
5.8 Maximal exchange trough a pure contraction with rotation. 
  
 
 One of the fundamental problems of two-layer hydraulics is that of full lock 
exchange in a channel with a horizontal bottom.  We have covered the case of zero 
background rotation and described the maximal exchange that is set up by the removal of 
the full depth barrier. If the exchange occurs through a narrows, the flow is critical there 
and is joined to the end reservoirs by supercritical flows. The solution in the vicinity of 
the narrows is represented by the curve jbk  of Figure 5.4.1b.  In the rotating version of 
this problem we again imagine a barrier separating fluids of slightly different densities, ρ1 
and ρ2, positioned at the narrowest section of a channel that is rectangular in cross 
section. The channel has constant depth D and is capped by the usual rigid lid.  When the 
barrier is removed the two fluids begin to move in opposite directions, thrusting under 
and over each other as before.  With northern hemisphere rotation, each layer veers to its 
right as it intrudes.  The potential depth Dn∞ of layer n is its initial depth D, whereas the 
average depth of each layer after at the narrows after adjustment D/2.  The severe vortex 
squashing that is inherent in rotating flow over a shallow flow is therefore lacking and 
use of the zero potential vorticity approximation, which depends on this process, is no 
longer valid. The nondimensional potential vorticity, while uniform in each layer, must 
now be considered non-zero.  Although one anticipates that the final state, be it steady, 
will have maximal exchange, this is not formally shown.  
 
 Historically, two approaches have been used to predict the steady flow state that 
results from the lock exchange problem without rotation.  In the first, one simply assumes 
that the flow at the original position of the dam becomes hydraulically critical (G2=1).  
This along with the symmetry properties of the full lock exchange are sufficient to find 
the final steady state, namely the aforementioned hydraulic solution.  The second 
approach is based on an energy balance for the evolving solution (Yih, 1980).  The 
calculation is straightforward when the channel is considered uniform in y*, and perhaps 
linked to reservoirs far upstream and downstream of the initial barrier. Destruction of the 
barrier results in the formation of the intrusions suggested in Figure 5.8.1a.  An 
idealization of the lower intrusion is that it consists of a nose region, followed by a steady 
flow with uniform depth D/2 and uniform velocity v*.  The upper layer intrusion has the 
same depth but equal and opposite velocity. The energy argument attempts to calculate 
v*, and thereby the layer fluxes, by equating the potential energy lost to kinetic energy 
gained as a result of the adjustment.  The procedure is unable to account for dissipation 
that might occur in the nose regions, or for the detailed structure those regions.  
 
 At the time frame shown in Figure 5.8.1a, the steady portions of the intrusions 
occupy a distance L.  The two-layer density distribution in this region (Frame c) can be 
created from the initial distribution (Frame b) by interchanging regions I and II.  Doing so 
lifts each parcel in II a distance D/2, thereby increasing its potential energy by amount 
gρ1D/2.  The volume of region II is w*(D/2)(L/2) and thus the total increase in potential 
energy is gρ1D2L /8.  Similarly, region I sees a D/2 drop in elevation, and a total decrease 
in potential energy equal to gρ2D2L /8.  The net decrease in potential energy is therefore 



g(ρ2-ρ1)D2Lw*/8.  The kinetic energy gained in the same volume is clearly 
(ρ1v*2+ρ2v*2)DLw*/4.  Equating the potential energy lost to the kinetic energy gained 
leads to  
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which is equivalent to G2=1.  Thus the energy balance and the hypothesis of critical flow 
lead to the same result. 
 

If the fluid is rotating, a similar energy balance can be invoked, but now the cross-
stream variation of speed and depth must be included. The following generalizes a 
calculation due to Hunkins and Whitehead (1992). It is again assumed that the channel is 
uniform, the adjusted flow is steady and that there is no energy loss.  As we will see later, 
the assumption of steadiness becomes questionable when the channel width exceeds the 
internal radius of deformation LI, as given by (5.1.12). The latter is simplified by 
D=D1∞=D2∞, leading to LI = !g D / 2 f

2 .    Since the upper and lower layer should 
behave as mirror images, the interface height will be antisymmetric with respect to x*.  
The solutions to (5.1.11) with this property are  
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The corresponding along-channel velocities are determined by (5.1.8) and (5.1.9) as  
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shown to be equal to V*Dw* and thus V*=0 for zero net exchange.  
 
