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5.9   Strangulation of the baroclinic flow by the barotropic flow. 
 
 
 Our treatment of the rotating, two-layer hydraulics is concluded with a discussion 
of the case in which the channel is dynamically wide, at least on the scale of the global 
internal Rossby radius of deformation.  This limit is quite the opposite of what is assumed 
in the theory of zero potential vorticity flow.   As we shall see, the internal, or 
‘baroclinic’, dynamics occur within right- and left-wall boundary layers that are 
physically separated from each other.  Although the theory for this flow has not been 
widely applied, it is useful in illustrating a physical process that was either lacking or 
hidden on our previous discussions.  This process is the forcing of the baroclinic 
boundary layers by the barotropic (depth independent) part of the flow.  Unlike the 
former, the latter extends all the way across the channel and is altered by changes in the 
channel width or depth.  The baroclinic flow is forced directly through interactions with 
the barotropic flow, leading to some novel and unexpected behavior.  For one thing, a 
new type of hydraulic control emerges.  The following treatment is based on a model 
developed by Pratt and Armi (1990) and having uniform potential vorticity in each layer.   
 
 Consider a channel with varying width but constant bottom elevation (h*=0), so 
that zT* is the total depth (Figure 5.9.1a).  The potential vorticity is uniform in each of the 
two layers, the corresponding potential depths are D

1!
 and D

2!
, and the internal Rossby 

radius of deformation LI is given by (5.1.12).  We will only treat flows for which the 
layer depths are finite all across the channel, so that the interface contacts the two 
sidewalls and not the top or bottom.  Solving (5.1.11) for the lower layer depth d2*, and 
using the rigid lid constraint d

1
* = z

T
* !d

2
*  yield the following depth profiles 
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where ! = D / (D
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) , ˆ 
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 and where the nondimensional variables 
 
  dn = dn * /D

1!
,  vn = vn * / fLI ,  and (x, y) = (x*, y*) / LI . 

 
have been introduced.  Also η+ and η- denote the deviations of the interface elevation at 
the right (x=w/2) and left (y=-w/2) walls, as shown in the figure.  It is not difficult to 
show that the conditions that the interface remains attached to the sidewalls is 
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 The depth profiles have a boundary layer structure that is apparent when the 
channel width is much wider than the internal deformation radius (w>>1).  In this limit 
the layer thicknesses in the interior of the channel, away from the boundary layers, 
become  
 

  d
1
= !,  or d

1
* = z

T
*

D
1"

D
1"

+ D
2"

   

and 

  d
2
= ! / "̂ ,  or d

2
* = z

T
*

D
2#

D
1#

+ D
2#

. 

 
Thus the ratio of an interior layer depth to the total depth is equal to the ratio of its 
potential depth to the sum of the potential depths.  If the potential depths are equal then 
the interior layer thicknesses are also equal. Unless the sum of the potential depths 
happens to be equal the total depth, the interior layer thicknesses are not equal to their 
potential depths.  The interior flow can therefore have horizontal vorticity even though 
the interface is level.    
 
 The last remark can be verified by examining the velocity profiles for the two 
layers: 
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which can be obtained from the potential vorticity equations (5.1.9 and 5.1.10) with the 
known thickness profiles.  Each velocity is composed of a baroclinic component (term in 
large brackets) having opposite sign in each layer, and a barotropic, or depth-independent 
component (! "1)x + V(y, t) .  The latter consists of a part that has a constant vorticity Δ-
1, but no cross-sectional mean, and a part that is x-independent.1  It is clearly the first of 
these that accounts for the presence of vorticity in the interior.  Only when the sum of the 
potential depths is equal to the channel depth (Δ=1) does this vorticity vanish.  In this 
case the interior layer thicknesses equal their potential depths.  The physical mechanism 
responsible for the presence of barotropic shear can be described by imagining that the 
channel is fed from a reservoir where the fluid is at rest and where the layer depths are 
                                                 
1 If the fluid had a free surface and thus an external deformation radius, the shear would confined to 
boundary layers having that width, as in the Gill (1977) model.  The surface on our channel is rigid, which 
is equivalent to having a infinite external deformation radius.  The result is that the barotropic shear is 
unifor.   
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therefore equal to D
1!

 and D
2!

 throughout.  If the total depth D
1!
+ D

2!
 in the reservoir 

is different from the channel depth zT*, then the water column as a whole undergoes 
squashing or stretching upon entering the channel.  The result is that barotropic vorticity 
is spun up or down.  Note that the lock exchange calculation of the previous section had 
Δ=1 and V=0, so that the barotropic component of velocity was zero. 
 
