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1 Introduction

Convection in a horizontal porous layer heated from below is relevant to a variety
of geological and engineering applications (Nield & Bejan [13]; Phillips [16], [17]).
Porous media convection has been studied extensively, beginning with the linear sta-
bility analyses of Horton and Rogers [9] and Lapwood [11], and the flow dynamics and
bifurcation structure for low to intermediate Rayleigh numbers (Ra) have been thor-
oughly explored both theoretically and numerically (Graham and Steen [7]). Asymp-
totic descriptions of steady porous media convection have been proposed by Palm et
al. [15], Robinson & O’Sullivan [18], and Rudraiah & Musuoka [19], although there is
a distinct lack of agreement among these and other authors regarding the asymptotic
form of the convection.

It has been firmly established that the classical marginally stable boundary layer
argument of Howard [10] for Rayleigh-Bénard convection at high Rayleigh number
also holds for porous media convection (Horne & O’Sullivan [8]). This argument
gives a scaling Nu ∼ Ra, where the Nusselt number, Nu, represents the heat trans-
port; a result supported by rigorous upper bound theory (Doering & Constantin [5]).
However, Graham and Steen [7] note that this scaling is only valid after the onset
of plumes, at approximately Ra = 700; for smaller Ra the appropriate scaling is
Nu ∼ Ra2/3 (Cherkaoui & Wilcock [3]).

The high resolution two-dimensional (2D) direct numerical simulations (DNS) of
Otero et al. [14] in a horizontally periodic layer indicate that as the Rayleigh number
is increased, the heat transport shifts from being described by the classical Nu ∼
Ra scaling to being better described by Nu ∼ Ra0.9. Crucially, their simulations
show that the spacing between the thermal plumes decreases as Ra is increased.
From the data presented, it appears that the inter-plume spacing may scale in direct
proportion to the wavelength of the fastest growing linear mode (∼ Ra−1/4). The
experimental results of Lister [12], by contrast, suggest the inter-plume spacing scales
as (Ra+ C)−1/2, for some constant C.

Motivated in part by these prior investigations, the primary aim of the present
study is to determine the maximum heat transport attainable in steady 2D unicel-
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lular porous media convection. By focusing on this restricted class of flows we are
able to use an efficient iterative numerical scheme to systematically probe the way
in which the heat transport depends on the inter-plume spacing. Guided by our
numerical results, we also propose a large-Ra asymptotic reduction of the governing
equations that yields the asymptotic structure of the solutions giving the maximum
heat transport.

The remainder of this report is organised as follows. In §2 we formulate the stan-
dard mathematical model of porous media convection and recall the key results of
linear stability theory for this system. The numerical method used to find (generally
unstable) steady-state high-Ra solutions is described in §3 along with a synopsis of
our numerical results. In §4 we propose a multi-region matched asymptotic descrip-
tion of the maximal Nusselt number solutions, motivated by the numerical solutions
described in §3. In §5 we use our steady-state solutions as initial conditions in a time-
dependent numerical model and analyse the results. Finally, in §6 we summarise our
findings and outline avenues for future work.

2 Problem formulation

We consider a fluid-saturated porous layer heated from below at z = 0 and cooled
from above at z = 1. The evolution of the 2D velocity u(x, t) = (u,w), temperature
T (x, t) and pressure p(x, t) fields is governed by the non-dimensional Darcy-Oberbeck-
Boussinesq equations (Nield & Bejan [13]) in the infinite Darcy–Prandtl number limit.
In streamfunction–vorticity form, these equations can be expressed as

∇2ψ = −Ra∂T
∂x

, (1)

∂T

∂t
+
∂ψ

∂z

∂T

∂x
− ∂ψ

∂x

∂T

∂z
= ∇2T. (2)

Here ψ is the streamfunction describing cellular flow in the (x, z)–plane. The di-
mensionless parameter Ra = KHgβ∆T/(νκm) is the Rayleigh number, where K is
the permeability of the medium, H is the depth of the layer, g is the gravitational
acceleration, β is the thermal expansion coefficient, ∆T is the temperature difference
across the layer, ν is the kinematic viscosity, and κm is the effective diffusivity of heat
through the saturated medium.

