
 
6.4   A mid-latitude jet. 
 
 Unfortunately,  global self-similarity is lost when the jet of the previous section is 
moved off of the equator (fo≠0). Formulation of a hydraulic model of a mid-latitude jet is 
possible but benefits from further simplification.  It will be helpful to work within the 
confines of the quasigeostrophic approximation, for which the layer depth is nearly 
constant and the Rossby number is small.  In addition, it will be necessary to consider a 
special potential vorticity distribution.  
 
 We consider the reduced gravity, quasigeostrophic model as applied to a deep 
layer that flows along the bottom and is separated from the inactive upper layer by an 
interface. As discussed in Section 6.1, the interface displacement η(0) acts as a 
streamfunction ψ for the geostrophic velocity.    For steady flow, the long-wave 
approximation to the quasigeostrophic potential vorticity (see 6.1.7) is 
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The topography again consists of an isolated ridge but, unlike the previous example, y-
variations in the height of the ridge will be key to hydraulic transitions in the overlying 
jet.  We therefore set   h = N (x)H(y) .   
 
 The form of the potential vorticity function q(ψ) can be constrained by 
considering a hypothetical upstream flow consisting of a jet that is centered near y=0 and 
that impinges on the ridge from the west.  Far to the north and south of the jet, but still 
upstream, the flow is assumed to be westward and very broad: u=-uo<0, where uo is a 
constant.  Evaluating  (6.4.1) in these outer regions leads to !y = q(" ) + S" or, after 
differentiation with respect to y, dq / d! = (" / uo ) # S .  The corresponding potential 
vorticity distribution is  
 
   q(! ) = [(" / uo ) # S]! + const.     (6.4.2)  
 
 It is expected that this distribution will be carried forward in x across the topography and 
therefore serve as a far field potential vorticity for the jet at all x. 
 
 The choice of q(ψ) within the core of the jet can be motivated by noting that zonal 
currents like the Gulf Stream east of  Cape Hatteras and the Jet Stream possess intrinsic 
potential vorticity gradients much stronger than β.  These local gradients will be 
represented here by discontinuities in the value of q across certain streamlines.  
Specifically: 
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The flow is thus divided into three regions (I, II, and III), each containing the same 
potential vorticity gradient (dq/dψ) but each having a different ‘background’ potential 
vorticity a, b, or c (Figure 6.4.1).  The regions are separated by potential vorticity fronts 
coinciding with the streamlines at y=L1(x) and y=L2(x), across which q(ψ) is 
discontinuous but velocity and ψ are continuous.    
 
 The potential vorticity equation (6.4.1) now becomes 
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where ! 2

= " / u
o
.   The solution to (6.4.4) satisfying the condition of velocity continuity 

across the potential vorticity fronts and for which !" / !y  remains bounded as y→±∞ is 
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where ΔL=L1-L2 and where K(y) is a solution to   
 

   !
2K

!y
2
" #

2
K = "#

2
H(y) .    (6.4.6)  

 
 
 The corresponding zonal velocity  
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consists of the sum of the ambient westward velocity uo, a topographic contribution 
related to dH/dy, and a pair of eastward cusped jets centered on the potential vorticity 
fronts (Figure 6.4.1).  The scale α -1=(uo/β)1/2 is the distance over which the jet velocity 



decays away from a front.1 It is now clear that the meridional isolation of the jet requires 
westward far-field flow.  (An eastward far field (uo<0) would yield a velocity profile with 
sinusoidal variations in y.) 
 
 
 The volume transport in core region (II) of the jet is 
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If the elevation of the ridge increases linearly with y (H = Ho + sy , say),  the solution to 
(6.4.6) isK(y) = Ho + sy  and substitution into (6.4.8) leads to a relation between ΔL(x) 
and   N : 
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Through this relation ΔL depends only the potential vorticity difference a-c across the 
core and not on the potential vorticity b in the core itself.  
 