 The total volume flux is given by 
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where z

T
= z

T
* /D

1!
= "(1+ #̂ ) / #̂ .  The two terms on the right-hand side measure the 

contributions from the baroclinic and barotropic parts of the flow. 
 
 We now restrict attention to a channel that is very wide compared to L

I
, or w>>1.  

The baroclinic boundary layers are then well separated and the layer velocities at the 
sidewalls reduce to  
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 The dimensional characteristic speeds of the internal Kelvin waves that propagate 
along the walls at ±w/2 are given by 
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(see Exercise 2.)   The dimensionless equivalent c

±
= c

±
* /( ! g D
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1/ 2 is given by 
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 We now restrict attention to steady flow,  for which the total volume transport Q 
is constant and the internal Bernoulli function !B*  is conserved along the sidewalls.  In 
the limit w>>1, Q as given by (5.9.5) is dominated by the contribution from the 
barotropic velocity V, which is uniformly distributed across the channel.  Thus 
 
    Q = Vwz

T
      (5.9.10) 

 
in this limit. Also the dimensionless internal Bernoulli function !B * /( "g D1# )

1/2  on the 
left and right side walls (see 5.1.17) are given by 
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where, again, ‘+’ or ‘-’ denote evaluation at x=w/2 or x=-w/2.2  Elimination of V between 
these last two equations and rearrangement of the result leads to the functional relation  
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Hence there are two hydraulic functions G+ and G- governing the independent baroclinic 
boundary currents along the right and left walls.  
 
 Happily, the hydraulic functions are quadratic in the dependent variables (either 
η+ or η-), and therefore simpler than the higher order or transcendental dependence we 
have encountered in earlier problems.  The geometrical forcing is contained entirely in 
the coefficients s±(y), which depends on w(y) in two ways.  The first dependence involves 
the term (! "1)w / 2 , which is the value of the barotropic shear velocity (! "1)x  at the 
right wall.  The second involves Q/wzT, which is the value of the x-independent 
barotropic velocity.  As w changes the boundary layer is displaced laterally across the 
barotropic shear and into regions where the barotropic shear velocity is higher or lower.  
At the same time, the mean barotropic velocity is increased or decreased by narrowing or 
widening of the channel. Both effects alter the total kinetic energy of the boundary flow, 
forcing the interface elevation and baroclinic velocity to adjust to maintain constant total 
energy.  Because of the dual nature of this forcing mechanism, the maximum effective 
constriction of a particular boundary current need not occur at the point of minimum 
width.  For this reason, we will refer to the parameter s

±
(y) as the strangulation in order 

to distinguish it from pure geometrical contraction. The most interesting solutions occur 
when both of the strangulation effects are in play and, since w>>1, this requires further 
parameter restrictions.  Examination of (5.9.12) suggests that 1

2 (! "1)w and Q / wz
T
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2 In equations with ± subscripts the top or bottom ‘+’ or ‘-’ signs are used together.  Thus 
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Thus the magnitude of the barotropic shear ! "1 must be suitably small, preventing large 
shear velocities from forming at the sidewalls.  
 
 
 Conditions for critical flow can be found by taking  !G

±
/ !"

±
= 0 leading to 
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where the subscript ‘c’ denotes evaluation at a critical section. Comparison of the result 
with (5.9.9) verifies that c

±
=0.  Note that the limit of equal potential depths ( ˆ 

! " 1) must 
generally be avoided to avoid separation of the interface from one of the sidewalls.3 
 
 
 The compatibility condition that must hold at a critical section  
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is obtained in the usual manner by taking (dG

±
/dw)(dw/dy)=0.  This relation suggests 

three distinct types of hydraulic controls.  The first occurs at a point of extreme width 
(dw / !y) = 0 and is similar to the ‘narrows’ controls discussed in connection with single 
layer flows.  The second occurs where !

c+
 or !

c"  vanishes, depending on which 
boundary layer is being considered. If it is the left-hand boundary layer that is critical 
then (5.9.11) implies that !B

"
= ! /

ˆ 
#   and that the solution for all y is governed by the 

relation !"

