

Cosmic Rays

- High energies largely produced by supernovae
 - Accelerated by shock waves to extremely high energies
 1 GeV, i.e., >> nuclear B.E.)
 - Mostly from our own galaxy, with SN every 30-50 y
- Lower energies locally (heliosphere) produced
 - Typically < 50 MeV
- Charged particles (largely protons, some alphas)
 - Bent by stellar, interstellar magnetic fields
 - Mean interstellar fields ~10⁻¹⁰ T (10⁻⁶ G)
 - Net effect: gyration radius $\sim 10^{-4}$ pc ~ 20 AU
 - Cosmic rays don't "advect", they "diffuse" through space

Factors Affecting Flux to Earth

- Local Interstellar Environment
 - Earth moves into/out of "Local Stellar Environments" every few 100 Ka, and into/out of galactic spiral arm every 70 Ma
- Solar activity
 - Affects local geomagnetic fields & heliosphere
 - Sunspot/Hale cycle
- Geomagnetic field
 - Longer term geodynamo wobbles (VADM)

Solar (long term) Modulation

 Grand solar minima in sunspot numbers (e.g. Maunder Minimum)

Even longer term variations due to Geodynamo changes

Factor of two variations in magnetic field strength (VADM) over last 60 Ka

 Obtained from magnetic records in sediments and from ¹⁰Be & ³⁶Cl records in ice cores

Muscheler, R., J. Beer, P. Kubik, and H. A. Synal (2005), Geomagnetic field intensity during the last 60,000 years based on ¹⁰Be and ³⁶Cl from Summit ice cores and ¹⁴C, *Quaternary Science Reviews*, *24*, 1849-1860.

Changes in flux over last 800 Ka

Significant changes over last 50-60 Ka

- Earth's movement into new "Local Stellar Environment"
- Especially since the Holocene
- Implications for paleo-cosmogenic records

Cosmogenic Production Mechanisms

- Atmospheric
 - Spallation (nuclear billiards)
 - Very high energy, > nuclear B.E.
 - n, p on 14 N & 16 O \rightarrow 3 He, 7 Be, 10 Be
 - n,p on 40 Ar \rightarrow 26 Al, 36 Cl
 - Neutron capture/displacement
 - 14N(n,p)14C
- Lithospheric and Cryospheric Also
 - Some spallation, but also n-capture, $n-\alpha$

Reaction Cross Sections (probabilities)

- Depend on energy in a complicated way
- Depend on particle and nuclear wave functions
- A cross-sectional (geometric) area measured in "barns" (units of 10⁻²⁴ cm²)

Neutron energy [MeV]

Cross sections for nuclear reactions Strong resonances as well as function of E Inter-related with atmospheric abundances as well E.g., 40Ar and 36Ar (latter is 0.3% of former)yet very high σ at low E

A useful Excel add-in for cosmogenic nuclide applications: "cosmocalc" on 12.744 web site and also at http://cosmocalc.googlepages.com

Lithospheric Cosmogenic Nuclide Applications

- There is surface-intensified production of stable and radioactive nuclides in rocks (³He, ¹⁰Be, ²¹Ne, ²⁶Al, ³⁶Cl, ³⁹Ar) that naturally have low background
- Combination of fast neutrons (~150 g-cm) and more penetrating muons (>1000 g-cm)
 - Can be used to determine exposure ages and erosion rates
 - E.g., for steady erosion ε and constant production P rates:

$$N(x,t) = N(x,0)e^{-\lambda t} + \frac{P(0)}{\lambda + \mu \varepsilon} e^{-\mu x} \left(1 - e^{-(\lambda + \mu \varepsilon)t} \right)$$

- Where μ is attenuation scale length, λ is half-life
- Challenges:
 - Changes in erosion & production rates over history of surface
 - · Shielding (local geography/geometry)
 - Coverage (lichen, snow, dust/soil) & changes

Lal, D., 1991. Cosmic ray labeling of erosion surfaces: *in situ* nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424-439.