 2237-2247*

Knox et al (1992) JGR, 97 20335-20343

Revisiting the global ocean radiocarbon mass balance calculation

- Using an appropriate Sc number for area weighted average ocean surface temperature $F_{in} = 0.027k\Delta C$
- Or $F_{in} = 0.027k(C_{Surf} C_0)$
- Substituting what we now know:

$$F_{in} = 0.027k \left\{ 0.95 \left(\frac{^{14}C}{^{12}C} \right)_{Atm} \left[CO_2 \right]_{Surf} - 1.015 \left(\frac{^{14}C}{^{12}C} \right)_{Atm} \left[CO_2 \right]_{Surf} \right\}$$

- This becomes $F_{in} = -0.00176k \left(\frac{^{14}C}{^{12}C}\right)_{Atm} \left[CO_2\right]_{Surf}$
- Which must balance decay in the ocean interior