2
+ s" (y)!" = 0 .  Solutions are given by !"(y) = 0  and !" = "s"(y) . To 

interpret these solutions, note that the thermal wind relation (5.1.8) applied at the left wall 
can be written as 
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The solution !"(y) = 0  therefore has zero vertical shear for all y and shares some 
elements with the similarity solution discussed in Section 5.4 (and exemplified by the 
straight line energy curve with contour value .50 in Figure 5.4.1a).  Note, however, that 
the nonrotating solution has v

1

2

= v
2

2  and is therefore shear free only for unidirectional 
flow. The solution !" = "s"(y)  has !" = 0  only at the critical section but non-zeroη- 

                                                 
3 If the fluid had a free surface and thus an external deformation radius of deformation, the shear would 
confined to boundary layers haveing that width, as in the Gill (1977) model..  However the lid on our 
channel is rigid, which is equivalent to having a infinite external deformation radius..  The result is that the 
barotropic shear is uniform.  
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elsewhere4.  Similar properties are possible for the boundary current on the right wall.  In 
analogy with the nonrotating solutions we will call a control with !

+
= 0 or !

-
= 0 a 

virtual control. As before, there are no restrictions on the value of w at such a control. 
 
 The third type of control occurs where the strangulation s(y) reaches an extreme 
value away from an extreme value of w.   We refer to this type of critical flow as a 
remote control and note that it requires vanishing of the bracketed term in (5.9.15) for 
either the ‘+’ or ‘-’ sign.  Thus  
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for a remote control in a right-hand boundary layer, and 
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for the left-hand boundary layer. For fixed values of Q and ! only one of these 
expressions has real roots and therefore only one of the boundary currents can have such 
a control.  In physical terms the explanation for this is rather simple.  If the change in 
barotropic velocity due to the shear effect and mean flow effect act in opposition at one 
wall, they must reinforce on the other wall (where the sign of the barotropic shear 
velocity is reversed but that of the mean barotropic velocity is the same). 
 
 The possibility of three types of controls leads to a rich variety of steady solutions 
and we explore a few examples. The situation is simplified by the fact that different types 
of controls cannot arise at different locations within a particular boundary flow unless a 
hydraulic jump or other dissipative features occur.  We will assume that the channel 
contains a simple contraction as shown in Figure 5.9.1b and that the mean barotropic 
flow V = Q /wz

T
 is positive.  Different types of behavior can easily be illustrated using a 

two-step graphical approach.  First, changes in w must be related to changes in 
strangulation s

±
(w) using (5.9.12).  A sample of curves showing this relation for various 

ranges in Q/z T and Δ appears in Figure 5.9.2.  Next, s
±
 must be related to η

±
(s) using 

(5.9.11). Examples of this relation, which depends on µ
±
, are shown in Figure 5.9.3.   

 
 The procedure then is to use Figure 5.9.2 curve to determine the variation of the 
strangulation function s

±
(w) along the channel, then use Figure 5.9.3 to find the 

corresponding solution.  Each frame in the former shows two curves corresponding to the 
strangulation function for the right (+) and left (-) boundary layers.  In the case of Frame 
c, the two curves coincide.  A virtual control must, in view of (5.9.14) occur where s

+
(w)  

                                                 
4 This solution has elements in common with one of the nonrotating solutions discussed in connection with 
the curved .50 energy contour in Figure 5.3. One of these is the lock exchange flow having v

1
= !v

2
 at the 

virtual control.  The other is a undirectional flow having v
1
= v

2
   It is this second solution which is 

analogous to our rotating boundary flow. 
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or s
!
(w)  is zero whereas a remote control occurs where s

+
(w)  or s

!
(w)  has a minimum 

or maximum.  A narrows control occurs where w itself is a minimum. 
Turning to Figure 5.9.3 we see that each frame has two curves corresponding to the two 
solutions of the quadratic equation (5.9.11). Note that the s±-axis in Frame c corresponds 
to the similarity solution.  It is no longer the case that the two curves represent flow in the 
different boundary layers; rather each curves gives a possible solution for either boundary 
layer.  The difference in left and right boundary layers at a particular point on a particular 
curve is that one solution is subcritical and the other supercritical at that point. In making 
these designations, we use the convention that supercritical (subcritical) flow allows 
wave propagation in the same (opposite) direction as the mean barotropic velocity V, here 
assumed to be positive. In particular, use of the definition of s

±
 in (5.9.9) leads to  
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and therefore  
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  c
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+
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2
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+
)   =0 (critical) 

       <0 (subcritical) 
 
for the right-hand boundary layer, and 
 
       >0 (supercritical) 
  c! = !("̂ 1/2 !1)(#! +

1

2
s! )   =0 (critical) 

       <0 (subcritical) 
 
for the left-hand boundary layer.5 Critical flow states must therefore occur on the dashed 
diagonals !

