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T T Cosmogenic Isotopes I:

Production, Mechanisms, Applications

Beer, J., K. McCracken, and R. von Steiger (2012)
“Cosmogenic Radionuclides” Springer-Verlag
(Berlin) 426 pp
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Cosmic Rays

¢ High energies largely produced by supernovae

— Accelerated by shock waves to extremely high energies
(>>1GeV, i.e., >> nuclear B.E.)

— Mostly from our own galaxy, with SN every 30-50y
e Lower energies locally (heliosphere) produced
— Typically < 50 MeV
¢ Charged particles (largely protons, some alphas)

— Bent by stellar, interstellar magnetic fields
¢ Mean interstellar fields ~101° T (10 G)
¢ Net effect: gyration radius ~ 10 pc ~ 20 AU
¢ Cosmic rays don’t “advect”, they “diffuse” through space

Cosmic Ray Energy Spectra
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Spectrum is ~ E24

What we see at sea level...

Thermal neutrons drive n-capture,
are isotropic

Mostly secondaries
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Softening of energy spectrum

cf. the B.E. per
nucleon = 1-9 MeV
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Attenuation is altitude, latitude, and
energy dependent

Elevation above soa kavol (standan d hnosii‘ww)['u“f
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Higher flux at higher altitudes
and higher latitudes

Factors Affecting Flux to Earth

¢ Local Interstellar Environment

— Earth moves into/out of “Local Stellar
Environments” every few 100 Ka, and into/out of
galactic spiral arm every 70 Ma

 Solar activity
— Affects local geomagnetic fields & heliosphere
— Sunspot/Hale cycle

* Geomagnetic field
— Longer term geodynamo wobbles (VADM)

Solar (short term) Modulation

* Hale (22 year) and Schwab (11 year) cycles

— NB: shape difference by solar magnetic phase
¢ Influenced by solar sheaf, heliospheric modulation
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Solar (long term) Modulation

e Grand solar minima in sunspot numbers (e.g.
Maunder Minimum)
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Even longer term variations due to

Geodynamo changes

Factor of two e ; ' ' ' '
variations in
magnetic field
strength (VADM)
over last 60 Ka

¢ Obtained from
magnetic records in
sediments and
from 19Be & 36C|

L 60.000 50000 40000 30000 20000 10,000 0
records in ice cores
Age [years BP]

“

VADM [10%2 Am

Muscheler, R., J. Beer, P. Kubik, and H. A. Synal (2005), Geomagnetic field intensity during
the last 60,000 years based on 1°Be and 3¢Cl from Summit ice cores and '4C, Quaternary
Science Reviews, 24, 1849-1860.
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Changes in flux

g 0-800ka
§ 120
over last 800 Ka :.. oh
g 00
Significant changes ?ﬁ 1
over last 50-60 Ka ‘fo% =
— Earth’s movement §m J

200 300 400 500 600 T00 8OO

into new “Local aep

Stellar Environment”  5'2 -

. . %ll’ﬁ

— Especially since the [ 3
Holocene 1,
— Implications for ?‘
paleo-cosmogenic g 1
records 2o
50.

Cosmogenic Production Mechanisms

* Atmospheric

— Spallation (nuclear billiards)
¢ Very high energy, > nuclear B.E.
e n, pon “N & %0 - 3He, 7Be, 1°Be
e n,p on 40Ar > 264, 36C|

— Neutron capture/displacement
° 14N(n,p)14C

e Lithospheric and Cryospheric Also
— Some spallation, but also n-capture, n-a

Reaction Cross Sections (probabilities)

* Depend on energy in a complicated way
¢ Depend on particle and nuclear wave functions

¢ A cross-sectional (geometric) area measured in
“barns” (units of 1024 cm?)
1
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Cross sections for nuclear reactions
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Cosmogenic Atmospheric Production Rates
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Atmospheric Cosmogenic Production

Cosray attenuation ~ 100-150 g-cm
— Atmosphere is ~1000 g cm2
¢ Thus attenuation is ~e”7 ~ 0.001 at
sealevel
¢ Most production high in atmosphere
— Residence time in stratosphere a few
years
* Best connection to troposphere at mid |
to high latitudes
— Slow inter-hemispheric (N-S) exchange

(i) Annual mean wet ""Be deposition (107 kg/m™/s)
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NB: Surface area of the earth = cm?
SPACE
10 Be AaEic b7 SOLAR
Supplied to ice — =5

(archives) by
combination of wet
(dominant) and dry
deposition

There is a modest (2-
3%) contribution from in
situ cos-ray production

3. Chronology in ice cores

derived from (annual)
layer counting and
externally dated
volcanic ash layers
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10Be records from polar ice cores

10Be ice record
is a proxy for
both paleomag
and cosmogenic
production rates
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Lithospheric Cosmogenic Nuclide
Applications

¢ There is surface-intensified production of stable and radioactive nuclides
in rocks (3He, 1°Be, ?'Ne, 26Al,36Cl, 3%Ar) that naturally have low background
¢ Combination of fast neutrons (~¥150 g-cm) and more penetrating muons
(>1000 g-cm)
¢ Can be used to determine exposure ages and erosion rates
— E.g., for steady erosion € and constant production P rates:

N (th) =N (X, O)E—M + P(O) e (lie’(iﬁm)l)
A+ e

— Where pis attenuation scale length, A is half-life

— Challenges:
* Changes in erosion & production rates over history of surface
« Shielding (local geography/geometry)
« Coverage (lichen, snow, dust/soil) & changes

Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion
models. Earth and Planetary Science Letters 104, 424-439.

A useful Excel add-in for cosmogenic nuclide
applications: “cosmocalc” on 12.744 web site
and also at http://cosmocalc.googlepages.com
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