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An Introduction to 
Bayesian Phylogenetics

• Bayesian inference in general
• Markov chain Monte Carlo
• Bayesian phylogenetics
• Prior distributions
• Bayesian model selection
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I. Bayesian inference in general
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Joint probabilities

marbles1.ai
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Conditional probabilities

marbles2.ai
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Bayes’ rule

marbles3.ai
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Probability of "Dotted"
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Bayes' rule (cont.)

Pr(D) is the marginal probability of being dotted
To compute it, we marginalize over colors
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Joint probabilities

B W

Pr(D,B)D

S Pr(S,B) Pr(S,W)

Pr(D,W)
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Marginalizing over colors
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Marginalizing over "dottedness"
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Bayes' rule (cont.)
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Bayes’ rule in Statistics

Posterior probability
of hypothesis θ

Prior probability
of hypothesis θ

Likelihood
of hypothesis θ

Marginal probability
of the data
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Simple (albeit silly) paternity example

1/3

1/4

1/2

1/2

Aa
θ2

12/3Posterior

3/41/2Prior X 
Likelihood

---1Likelihood

11/2Prior

---AAGenotypes

Row sumθ1Possibilities

θ1 and θ2 are assumed to be the only possible fathers, child has genotype Aa, 
mother has genotype aa, so child must have received allele A from the true 
father. Note: the data in this case is the child’s genotype (Aa)
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Bayes' rule in Statistics

D refers to the "observables" (i.e. the Data)
θ refers to one or more "unobservables" 

(i.e. parameters of the model):
– a tree model (i.e. tree topology)
– a substitution model (e.g. JC, F84, GTR, etc.)
– a parameter of a substitution model (e.g. a branch 

length, a base frequency, transition/transversion 
rate ratio, etc.)
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Bayes’ rule: continuous case

Likelihood

Marginal probability
of the data

Posterior probability
density

Prior probability
density
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Probabilities and probability 
densities

Probability density function

density.ai
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Integration of densities

Area under the 
density curve
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Coin-flipping example

• D: 6 heads (out of 10 flips)
• θ = true underlying probability of heads on 

any given flip
• if θ = 0.5, coin is perfectly fair
• if θ = 1.0, coin always comes up heads (e.g. it is a 

trick coin with heads on both sides)

• Likelihood:
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Density vs. probability

θ

uniform prior density

posterior density

= posterior probability

( ) ( ) ( )
( ) ( )

|
|

|
f D f

f D
f D f d

θ

θ θ
θ

θ θ θ
=

∫

D = data:
6 heads (out of 10 flips)

uniformpriorandposterior.ai
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Beta prior gives more flexibility

Beta(2,2) prior density

posterior density

Posterior probability that θ lies between 0.45 and 0.55 is 0.223

betapriorandposterior.ai
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Bayesian Coin Flipper
Windows program download from:

http://hydrodictyon.eeb.uconn.edu/people/plewis/

Excel spreadsheet version also available
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Usually there are many parameters...

Likelihood

Marginal probability
of the data

Posterior probability
density

Prior probability
density
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II. Markov chain Monte Carlo
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MCMC robot’s rules

Uphill steps are 
always accepted

Slightly downhill steps
are usually accepted

Drastic “off the cliff”
downhill steps are almost
never accepted

With these rules, it is easy to
see that the robot tends to 
stay near the tops of hills

mcmcrobot.ai
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(Actual) MCMC robot rules

Uphill steps are 
always accepted
because R > 1

Slightly downhill steps
are usually accepted
because R is near 1

Drastic “off the cliff”
downhill steps are almost
never accepted because

R is near 0

Currently at 1.0 m
Proposed at 2.3 m
R = 2.3/1.0 = 2.3

Currently at 6.20 m
Proposed at 5.58 m
R = 5.58/6.20 = 0.90 Currently at 6.20 m

Proposed at 0.31 m
R = 0.31/6.20 = 0.05

6

8

4

2

0

10

The robot takes a step if it draws 
a random number (uniform on 0.0 to 1.0),
and that number is less than or equal to R

mcmcrobot.ai
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A Thing Of Beauty

When calculating the ratio R of posterior densities, the marginal 
probability of the data cancels. 



