Lecture 13

Measurements I: Mass spectrometry

- Introduction
 - Uses, criteria, commonalities
- Ion Sources
 - Electron impact, TI, ICP, SI
- Analyzers
 - E & M sectors, QMS, TOF, Ion Traps
- Detectors
 - Faraday cups & electron multipliers
- Data Acquisition
 - Electrometers, ADC, statistics

Uses for Mass Spectrometers

- Trace element determination
 - sensitivity & isolation
- Quantitative analysis
 - reproducibility & separation, isotope dilution
- Molecular structure determination
 - deconstruction of molecules
- Material identification and separation
- Isotope abundance determination
- Isotope mass determination

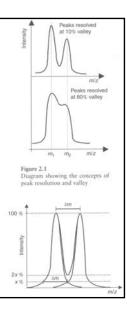
Sample Delivery Source Mass Analyzer Detectors & ADC

- · Sample delivery system
 - Pre-purification, optimal phase, preferably non-fractionating
- · An ion source
 - Atoms must be charged to be manipulated
 - Preferably mono-energetic, but sometimes spread
 - Creates, accelerates, focuses, collimates a beam
- A "mass" analyzer (m/q)
 - Selects momentum, also maybe energy
 - Refocus & maybe collimates beam
- A detector(s) and Analog to Digital Conversion
 - Measure and discriminate beam(s), possibly isobars
 - Digitize for data acquisition.

In addition

- Sample preparation and introduction system
 - Often integrated into machine
 - Depends on sample type and machine type
- · Data gathering and processing system
 - Digitization of analog signals
 - Counting of ions
- Instrument control
 - Control of all parts
 - Automation and book-keeping
 - More reliable, cost effective, humane

Decisions to make

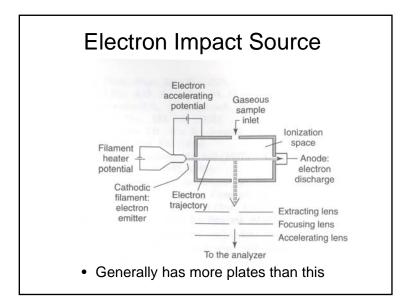

- Sample character: gas, liquid or solid, purity?
- How abundant is the material?
- Isotopic abundance: similar or drastically different?
- Range: do isotope ratios vary a lot or a little?
- Are there isobaric (molecular or nuclear) interferences?
- Are there "matrix effects"?
- Do we need to know the "absolute" ratio?

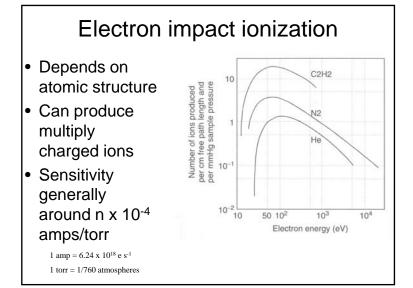
Figures of Merit

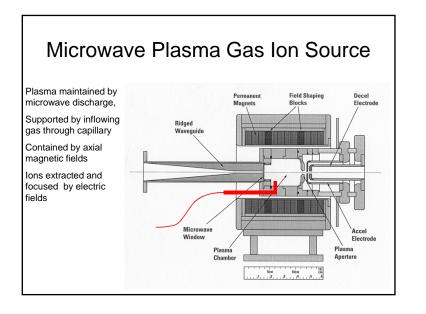
- · Resolution: smallest difference in mass
- Sensitivity: how small a signal can be discerned?
- Blank: what do you get with no sample at all?
- Abundance sensitivity: the smallest isotopic ratio
- · Stability and reproducibility
- Speed and throughput
- · Discrimination and accuracy
- How much does a measurement depend on the presence or absence of other species?
- Memory effect? Does the system hold a grudge?