±
= " 1

2
s
±

 in Figure 5.9.3.  The flow is supercritical or subcritical above or 

below this diagonal depending on the sign of (!̂ 1/2 "1)  and on which boundary layer is 
being examined.  Figure 5.9.3 has been labeled assuming that ˆ! <1 and thus supercritical 
flow for the left boundary layer lies above.  The leading label on each curve applies to the 
left-hand boundary layer, while the labels in parenthesis apply to the right-hand boundary 
layer. A virtual control requires both !" = s" = 0 or !

+
= s

+
= 0 and these are possible 

only in Figure 5.9.3c.  A narrows control or a remote control must occur at a minimum or 
maximum of the solution curve, and this is possible only in Figure 5.9.3b. 
 
 The reader who has become frustrated with the details of this narrative will 
benefit from exploration of a few example, which we now do.  Attention is limited to the 
left hand boundary layer and the channel geometry is as shown in Figure 5.9.1b with 
entrance and exit width wo, and minimum width wm. 
 
                                                 
5 These definitions are sensible for a dynamically wide channel, since the boundary layers can be treated 
independently; finite channel widths would require some rethinking. 
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(a)  A narrows control   
 
 Suppose that ! >1so that the relation between w and s± is given by Figure 5.9.2a. 
The lower curve applies to the left boundary layer. As one moves from the mouth of the 
channel (w=wo) to the narrowest section (w=wm),  s- decreases from values s1 to s2 and 
increases back to s1, as indicated. To find the corresponding solution, one must apply the 
variation in s- to the relevant frame and curve in Figure 5.9.3.  The choice depends on the 
value of µ±.  Since we are interested in the left wall boundary layer, we focus on µ

!
 and 

choose a value <0 (Figure 5.9.3a).  There are two possible solutions corresponding to the 
two curves. Choosing the left-hand curve gives a supercritical solution while choosing 
the right-hand curves gives a subcritical solution.  Either curve gives a legitimate solution 
over the established range of s-. In either case the flow remains supercritical or subcritical 
through the contraction and there is no control.  
 
  If we instead chooseµ

!
>0, then the solution shifts to the curves of Figure 5.9.3b 

and a control is possible.  Beginning at s-=s1, which is >0 for our example, one must first 
select a solution branch of the left hand curve.  Choosing the subcritical branch places the 
solution at η-=η3 as indicated on the plot.  Lowering s- from this value causes η- to 
increase. A sufficient increase places the solution at the minimum (η-=η2) of the curve, 
where the flow is critical.  If s2 lies at this maximum, as shown in the figure, then the 
solution continues onto the supercritical branch in the usual manner and the flow 
downstream of the narrows (η-=η1) is supercritical. The solution just described contains a 
narrows control.  It can be shown that continuation from the subcritical branch to the 
supercritical branch (rather than back along the subcritical branch) is the only choice that 
gives a smooth solution, a matter explored in Exercise 4. 
 
(b)  A remote control. 
 
 Next suppose that Δ<1, so that the strangulation function s-(w) is given by the 
lower curve of Figure 5.9.2d.  Suppose further that w lies in the indicated range 
w
o
! w ! w

m
 such that s- reaches its maximum value for an intermediate w, as indicated.  

As one moves into the channel, the value of s- increases then decreases before the 
narrowest section is reached.  Downstream of the narrowest section, s- increases back to 
its maximum value and then decreases.  Switching now to Figure 5.9.2, we again choose 
µ->0 (frame b) and note that the solution now lies along the lower, right-hand curve.  We 
attempt to trace a solution beginning along the subcritical branch at s-=s1.  Moving from 
the entrance into the channel causes s- to increase and to reach its peak value sm before the 
narrows is actually reached. We have arranged this point to coincide with the maximum 
of the solution curve.  If one continues past this remote control, s- retreats to lower values 
as the channel narrows but solution moves onto the supercritical branch. When the 
narrowest section (w=wm, s-=s2) is reached, the flow is supercritical.  Downstream of this 
point the above sequence is rewound.  As the channel widens, the flow passes back 
through a second remote control and returns to a subcritical state.  Note that the flow at 
this second control section is subject to the same instability discussed in connection with 
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single layer flows; wave propagation is locally towards the critical section from upstream 
and downstream.  We thus anticipate that a hydraulic jump or other dissipative feature 
may occur there. 
 
