Lecture 13
Measurements |: Mass spectrometry

Introduction

— Uses, criteria, commonalities
lon Sources

— Electron impact, Tl, ICP, SI
Analyzers

— E & M sectors, QMS, TOF, lon Traps
Detectors

— Faraday cups & electron multipliers
Data Acquisition

— Electrometers, ADC, statistics

Uses for Mass Spectrometers

Trace element determination

— sensitivity & isolation

Quantitative analysis

— reproducibility & separation, isotope dilution
Molecular structure determination

— deconstruction of molecules

Material identification and separation
Isotope abundance determination
Isotope mass determination

Commonalities

Sample lon Mass 3 Detectors
Delivery Source Analyzer & ADC

Sample delivery system

— Pre-purification, optimal phase, preferably non-fractionating
An ion source

— Atoms must be charged to be manipulated

— Preferably mono-energetic, but sometimes spread
— Creates, accelerates, focuses, collimates a beam
A “mass” analyzer (m/q)

— Selects momentum, also maybe energy

— Refocus & maybe collimates beam
A detector(s) and Analog to Digital Conversion
— Measure and discriminate beam(s), possibly isobars
— Digitize for data acquisition.

In addition

» Sample preparation and introduction system
— Often integrated into machine
— Depends on sample type and machine type
» Data gathering and processing system
— Digitization of analog signals
— Counting of ions
* Instrument control
— Control of all parts
— Automation and book-keeping
— More reliable, cost effective, humane




Decisions to make

e Sample character: gas, liquid or solid, purity?
* How abundant is the material?

* |Isotopic abundance: similar or drastically
different?

» Range: do isotope ratios vary a lot or a little?

 Are there isobaric (molecular or nuclear)
interferences?

* Are there “matrix effects”?
* Do we need to know the “absolute” ratio?

Figures of Merit

Resolution: smallest difference in mass
Sensitivity: how small a signal can be discerned?
Blank: what do you get with no sample at all?
Abundance sensitivity: the smallest isotopic ratio
Stability and reproducibility

Speed and throughput

Discrimination and accuracy

How much does a measurement depend on the
presence or absence of other species?

Memory effect? Does the system hold a grudge?

Resolution o
ARV
* Are there interfering o
Isobars? ’\
— How small a mass difference |
can you distinguish? N

« Caveat emptor: watch the o
definitions! pek e 1nd

* You can separate .
entangled peaks if you _ \
know the peak shape very A
well )
— Not trivial to do...
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Types of lon Sources

» Electron impact
— Gases
* Microwave Plasma
— Also gases
» Thermal ionization
— solids
 Inductively coupled plasma source
— liquids
e SIMS and Laser Ablation
— solid surface analysis
» There are others
— But not important for isotope work

Electron Impact Source
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Thermal lonization Source

» Solid sample dissolved and concentrated into
a few drops

» Deposited on a refractory filament
— Often with 2ndary coatings

* Filament heated in an ion source
— Diffusion of material

Incandescent

to surface i y
— Volatilization filament
— lonization

— Usually multiple filaments

Filament Sample

///' extraction
electrodes

To acceleration
—_—

Thermal lonization Source

e Solid sample dissolved and concentrated into a few
drops
« Deposited on a refractory filament
— Often with 2ndary coatings to control
release characteristics /\\
 Filament heated in an ion source |
— Diffusion of material g
to surface
— Volatilization
— lonization
— Usually multiple filaments

Inductively Coupled
Plasma Source

« For “direct” injection of solutions
— Amenable to automation
— Simpler chemistry (?)
« lonization ~ 100%
* Process:
— Ar from liquid Ar source
— Torch made of quartz (high temp!)
— electrostatic ignition of Ar
— Maintenance of plasma by RF (1-2 KW)
— Nebulization of solution into Ar flow
— Coaxial flows of Ar (for cooling too)
— lon extraction by “skimmers” (cooled)
— Skimmers interface vacuum to Ar pressure
« Issues: matrix effects
* Recent developments with laser ablation Mol DOK

analytical
008
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¢ For surface analysis of solids
— E.g., thin sections
Spatial resolution ~ 10-m
— Laterally and in depth
* Process
— Create ion beam (Ar, Cs, etc)
— Extract & lonize sputtered atoms
typically < 10% ionized
— Accelerate, collimate & focus
— Big energy spread in ions
» Need to energy filter

Spectrometer Lens

Secondary || Deflectors
o ter Lonses

Electrostatic

trast

« |ssues: surface & ionization biases e Sov
— Standard surfaces/matrices?