Resolution

- Are there interfering isobars?
 - How small a mass difference can you distinguish?
- Caveat emptor: watch the definitions!
- You can separate entangled peaks if you know the peak shape very well
 - Not trivial to do…

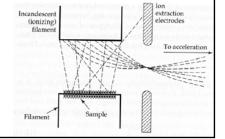


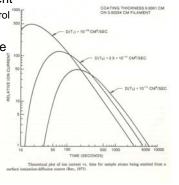

Measurements I: Mass spectrometry


- Introduction
 - Uses, criteria, commonalities
- Ion Sources
 - Electron impact, TI, ICP, SI
- Analyzers
 - E & M sectors, QMS, TOF, Ion Traps
- Detectors
 - Faraday cups & electron multipliers
- Data Acquisition
 - Electrometers, ADC, statistics

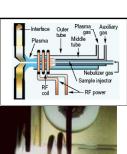
Types of Ion Sources

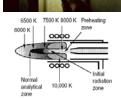
- Electron impact
 - Gases
- Microwave Plasma
 - Also gases
- Thermal ionization
 - solids
- Inductively coupled plasma source
 - liquids
- SIMS and Laser Ablation
 - solid surface analysis
- There are others
 - But not important for isotope work



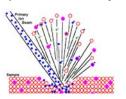

Thermal Ionization Source

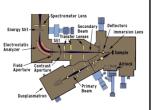
- Solid sample dissolved and concentrated into a few drops
- · Deposited on a refractory filament
 - Often with 2ndary coatings
- · Filament heated in an ion source
 - Diffusion of material to surface
 - Volatilization
 - Ionization
 - Usually multiple filaments


Thermal Ionization Source


- Solid sample dissolved and concentrated into a few drops
- Deposited on a refractory filament
 - Often with 2ndary coatings to control release characteristics
- Filament heated in an ion source
 - Diffusion of material to surface
 - Volatilization
 - Ionization
 - Usually multiple filaments

Inductively Coupled Plasma Source


- For "direct" injection of solutions
 - Amenable to automation
 - Simpler chemistry (?)
- Ionization ~ 100%
- Process:
 - Ar from liquid Ar source
 - Torch made of quartz (high temp!)
 - electrostatic ignition of Ar
 - Maintenance of plasma by RF (1-2 KW)
 - Nebulization of solution into Ar flow
 - Coaxial flows of Ar (for cooling too)
 - Ion extraction by "skimmers" (cooled)
 - Skimmers interface vacuum to Ar pressure
- Issues: matrix effects
- · Recent developments with laser ablation



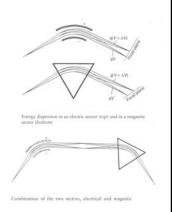
Secondary Ion Mass Spectrometry

- For surface analysis of solids
 - E.g., thin sections
- Spatial resolution ~ 10⁻⁶m
 - Laterally and in depth
- Process
 - Create ion beam (Ar, Cs, etc)
 - Extract & Ionize sputtered atoms typically < 10% ionized
 - Accelerate, collimate & focus
 - Big energy spread in ions
 - · Need to energy filter
- Issues: surface & ionization biases
 - Standard surfaces/matrices?

Measurements I: Mass spectrometry

- Introduction
 - Uses, criteria, commonalities
- Ion Sources
 - Electron impact, TI, ICP, SI
- Analyzers
 - E & M sectors, QMS, TOF, Ion Traps
- Detectors
 - Faraday cups & electron multipliers
- Data Acquisition
 - Electrometers, ADC, statistics

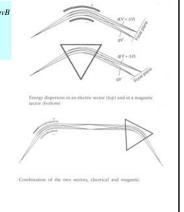
Mass Analyzers


- Magnetic and Electric Sectors
 - Most common for isotope studies
- Time of Flight
 - Simple designs
- Quadrupolar Mass Analyzers
 - Robust rapid scanners
- Ion Traps
 - Compact and emerging tools

Magnetic and Electric Sectors

- Electric sectors:
 - Energy filters
 - Balance between:
 - Centripetal force mv²/R
 - Electrical force qV

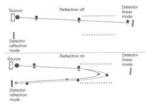
 Resolution related to R and defining slit dimensions


Magnetic and Electric Sectors

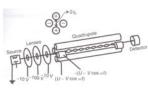
- Magnetic sectors:
 - Momentum filters
 - Balance between:
 - Centripetal force mv^2/R $R = \frac{mv}{R}$
 - Magnetic force qvB
 - Since energy = qV $E = \frac{1}{2}mv^2 = qV$
 - We have