(c)  A virtual control 
 
 Virtual control implies s-=0 and therefore is possible only for strangulation curves 
which cross the w-axis in Figure 5.9.2.  Suppose that Δ>1, so that the lower curve of 
Figure 5.9.2 applies if the range of w is such that s- has a zero crossing.  In this case, s- 
will be positive at the entrance and exit of the channel, but negative at the narrowest 
section.  Now this range of s- to Figure 5.9.3c, which shows the solutions with possible 
virtual controls.  At the channel entrance, s->0 and a choice of subcritical there forces one 
to select diagonal curve.  As the width narrows, the solution passes through a virtual 
control at the origin, and continues onto the supercritical branch until the narrowest 
section is reached.  This sequence is retraced as the narrows is passed, with the proviso 
that instability may occur at the downstream virtual control.  The solution therefore 
behaves in a similar way to that with a remote control, as just described.  The similarity 
solution, which is represented by the s- axis in Figure 5.9.3, is supercritical at the 
upstream entrance in this case. 
 
 Where the diagonal solution passes through the origin of Figure 5.9.3c, it is 
conceivable that it could jump from the diagonal curve onto the similarity solution, or 
vice-versa.  As explored in Exercise 5, such a jump would generally involve a 
discontinuity in !"# /!y or !

2
"# /!y

2
 at the control, and can therefore be ruled out.  

 
 These example show only some of the possible behavior that is consistent with 
the model.  On can invent a variety of solutions by matching different Figure 5.9.2 
forcing curves with different Figure 5.9.3 solutions curves. No known attempts have been 
made to verify any of these solutions.  The main purpose has been to demonstrate the 
physical mechanism associated with the forcing of a boundary current by a larger scale 
flow and the novel features that can arise when that external flow is sheared. 
 
   
Exercises 
 
1)  Obtain the expression (5.9.5) for the total volume flux.  
 
2)  Derive the expression for the internal Kelvin waves speeds (5.9.8) in the wide-channel 
limit and with attached interfaces.  (You can work through the full nonlinear version of 
the calculation by first noting that the expressions for velocity and layer depths derived 
above remain valid when the flow is time-dependent. The characteristic form of the 
equations governing on a certain sidewall may be obtained by evaluating the layer 
momentum equations there and substituting the expressions for vn and dn that follow from 
the profiles.) 
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3)  We noted that (5.9.14) implies separation of the critical flow from the channel side 
walls when ˆ! = 1 .  An exception occurs when the numerator of the right hand side of this 
equation vanishes.  Explore this case and describe the flow that results.  
 
4)  For a narrows control show that continuation from the upstream subcritical branch to 
the downstream subcritical branch of the lower left solution curve in Figure 5.9.4c is the 
only choice that avoids singularity. 
  
5)  At a virtual control, show that the solution cannot jump from the similarity solution 
!" # 0  to the solution !" = "s"(y) , or vice-versa, without incurring a discontinuity in 
!"# /!y or !

2
"# /!y

2
 unless virtual, remote, and narrows controls coincide at the 

narrowest section.  
 
 
Figure Captions 
 
Figure 5.9.1 Definition sketches for two-layer flow in a wide channel with a horizontal 
bottom. 
 
Figure 5.9.2  The strangulation parameter s± as a function of width w according to 
equation (5.9.12).  The general geometry of the curves of s+ and s- takes four different 
forms according to the value of Δ relative to unity, and to whether Q is finite.  These four 
forms are illustrated by (a-d).  The numerical values used to obtain the plots are (a) Δ=5, 
Q/zT=1; (b) Δ=1, Q/zT=1; (c) Δ=5, Q/zT=0; (d) Δ=0.5, Q/zT=2 
 
Figure 5.9.3  The relationship between η± and s± according to (5.9.11).  Frames (a)-(c) 
give the general geometry of the solution curves for µ±<0, µ±>0, and µ±=0.  Each solid 
curves in each frame may represent potential solution for either boundary layer.  In (c) 
the s±-axis is a solution curve.  The operational difference between left and right 
boundary layers is contained in the subcritical or supercritical designation on each curve.  
Here the labels have been chosen assuming that ˆ! < 1 .  The leading label on each curve 
then corresponds to the left-hand boundary layer while the label in parenthesis 
corresponds to the right-hand layer. When ˆ! > 1 this order is reversed.  The dashed 
diagonal curve in each frame indicates the possible locations of critical flow. The 
numerical values of µ- used to make frames (a), (b), and (c) are 1,-1, and 0. The quantities 
Δ and !" / ˆ#  marked in (a) indicate limits outside of which the flow becomes separated 
from one of the sidewalls. These limits are given without assigned value and apply in all 
three frames. 
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