28

© 2006 Paul O. Lewis Bayesian Phylogenetics 28

Target vs. proposal distributions

• The target distribution is the posterior 
distribution of interest

• The proposal distribution is used to 
decide where to go next; you have much 
flexibility here, and the choice affects only 
the efficiency of the MCMC algorithm



29

© 2006 Paul O. Lewis Bayesian Phylogenetics 29

MCRobot
Windows program download from:

http://hydrodictyon.eeb.uconn.edu/people/plewis/
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The Hastings ratio
If robot has a greater tendency 
to propose steps to the right as 
opposed to the left when choosing 
its next step, then the 
acceptance ratio must 
counteract this 
tendency.

Suppose the probability of
proposing a spot to the right 
is 2/3 (making the probability

of going left 1/3)

In this case, the Hastings ratio 
would decrease the chance of accepting 

moves to the right by half, and double the 
chance of accepting moves to the left
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Metropolis-coupled Markov chain Monte 
Carlo (MCMCMC, or MC3)

• MC3 involves running several chains 
simultaneously

• The cold chain is the one that counts, the 
rest are heated chains

• Chain is heated by raising densities to a 
power less than 1.0 (values closer to 0.0 
are warmer)

Geyer, C. J. 1991. Markov chain Monte Carlo maximum likelihood for dependent data.
Pages 156-163 in Computing Science and Statistics (E. Keramidas, ed.).
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Heated chains act as scouts for the cold 
chain

stateswap.ai
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III. Bayesian phylogenetics
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So, what’s all this got to do with 
phylogenetics?

Imagine drawing tree topologies randomly from a bin in which the
number of copies of any given topology is proportional to the 
(marginal) posterior probability of that topology. Approximating
the posterior of any particular attribute of tree topologies (e.g. 
existence of group AC in this case) is simply a matter of counting.

ACcladeposterior.ai
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Moving through treespace
The Larget-Simon* move

*Larget, B., and D. L. 
Simon. 1999. Markov 
chain monte carlo
algorithms for the 
Bayesian analysis of 
phylogenetic trees. 
Molecular Biology and 
Evolution 16: 750-759.

See also: Holder et al. 
2005. Syst. Biol. 54: 961-
965.

lsmove.ai
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Moving through parameter space
Using κ (ratio of the 
transition rate to the transversion
rate) as an example of a model
parameter.

Proposal distribution is uniform
from κ-δ to κ+δ

The “step size” of the MCMC robot
is defined by δ: a larger δ means 
that the robot will attempt to make
larger jumps on average.

kappamove.ai
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Putting it all together
• Start with random tree and arbitrary initial

values for branch lengths and model parameters
• Each generation consists of one of these 

(chosen at random):
– Propose a new tree (e.g. Larget-Simon move) and 

either accept or reject the move
– Propose (and either accept or reject) a new model 

parameter value
• Every k generations, save tree topology, branch 

lengths and all model parameters (i.e. sample 
the chain)

• After n generations, summarize sample using
histograms, means, credible intervals, etc.
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Posteriors of model parameters
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95% credible interval
Histogram created
from a sample of 
1000 κ values.

upper = 3.604

mean = 3.234

lower = 2.907

lewisflectner.xls

From: Lewis, L., and Flechtner, 
V. 2002. Taxon 51: 443-451.



39

© 2006 Paul O. Lewis Bayesian Phylogenetics 39

IV. Prior distributions
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Common Prior Distributions
• For topologies: discrete Uniform distribution
• For proportions: Beta(a,b) distribution

flat when a=b
peaked above 0.5 if a=b and both are greater than 1

• For base frequencies: Dirichlet(a,b,c,d) distribution
flat when a=b=c=d
all base frequencies close to 0.25 if a=b=c=d and large
(e.g. 300)

• For GTR model relative rates: Dirichlet(a,b,c,d,e,f) 
distribution
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4-parameter Dirichlet(a,b,c,d)

Flat prior:
a = b = c = d = 1

Informative prior:
a = b = c = d = 300

(stereo pairs)

(Thanks to Mark Holder for pointing out to me 
that a tetrahedron could be used for plotting a 
4-dimensional Dirichlet)

dirichlet1.stereo.ai,
dirichlet300.stereo.ai
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Common Priors (cont.)

