

- What's the big deal?
- A brief history of radiocarbon dating
- Past changes and "calibration curves"
- Marine reservoir effects
- Deep ocean distributions
- The Suess effect
- The nuclear weapons tests

What's the big deal?

- Radiocarbon is a useful chronometer
 - Over 0-60 Ka (esp. Holocene and last ice age)
 - $-\ t_0$ marked by separation from cosmogenic reservoir (e.g., when dying)
- It is carbon
 - A probe of the global carbon cycle
 - Environmental molecular forensics ("natural" or "fossil"?)
- It is recently a transient tracer
 - From bomb testing fallout
- This is a **HUGE** area of research
 - Paleo-studies, modern research, much contention

- What's the big deal?
- A brief history of radiocarbon dating
- Past changes and "calibration curves"
- Marine reservoir effects
- Deep ocean distributions
- The Suess effect
- The nuclear weapons tests

A brief history of radiocarbon

- Radiocarbon discovered in 1940
- Radiocarbon dating proposed in late 1940s
- Revolutionized archeology
 - And then the honeymoon was over
 - $\bullet\,$ The dawning realization that the $^{14}{\rm C}/^{12}{\rm C}$ in the atmosphere varies with time
 - The half-life was wrong (5730 vs. 5568 years) "Libby half life"
 - Still uses the "Libby Scale" as "Radiocarbon years before 1950"
- Originally measured by gas proportional counters
- Required several grams of C per sample
- In the 1980s, started using AMS*
 - Required only mg C per sample
 - Now measuring down to the 10 μg range

*Remember slide 17 of Lecture 3? More on this in Lectures 13 & 14

Before we go on...

- Atmospheric ratio (pre-bomb*, pre-Seuss*)
 - ¹⁴C/¹²C \sim 10⁻¹²
- Standards:
 - Originally 1950s wood $\rightarrow f_M$ = 1.000
 - Now a N.I.S.T. oxalic acid (Ox-I and Ox-II)
- · Reporting:
 - Need to correct for/normalize for isotope fractionation, so use δ^{13} C measurement to correct to a "standard" fractionation of δ^{13} C =-25‰, so we have

 $(F_{\scriptscriptstyle M})_{\scriptscriptstyle Corr} = F_{\scriptscriptstyle M} \cdot \left(\frac{\left(1 - 25/1000\right)}{\left(1 + \delta^{13} C/1000\right)} \right)^2 \qquad \leftarrow \text{This isn't quite right**}$

- And you most often see radiocarbon reported as an anomaly scale in ‰

$$\Delta^{14}C = \left[\left(F_{M} \right)_{Corr} \cdot e^{-\lambda (t_{c} - 1950)} - 1 \right] \times 1000\%_{0}$$

- Looks like, but isn't an isotope ratio anomaly!
- And -1000\% mean "radiocarbon dead" ($F_M = 0$)

*more later...

**Southon, J.R., 2011. Radiocarbon 53, 691-704.

Cosmogenic Nuclides II: Radiocarbon

- What's the big deal?
- A brief history of radiocarbon dating
- Past changes and "calibration curves"
- Marine reservoir effects
- Deep ocean distributions
- The Seuss effect
- The nuclear weapons tests

Past Changes and Calibration Curves

- We need a "conversion" method because of the screwed up reporting convention (the Libby half-life)
- Evidence from ¹⁰Be, ²⁶Al, ³⁶Cl, etc. shows there were production rate changes
- Also ample evidence that there were carbon cycle changes since LGM:
 - In the atmospheric C-inventory
 - In the ocean-atmosphere communication
 - ~65X more C in the oceans than atmosphere
 - In terrestrial/ocean biomass

- What's the big deal?
- A brief history of radiocarbon dating
- Past changes and "calibration curves"
- Marine reservoir effects
- Deep ocean distributions
- The Suess effect
- The nuclear weapons tests

- What's the big deal?
- A brief history of radiocarbon dating
- Past changes and "calibration curves"
- Marine reservoir effects
- Deep ocean distributions
- The Suess effect
- The nuclear weapons tests

- What's the big deal?
- A brief history of radiocarbon dating
- Past changes and "calibration curves"
- Marine reservoir effects
- Deep ocean distributions
- The Suess effect
- The nuclear weapons tests

The Suess Effect Dilution of atmospheric & oceanic 14CO₂ with "dead" (fossil fuel) CO₂ Seen in tree rings and coral records

- What's the big deal?
- A brief history of radiocarbon dating
- Past changes and "calibration curves"
- Marine reservoir effects
- Deep ocean distributions
- The Suess effect
- The nuclear weapons tests

- What's the big deal?
- A brief history of radiocarbon dating
- Past changes and "calibration curves"
- Marine reservoir effects
- Deep ocean distributions
- The Suess effect
- The nuclear weapons tests