 Critical flow occurs for  !G / !"L = 0 , or 
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The right-hand side increases monotonically from zero to unity as ΔL increases from zero 
to infinity. A critical state can therefore be found if and only if 
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The numerator of this expression is proportional to βQ/uo, the change in the planetary 
potential vorticity βy that would occur if the velocity had the uniform value uo in the core. 
The denominator is clearly the change across the core of the potential vorticity intrinsic to 
the flow.  For critical flow to occur, the former must be weaker than the latter.  In 
addition, the transport Q must have the same sign as a-c.  To an observer facing 
downstream, the intrinsic potential vorticity must increase from right to left, meaning that 
the associated waves should tend to propagate upstream.  We continue to assume that the 
jet is eastward (Q>0) so that a-c>0. 
 

                                                
1 This scale is also the boundary layer thickness in inertial models of basin circulations 
(Fofonoff, 1954) and of the Gulf Stream (Charney, 1955). 



 The topographic slope at the critical section can be found from substitution of 
(6.4.10) into (6.4.9).  The resulting relation  
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forms the basis of a Froude number 
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such that Fβ>1, <1, =1 for supercritical, subcritical and critical flow.   A physical 
interpretation of the Froude number is aided by associating with the potential vorticity 
difference a-c an equivalent stream function difference !" 2

(#
a
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c
) , as suggested by 

(6.4.4).  The difference (!
c
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a
)  is equal to the geostrophic flux Qab  between two 

hypothetical regions with constant interface elevations a/α2 and c/α2.  In addition,  
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c
 can be interpreted as the total ambient (planetary plus topographic) potential 

vorticity gradient:  βT, say.  With these substitutions, the Froude number can be expressed 
using dimensional quantities as 
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1/ 2 .   The term Qab * /!T *DL!
3  is similar to the familiar scale 

U/β*L2, with the total ambient potential vorticity gradient substituted for β*, the inertial 
boundary layer thickness substituted for L, and the velocity scale Qab * /DL!  used for U. 
If the ratio !L * /L"  is not much larger than unity, meaning that the two fronts are 
separated by a single inertial radii or less, then flow criticality requires this particular 
version of U/β*L2 to be O(1) as well.  On of the other hand, separation of the fronts by 
more than a few values of Lβ means that the exponential term in (6.4.13b) becomes very 
large and thus a large potential vorticity difference a-c (and equivalent geostrophic flow) 
is required for critical control.  The interpretation of this limit is that the two fronts lose 
their awareness of each other and become independent as they separate.  Contact between 
the two can then be maintained only if the potential vorticity difference a-b, and thus the 
associated transport Qac is very large. 
 
 It follows from (6.4.9) that 

  
lim !L"# sN = $%  whereas 

  
lim

!L"0
sN = #$ , 

both limits being evident in the Figure 6.4.2 plot of   sN  vs. ΔL.  The curve has a 
maximum value for finite ΔL provided (6.4.11) is satisfied.  Flows lying to the right are 
presumably subcritical and those to the left supercritical.  Since the upstream and 
downstream states correspond to   sN =0, it is necessary that the maximum of the curve lie 
above the   sN axis.  Therefore a requirement for the existence of solutions, controlled or 



otherwise, is that 
  
sN

c
is ≥0.  Thus the ridge crest must slope upwards in the positive y 

direction.   
 
 For a given topographic function   sN (x)  it is possible to find the corresponding 
jet width ΔL(x) by tracing along the solution curve in Figure 6.4.2.  It still remains to 
determine the individual latitudes of the potential vorticity fronts y=L2(x) and y=L2(x)+ 
ΔL(x). The former can be found through evaluation of  (6.4.5) along the streamline 
y=L2(x), resulting in 
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Examples of the four standard hydraulic solutions (Figure 6.4.3) have been calculated 
from (6.4.9) and (6.4.14) for parameter settings close to those of Figure 6.4.2 and for 

  
N (x) = N

max
e
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2

.  The purely subcritical and supercritical solutions are distinguished by 
a narrowing or widening over the ridge.  The subcritical-to-supercritical solution narrows 
as it passes the ridge and becomes supercritical, whereas the (unstable) supercritical-to-
subcritical solution does the opposite.   
 
 If the ridge slopes equatorwards (s<0) rather than polewards and the upstream 
flow is subcritical, the solution over the ridge lies to the right of ΔLu along the Figure 
6.4.2 curve.  As the subcritical jet climbs the topography its width increases and the flow 
becomes more subcritical.  If 

  
sN

max
 <-β,  ΔL becomes infinite before the ridge crest is 

reached.  Although the long-wave assumption becomes violated here there is a suggestion 
that the flow may become completely blocked by the ridge through deflection to the pole 
and equator.  
 