Dusplasmatron
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Mass Analyzers

» Magnetic and Electric Sectors
— Most common for isotope studies
Time of Flight

— Simple designs

Quadrupolar Mass Analyzers

— Robust rapid scanners

lon Traps

— Compact and emerging tools

Magnetic and Electric Sectors

* Electric sectors:
— Energy filters o
— Balance between: ;
* Centripetal force mv?/R . S e
* Electrical force qV - Ny

mv?
Analyzer = R

%€, ; — |\

qVv
or

R

* Resolution related to R and
defining slit dimensions

- qVAnaIyzer |/

Magnetic and Electric Sectors

* Magnetic sectors:

2

— Momentum filters Fo= T =aw8 = -
— Balance between: ey - 7

« Centripetal force mv2/R R="Y e

» Magnetic force qvB a8 - =
— Since energy = qV E:%mvz:qv - N

* We have

R? = 2mvV
qB* -
- Resolution related to R and : o '||/

defining slit dimensions _

AM _ ARy, + ARy
M R




Time of Flight Instruments

Conceptually simple

Not widely used for isotope studies
Operated in pulse mode

—“duty cycle” low
Momentum filters:
OAT=L/v

[e . & e

Quadrupolar Mass Filters

Reliant on orbital stabilty in RF electric fields:
— Only stable orbits passed

Complicated optical solutions ogo‘

— Integrated Mathieu equations
Compact and robust

Low voltage

Fast scanners

Wide range
Constant resolution vs Mass ot

Quadrupolar Mass Filters e

Reliant on orbital stabilty in RF electric fields:

— Only stable orbits passed

Complicated optical solutions K [
— Integrated Mathieu equations e ) :
Compact and robust
Continuous mode operation Py
Low voltage % >
Fast scanners N A e,
Wide range : N
Constant resolution vs Mass

 Invented by the same

» Opposite to QMS

» Compact & easily

« Emerging technology

lon Traps

guy (Paul)
— All'ions in stable orbits
— Desired ions ejected

— Operated in pulse mode

made
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Faraday Cups

» For intense ion beams
— From 1015— 10-° ampere range
» Very simple: collect charge
— Bleed through electrometer
— Easily created arrays of cups
« Watch for secondary electrons
— From beam in cup
— From beam outside of cup
— Secondary electron suppression plates

Electron Multipliers

e Forion beams < 1012
amps (< 107 ions/s)

» Relies on secondary
electron cascade

 Discrete or continuous

» Current or pulse mode

e Run at 102 > Gain < 108

* lon feedback issues

Gain depends
on high
voltage applied
to device

.....

Electron Multipliers

e For ion beams < 1012

amps (< 107 ions/s) Current vs. pulse counting modes:
* Relies on secondary (2) gain dependency!
electron cascade (b)dark current discrimination

 Discrete or continuous

e Current or pulse mode

e Run at 102 > Gain < 108

* lon feedback issues

Gain and NOISE depends on high
voltage applied to device
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Measurement of ion currents

* From Faraday Cup

— Electrometers (usually FET input)

» Use feedback resistors
— Inherent noise
— Intrinsic time constant

e From S.E.M.
— If “current mode”, use with electrometers
* First order gain dependence on SEM history

— If “pulse mode”, use preamplifier/discriminator
and fast counting electronics

Measurement of ion currents

* Pulse mode SEM already digital (ions/sec)
» Electrometer outputs need to be converted
to digital
— Either ADC (16-24 bit DACs now available)

— Or VFC (longer term integrators, highly linear,
good for ratiometric measurements)




