

²³⁰ Th _x Profiling method		
Assumption: ²³⁰ Th rain rate (F_{230}) is the integrated production of ²³⁰ Th from ²³⁴ U in the overlying water column.		
$^{230}\text{Th}_{x} = P_{230} / J_{m}$		
with $J_{\rm m}$ = dry sediment flux (g cm ⁻² yr ⁻¹) and P = integrated production from ²³⁴ U (dpm cm ⁻² yr ⁻¹) with P = βz with β = production of ²³⁰ Th from ²³⁴ U per volume per time (dpm cm ⁻³ yr ⁻¹), $\beta_{230} (\lambda_{230} A_{234})$ is 0.026 dpm m ⁻³ yr ⁻¹ and z = water depth above sediment (m)		
Rain Rate (<i>F</i> _i)		
F_{i} = ($c_{i} \beta z$) / ²³⁰ Th _{xo}		
with c_i = concentration of component (i) in sediment.		
$^{230}\text{Th}_{x0}$ is determined by correcting for decay since deposition using an independent sediment chronology.		

²³⁰Th_x Sediment Focusing Factor

Normalize the unsupported ^{230Th} in a sediment column by the integrated production of ²³⁰Th from ²³⁴U in the overlying water column.

$$\Psi_{230} = (\int_{z_1}^{z_2} 230 \text{Th}_{xo} \rho_b dz) / (P_{230} [t_1 - t_2])$$

with $\rho_{\rm b}$ = dry bulk sediment density (kg m⁻³)

and t_i = age at depth z_i (yr)

with
$$P = \beta z$$

with
$$\beta$$
 = production per volume per time (dpm m⁻³ yr⁻¹)
for ²³⁰Th, β is 2.63 dpm m⁻³ yr⁻¹

and z = depth in sediment or water column (m)

Determining Sediment Accumulation Rates			
1) Assume $c_0(t) = const$	$c(z) = c_0(t) e^{-\lambda t}$ $t_1 = 1/\lambda \ln(c_0/c_z)$	CIC	
2) Assume $c_0(t) r(t) = const$,			
with $r =$ sediment accumulation rate (g cm ⁻² yr ⁻¹)			
for small Δz	dz = r (t) / ρ (z) dt		
with ρ = dry sediment mass (g cm ⁻³)			
	dz / dt = r / ρ	CRS	
	$A(z) = A_0(t) e^{-\lambda t}$		
with A = Activity	$t_2 = 1/\lambda \ln(A_0/A_z)$		
Age difference $\Delta t = t_2 - t_1 = 1/\lambda \ln (A_0 c_z) / (A_z c_0)$			
$= 1/\lambda \ln (r_0 / r_t)$			
with $r = \lambda A / c$ at any give depth			
Appleby & Oldheid, 1976			

14