 It remains only to determine the coefficient A in terms of the channel width w*/LI. 
Following the previous argument, the loss of potential energy is equated with the gain in 
kinetic energy of the hypothetical steady state.  The calculation is a bit more involved 



because both the layer depths and velocities vary across the channel. The interested 
reader may wish to work through Exercise 1 to see the details and to verify the result:  
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Use of (5.8.2-5) then yields 
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 The volume flux of each layer is given by 
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The layer fluxes can be calculated as a function of w*/LI by eliminating A between this 
equation and (5.8.7).  The resulting relation is shown as a dashed curve in Figure 5.8.2. It 
is not difficult to verify that the limiting case of zero rotation (5.8.1) is approached for  
w*/LI→0. For comparison, the flux predicted by zero potential vorticity theory (Eq. 
5.7.22) is shown as a dotted curve.  
 
 The foregoing analysis is valid as long as the interface stays in contact with both 
channel walls.  Separation first occurs when d1*(w*/2)= d2*(-w*/2)=0, which 
corresponds to w*=ws*, where  
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in view of (5.8.2). If this expression is then used to eliminate A from (5.8.6), one 
obtainsw

s
* /L

I
= 1.459  and A/D=0.628 (correcting a numerical mistake in Hunkins and 

Whitehead, 1992).  The corresponding value of Q2* is given by .208g′D2/f. 
 
 As an alternative to the energy argument, one might invoke a critical condition for 
the adjusted flow.  The latter has been derived for the case of the flow in question by 
Rabe et al. (2006) as 
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The mechanics of this calculation are discussed in Exercise 3.  The flux is obtained by 
eliminating A between (5.8.8) and (5.8.9) and is shown by the solid curve in Figure 5.8.2. 



The limiting separation width and flux are given by w*/LI=1.63  and Q2*=.176g′D2/f. 
Note that, unlike the case of zero rotation, these results differ from what is predicted by 
the energy argument.  
 
 For w*>ws* the flow becomes separated from both walls resulting in central, 
baroclinic region (-ws*/2<x*<ws*/2) occupied by both layers and flange regions occupied 
by only layer (Figure 5.8.1e).  In the case of zero potential vorticity, the flange regions 
contain horizontal shear equal to -f.  In the present setting, where the flange region depth 
D is also the potential depth of the occupying layer, the shear is zero.  If the velocity 
remains continuous throughout each layer, the uniform velocity vn* in a flange region 
must equal the velocity at the edge of the barotropic region. For example, the value of v2* 
in the right-hand flange ws*/2<x*<w*/2  must equal its value at x*=ws*/2.  The 
corresponding flow must be included in the total flux for layer 2 and this added flux 
increases in proportion to the channel width w*.    An alternative idea, proposed by 
Whitehead et al. (1974) and also used by Hunkins and Whitehead (1992), is that the 
flange regions are motionless.  In this case the layer velocities are discontinuous at the 
edges of the central region.  The layer fluxes then become independent of w* and are just 
those given by the above theories in the limiting case w*=w*s.  These values are 
summarized by 
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The w*-independent flux values given by (5.8.10) are indicated by the horizontal lines 
that extend the three curves in Figure 5.8.2.  These lines give the hypothetical flux 
determined by the respective theory for w*>w*s, assuming that the flange regions are 
quiescent. 
 

Rotating lock exchange flow has been simulated in a number of laboratory 
experiments, including Whitehead et al. (1974), Dalziel (1988), and Hunkins and 
Whitehead (1992). In addition Rabe et al. (2006) carried out both laboratory and 
numerical simulations. Some of the experiments make use of a uniform length of 
channel, assumed in the energy argument, that separate two broad reservoirs.  In other 
cases the reservoirs are separated by a smoothly varying channel that has a miminum 
width at a single section. Photographs from the Hunkins and Whitehead experiment show 
four realizations of the experiment for different Rossby radii (Figure 5.8.3), all in the 
range of predicted separation. Each pair of images shows the same parameter values: in 
the first frame the (leftward moving) fresh layer is dyed and in the second the (rightward 
moving) salt water is dyed. Eddies and filaments are evident on the interface between the 
two fluids in all cases and not exhibit complete separation from both sidewalls.  The 
value of Q1* (=Q*) can be measured indirectly by replacing the barrier after a set time, 
mixing the two fluids within each reservoir, and calculating the density change between 
the two mixed reservoirs. In the case of Rabe et al. (2006) direct velocity measurements 
based on digitally imaged drifting particles were also used to estimate the flux.  