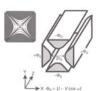
$$R^2 = \frac{2mV}{qB^2}$$

Resolution related to R and defining slit dimensions

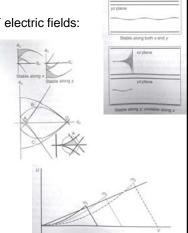

$$\frac{\Delta M}{M} \cong \frac{\Delta R_{Beam} + \Delta R_{Slit}}{R}$$

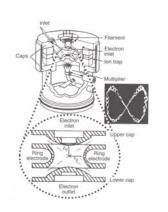
Time of Flight Instruments


- Conceptually simple
- Not widely used for isotope studies
- Operated in pulse mode
 - "duty cycle" low
- Momentum filters:


 $\Box \Delta T = L / v$

Quadrupolar Mass Filters


- Reliant on orbital stabilty in RF electric fields:
 - Only stable orbits passed
- · Complicated optical solutions
 - Integrated Mathieu equations
- Compact and robust
- Low voltage
- Fast scanners
- Wide range
- · Constant resolution vs Mass


Quadrupolar Mass Filters

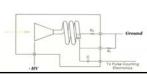
- Reliant on orbital stabilty in RF electric fields:
 - Only stable orbits passed
- Complicated optical solutions
 - Integrated Mathieu equations
- · Compact and robust
- Continuous mode operation
- Low voltage
- · Fast scanners
- Wide range
- Constant resolution vs Mass

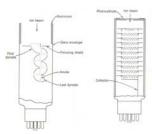
Ion Traps

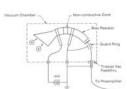
- Invented by the same guy (Paul)
- · Opposite to QMS
 - All ions in stable orbits
 - Desired ions ejected
 - Operated in pulse mode
- Compact & easily made
- Emerging technology

Measurements I: Mass spectrometry

- Introduction
 - Uses, criteria, commonalities
- Ion Sources
 - Electron impact, TI, ICP, SI
- Analyzers
 - E & M sectors, QMS, TOF, Ion Traps
- Detectors
 - Faraday cups & electron multipliers
- Data Acquisition
 - Electrometers, ADC, statistics

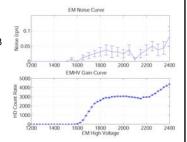

Faraday Cups


- For intense ion beams
 - From 10⁻¹⁵ 10⁻⁹ ampere range
- · Very simple: collect charge
 - Bleed through electrometer
 - Easily created arrays of cups
- · Watch for secondary electrons
 - From beam in cup
 - From beam outside of cup
 - Secondary electron suppression plates


Electron Multipliers

- For ion beams < 10⁻¹² amps (< 10⁷ ions /s)
- Relies on secondary electron cascade
- Discrete or continuous
- Current or pulse mode
- Run at 10^2 > Gain < 10^8
- Ion feedback issues

Electron Multipliers


- For ion beams < 10⁻¹² amps (< 10⁷ ions /s)
- Relies on secondary electron cascade
- Discrete or continuous
- · Current or pulse mode
- Run at 10^2 > Gain < 10^8
- Ion feedback issues

Gain and NOISE depends on high voltage applied to device

Current vs. pulse counting modes:

(a) gain dependency!

(b)dark current discrimination

Measurements I: Mass spectrometry

- Introduction
 - Uses, criteria, commonalities
- Ion Sources
 - Electron impact, TI, ICP, SI
- Analyzers
 - E & M sectors, QMS, TOF, Ion Traps
- Detectors
 - Faraday cups & electron multipliers
- Data Acquisition
 - Electrometers, ADC, statistics

Measurement of ion currents

- Pulse mode SEM already digital (ions/sec)
- Electrometer outputs need to be converted to digital
 - Either ADC (16-24 bit DACs now available)
 - Or VFC (longer term integrators, highly linear, good for ratiometric measurements)

Measurement of ion currents

- From Faraday Cup
 - Electrometers (usually FET input)
 - Use feedback resistors
 - Inherent noise
 - Intrinsic time constant
- From S.E.M.
 - If "current mode", use with electrometers
 - First order gain dependence on SEM history
 - If "pulse mode", use preamplifier/discriminator and fast counting electronics