• For other model parameters and branch 
lengths: Gamma(a,b) distribution
– Exponential(λ) equals Gamma(1, λ-1) 

distribution
– Mean of Gamma(a,b) is a×b

• mean of an Exponential(10) distribution is 0.1
– Variance of a Gamma(a,b) distribution is a×b2

• variance of an Exponential(10) distribution is 0.01

Note: be aware that in many papers the Gamma distribution is defined such that the second (scale) parameter is 
the inverse of the value b used in this slide! In this case, the mean and variance would be a/b and a/b2, respectively. 
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Priors for model parameters 
with no upper bound
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zerotoinfinitypriors.xls

See chapter 18 in Felsenstein, J. (2004. 
Inferring Phylogenies.Sinauer) before using.
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Learning about priors

Shapepr -- This parameter specifies the prior for the gamma shape
parameter for among-site rate variation. The options are:

prset shapepr = uniform(<number>,<number>)
prset shapepr = exponential(<number>)
prset shapepr = fixed(<number>)

Suppose you want to assume an Exponential distribution with mean 0.1
for the shape parameter of the discrete gamma distribution of among
site rate heterogeneity. You use the command help prset in MrBayes 
(version 3.1.1) to find out how to do this, and this is what MrBayes says:

You type 

prset shapepr=exponential(10.0);

but is mean of the prior going to be 10 or 0.1?
There is a way to find out...
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0
1
2
3
4
5
6
7
8
9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#NEXUS

begin data;
Dimensions ntax=4 nchar=1;
Format datatype=dna missing=?;
matrix

taxon1 ?
taxon2 ?
taxon3 ?
taxon4 ?

;
end;

begin mrbayes;
set autoclose=yes;
lset rates=gamma;
prset shapepr=exponential(10.0);
mcmcp nruns=1 nchains=1 printfreq=1000;
mcmc ngen=10000000 samplefreq=1000;

end;

Running on empty

Prior actually turns out
to be Exponential(10) 
that is truncated below 
0.05!

You can use the program Tracer to show estimated density:
http://evolve.zoo.ox.ac.uk/software.html?id=tracer

nodata/nodata.xls

Note! The truncation
does not occur in later
versions (e.g. 3.1.2) of
MrBayes.
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V. Bayesian model selection
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The choice of prior distributions can 
potentially turn a good model bad!

LRT, AIC and BIC all
say this is a great
model because it

is able to attain
such a high 

maximum 
likelihood

score
But the prior never

allows the parameter 
out of this box, so in 
actuality the model

performs very poorly

hurtful_prior.ai
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Marginal probabilities of models

Marginal probability of the data (denominator in Bayes' rule).
This is a weighted average of the likelihood, where the weights

are provided by the prior distribution.

Often left out is the fact that we are also conditioning on M, the model used.
Pr(D|M1) is comparable to Pr(D|M2) and thus the marginal probability of the
data can be used to compare the average fit of different models as long as 

the data D is the same.
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Average likelihood =

Bayes Factor: 1-param. model
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Average likelihood =

Bayes Factor: 2-param. model
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Bayes Factor is ratio of marginal 
model likelihoods

1-parameter model M0: (½) L0

2-parameter model M1: (¼) L1

Bayes Factor favors M0 unless L1 is at least  twice
as large as L0

All other things equal, more complex models are 
penalized by their extra dimensions

Recent work on Bayes factors with respect to phylogenetics: 
Huelsenbeck, Larget & Alfaro. 2004. MBE 2004:1123-1133.
Lartillot & Phillippe. 2005. Syst. Biol. 55(2):195-207.
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Marginal Likelihood of a Model

JC69 model (just this 1d line)

K80 model (entire 2d space)
sequence length = 1000 sites
true branch length = 0.15
true kappa = 4.0

K80 wins
JcvsK2P/JCvsK2P.py
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Marginal Likelihood of a Model

sequence length = 1000 sites
true branch length = 0.15
true kappa = 1.0

JC69 model (just this 1d line)

K80 model (entire 2d space)

JC69 wins
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Bayesian Information Criterion (BIC)
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Blue curve is the 
unnormalized posterior

Area under this curve
equals marginal probability
of the data (the desired
quantity)

Pink curve is a normal
distribution scaled to 
match blue curve as
closely as possible

Assumes prior is a normal
distribution with variance
equivalent to the amount
of information in a single 
observation