 In the ocean, a possible application of the above theory is to the Antarctic 
Circumpolar Current (ACC) as it passes over the Kerguelen Plateau or through the Drake 
Passage.  The ACC has a multi-front structure, the two most prominent features being the 
Subantarctic Front and the Polar Front. Pratt (1989) has made estimates of the beta 
Froude number (6.4.13b) at the Drake Passage and at 134W section, upstream of the 
Passage. The value of ΔL* is taken as the distance between the two fronts, whereas Lβ is 
as the observed decay scale of the velocity away from the fronts and is given a range of 
values.  As it turns out Fβ ranges between 10-2 and 10-1 at the upstream section, and 
between 0.4 and 0.9 in the Drake Passage.  This could be an indication of a hydraulic 
transition within the strait, but validation of this conjecture would require a more specific 
and sophisticated model. 
 
 The dependence of the model on the westward, far field velocity uo results from 
the fact that the theory is purely inertial.  If this far field flow is brought to zero, it can be 
shown (Exercise 3) that critical control is expunged. A more realistic far field in the 
ocean might be the wind-driven subtropical and subpolar gyres that exist between jets 
such as the Gulf Stream, but this would require the addition of forcing to the model. 
 



 Comparison of the quasigeostrophic, mid-latitude jet with the equatorial jet of the 
previous section yields some important similarities and differences.  Critical control in 
each case involves a parameter U/β*L2 which must typically be O(1).  However, there are 
differences in how U, β*, and L are interpreted in the two cases.  In the equatorial jet U is 
the typical velocity in the jet, β* is its value on the equator, and L is the jet half width.  
As the flow passes over the ridge β* remains constant while the velocity and width 
evolve in response to vortex squashing.  In the mid-latitude jet, changes are forced by 
changes in the total ambient potential vorticity gradient and thus β* is the sum of the 
planetary and topographic potential vorticity gradients. In addition, L is the inertial 
boundary layer thickness and U is a velocity scale based on the difference across the jet 
of the intrinsic potential vorticity.  Another complication it that the true Froude number 
for the flow involves more than just a properly interpreted U/β*L2.  
 
 A common feature of the two models is that hydraulic behavior is reflected 
entirely in terms of varicose motions of the jet; that is, motions that effect the width.  In 
the equatorial case, this is guaranteed by the assumption of the north-south symmetry that 
is integral to the similarity solution.  In the mid-latitude jet, however, meandering (or 
sinuous) motions are present but are slaved to the varicose motions.   
 
 At the time of this writing, the potential hydraulic behavior of free, zonal jets has 
not received much attention or verification in terms of modern observations or 
numerically modeled flows. 
 
     
 
Exercises 
 
1.  Discuss the hydraulic control problem for a westward jet flowing over a northward 
sloping ridge in each hemisphere.  
 
2.  Suppose that varicose motion of the jet is eliminated by taking the limit ΔL→0.  Show 
that the resulting meandering, cusped jets cannot undergo hydraulic transitions in the 
northern hemisphere. 
 
3.  Explore the limit of a quiescent far field but taking the simultaneous limit β→0 and 
uo→0 such that (uo/β) remains constant.  Show that no hydraulic transitions are possible. 
 
 
Figure Captions 
 
Figure 6.4.1  Definition sketch for a midlatitude jet with piecewise continuous potential 
vorticity distribution.  (Based on a figure from Pratt 1989). 
 
Figure 6.4.2  The jet width ΔL vs. the northward slope parameter  sN  for Q=α=β=1, a-
c=8. Based on Equation 6.4.9. (From Pratt 1989) 



 
Figure 6.4.3  Examples of the four solution types based on the parameters of the previous 
figure, but with a-c=6.5, b-c=1, and 

 
N = N max exp(!x

2
) . 

 
N

max
 has value 0.0164 

(subcritical); 0.0622 (critically controlled); .0610 (supercritical); and .0622 (supercritical 
to subcritical). The flow is from left to right.  (From Pratt 1989) 
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