 
The fluxes measured in all the experiments show increased scatter (as do the 

predictions) as the channel width is increased relative to LI (Figure 5.8.2).  The three 
theories are quite close, and do a good job of predicting the flux, when w*/LI is small.  
The experimental are generally overestimated by predictions. The most problematic 
region over which to compare theory and observation is that where flow separation is 
predicted, roughly fw*/(g′D/2)1/2>1.5 in Figure 5.8.2.  Although double separation of the 
flow is predicted, it is not observed in any of the experiments.  In some cases, separation 
of just one layer is observed, in others the picture is clouded by the presence of eddies.  
The predictions for Q2*f/g′D2 are given by the horizontal lines, and these capture the 
weak dependence on the dimensionless channel width that is observed.  Improvement in 
the prediction of the fluxes themselves in this regime will require a better understanding 
of the flow itself.  

 
We also note that 16  coefficient in equation (5.8.9) has been used as an estimate 

for flux rate in applications to Spencer Gulf, South Australia, (Bye and Whitehead 1975) 
and Chesapeake Bay, North America (Whitehead, 1989b). Hunkins and Whitehead 
(1982) used (5.8.14a) to estimate an exchange of freshwater for the Arctic Ocean, and 
found that the exchange was consistent with an observed salinity difference of about 1  
psu between outflowing water and inflowing water at Fram Strait.  The agreement was 
necessarily very crude because of the many other important features such as the great 
width and depth of Fram Strait, wind driven currents, and rafted sea-ice. 

 
 
 

 
Exercises 
 
1.  Energy balance for a rotating lock exchange.  Consider the hypothetical adjusted state 
that results from lock exchange in a rotating channel.  The steady exchange flow has a 
cross-section suggested in Figure 5.8.1d and the flow itself extends over a distance L, as 
in frame a.  
 
  (a)  Show that the levels of centers of mass, z
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  (b)  Argue, perhaps using a sketch, that that loss of potential energy of the flow within 
the length L is given by  
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  (c)  Equate this loss with the gain in kinetic energy: 
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and thereby verify, after use of the Boussinesq approximation, Equation (5.8.6). 
 
2. Show that using (5.8.7) in (5.8.8) produces a formula that approaches equation (5.8.1) 
as rotation becomes small. 
 
3.  Derivation of critical condition for two-layer flow with both potential depths equal to 
D:  Consider an attached, two-layer flow with D=D1∞=D2∞ , as occurs in the lock 
exchange.   
 
(a)  By referencing the appropriate relations in Section 5.1, show that the velocity and 
depth profiles are given by  
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(b)  Show using these expressions that the layer fluxes are given by  
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and therefore that the net (barotropic) flux is given by  
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b.  Evaluate the internal Bernoulli function along the right wall and show that  
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c.  Note that (5.8.16-18) define three hydraulic functions in the three variables A, C, and 
V*.  Apply (1.5.14) to these functions to obtain the critical condition 
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(Note that a symbolic manipulation program will be helpful in doing the bookkeeping.) 
 
d.  For conditions of zero net flux, and an asymmetrical interface (w.r.t. x*), show that 
(5.8.19) reduces to the desired condition (5.8.9). 
 
 
 
 
Figure Captions 
 
Figure 5.8.1.  a: The gravitational advance of two mutual intrusions of differing density 
in a channel.  b and c: Side views of the initial density distribution and an idealization of 
the adjusted density.  d and e:  Schematic cross-section for the adjusted flow in the lock 
exchange with rotation.  
 
Figure 5.8.2.  The dimensionless volume flux vs. dimensionless channel width.  The three 
curves give predictions based on the theories of Whitehead et al. 1974 (dotted); Hunkins 
and Whitehead 1992 (dashed); and Rabe et al. 2006 (solid). The first two of these have 
been extended as horizontal lines to indicate the width-independent flux hypothesized by 
the authors for the case in which the flow detaches from the sidewalls.  The data points 
corresponds to laboratory experiments by Hunkins and Whitehead 1992 (small dots); 



Dalziel 1988 (circles); and Rabe et al. 2006 (triangles).  Note the factor 21/2 change in the 
scale for w* relative to Section 2.7. 
 
Figure 5.8.3.  Top view of dye spreading after approximately 60 seconds.  Starting from 
the top, the photographs show successively the layer of dyed freshwater (originating on 
the right) and then dyed saltwater (originating on the left).  Each pair downwards has 
more rapid rotation, with w*f/(g′D)1/2=1.2, 2.5, 5.0 and 10.0, respectively.  Based on the 
experiments of Hunkins and Whitehead (1992). 
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