6 heads/10 flips, Beta(2,2) prior

Area under pink curve is easy to calculate and is
good approximation to the desired quantity 
(smaller by about 0.5%)
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Goodness-of-fit ain't everything

y = -1.5972x5 + 23.167x4 - 126.18x3 

+ 319.17x2 - 369.22x + 155.67

y = 0.6611x - 2E-16

-6

-4
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0

2

4

6

8

10

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

(Thanks to Dave Swofford for introducing me to this excellent example)
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Posterior Predictive Simulation

Parameter values
sampled during
MCMC

Tree topologies
and branch lengths
sampled during
MCMC

Posterior predictive
data sets simulated
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Minimum Posterior Predictive Loss 
Approach

• Perform MCMC on original dataset y
• During MCMC generate posterior predictive datasets ỹ
• Find "average" dataset a that is as close as possible

to both y and the ỹ
• Gm measures distance between a and y
• Pm measures expected distance between a and ỹ
• Goal is to minimize the overall measure Dm = Gm + Pm

Gelfand, A. E., and S. Ghosh. 1998. Model choice: a minimum posterior predictive loss 
approach. Biometrika 85:1-11.
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More than one way to be bad
y

ỹi
Poor goodness-of-fit (Gm large, Pm small)

y

ỹi
High predictive variance (Gm small, Pm large)

a

a
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Regression Example Revisited
Pm = 24.5
Gm =  5.3
Dm = 29.8

Pm = 91.2
Gm =  1.2
Dm = 92.4
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Models differ only in prior 
specification
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Branch length distribution
used for simulations was

exponential with mean 0.02

100 4-taxon data sets
simulated under JC69
and analyzed with the

9 different branch length
prior distributions shown

sm
al

le
r i

s 
be

tte
r

Note: none of the standard model testing approaches (AIC, LRT, BIC)
work here because these models differ only in their prior specification
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The End
Many thanks to NSF (CIPRES project) for my current funding, and
for UConn and the National Evolutionary Synthesis Center (NESCENT)
for funding my sabbatical this year.

NESCENT
Durham, NC
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The following slides were not shown in the lecture,
but they are relevant to the content and are included
to provide a more complete record of the main points.
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Markov chain Monte Carlo (MCMC)

0.00 0.20 0.40 0.60 0.80 1.00
0.00

0.67

1.35

2.02

2.69

3.36

For coin flipping, we can compute posterior
probabilities exactly (can even do the necessary
integration in Excel!).  For complex problems, 
we must settle for a good approximation.

Histogram is an 
approximation to the
posterior distribution
obtained using a Markov
chain Monte Carlo
simulation.

coinflipmcmc.ai
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Pure random walk
Proposal scheme:
• random direction
• gamma-distributed

step length (mean 45
pixels, s.d. 40 pixels)

• reflection at edges

Target distribution:
• equal mixture of 3 

bivariate normal “hills”
• inner contours: 50%
• outer contours: 95%

In this case, the robot
is accepting every step

5000 steps shown
392 pixels

354 pixels

randomwalk.ai
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Burn-in
Robot is now following
the rules and thus 
quickly finds one of
the three hills.

Note that first few
steps are not at all
representative of the
distribution.

100 steps taken

Starting point

mc100.ai
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Target distribution approximation
How good is the MCMC
approximation?

• 51.2% of points are
inside inner contours
(cf. 50% actual)

• 93.6% of points are
inside outer contours
(cf. 95% actual)

Approximation gets 
better the longer the
chain is allowed to run.

5000 steps taken

mc5000.ai
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Just how long is a long run?
What would you conclude
about the target distri-
bution had you stopped
the robot at this point?

1000 steps taken

The way to avoid this
mistake is to perform
several runs, each one
beginning from a different
randomly-chosen starting
point.

Results different among
runs? Probably none of them
were run long enough!

mc1000.ai
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Cold vs. heated landscapes

Cold landscape: note
peaks separated by 
deep valleys

Heated landscape: note 
shallow (easy to cross)
valleys

mchot.ai, mccold.ai
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Trace plots

Burn-in is over right about here

We started off at a very low point

“White noise” appearance is a good sign

historyplot.ai
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Slow mixing

Chain is spending long periods of time
“stuck” in one place

Indicates step size too large, and most proposed 
steps would take the robot “off the cliff”

slowmix.ai