The non-dimensional temperature at the top and bottom of the layer is held
fixed at 0 and 1, respectively, and we seek steady unicellular solutions with discrete
translational invariance in the horizontal coordinate x and reflection symmetry about
the planes x = nπ/k for integer n and given cell width L = π/k, where k is the
horizontal wavenumber. Since we are interested in unicellular convection we will
take n = 1 throughout. Therefore, we impose the following boundary and symmetry
conditions:
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T (x, 0, t) = 1, T (x, 1, t) = 0, ψ(x, 0, t) = 0, ψ(x, 1, t) = 0,

∂T

∂x
(0, z, t) = 0,

∂T

∂x
(L, z, t) = 0, ψ(0, z, t) = 0, ψ(L, z, t) = 0.

(3)

It is useful to recapitulate a few results from linear stability theory (Nield & Bejan
[13], Chapter 6). If we define T = (1− z) + θ̃(x, z, t), where 1− z is the conduction
solution, and search for solutions of the linearised versions of (1) and (2) of the form

θ̃(x, z, t) = cos(kx) sin(πz)eσt, ψ(x, z, t) = Ψ sin(kx) sin(πz)eσt, (4)

we find that the (strictly real) growth rate σ is given by

σ =
Ra

k2 + π2
− (k2 + π2). (5)

From this relationship, it is easily shown that the critical wavenumber kcrit = π,
implying the critical cell width Lcrit = 1 and that the critical Rayleigh numberRacrit =
4π2. Moreover, for large Rayleigh number, the wavenumber kf of the fastest growing
linear mode is given by

kf ∼
√
πRa1/4. (6)

A useful quantity in the study of convection is the normalised volume-averaged
vertical heat flux, or Nusselt number,

Nu = 1 +
1

L

〈∫
∂ψ

∂x
Tdxdz

〉
, (7)

where the angle brackets indicate the long-time average

〈f〉 = lim
T→∞

1

T

∫ T

0

f(t)dt. (8)

From the equations of motion we can derive an equivalent expression for the Nusselt
number,

Nu = − 1

L

〈∫
z=0

∂T

∂z
dx

〉
. (9)

This expression shows that Nu can also be interpreted as the ratio of the horizontally-
integrated, time-averaged vertical heat flux to the corresponding value realized in the
absence of convection.
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3 Numerical simulations

We compute time-independent numerical solutions of (1)–(2), subject to the boundary
conditions (3), using a Newton–Kantorovich iteration scheme (Boyd [2], Appendix C).
We begin by rewriting the model equations as

∇2ψ = Fψ(Tx), (10)

∇2T = F T (ψx, ψz, Tx, Tz), (11)

where a subscript denotes a partial derivative with respect to the given variable.
Suppose we have iterates T (i)(x, z) and ψ(i)(x, z), which are good approximations to
the true solutions T (x, z) and ψ(x, z). Taylor expanding the functions Fψ and F T in
(10) and (11) about the ith iterate gives

∇2ψ =Fψ(T (i)
x ) + Fψ

Tx
(T (i)

x )[Tx − T (i)
x ] +O

(
[Tx − T (i)

x ]2
)

(12)

∇2T =F T (ψ(i)
x , ψ

(i)
z , T

(i)
x , T (i)

z ) + F T
ψx

(ψ(i)
x , ψ

(i)
z , T

(i)
x , T (i)

z )[ψx − ψ(i)
x ]

+ F T
ψz

(ψ(i)
x , ψ

(i)
z , T

(i)
x , T (i)

z )[ψz − ψ(i)
z ] + F T

Tx
(ψ(i)

x , ψ
(i)
z , T

(i)
x , T (i)

z )[Tx − T (i)
x ]

+ F T
Tz

(ψ(i)
x , ψ

(i)
z , T

(i)
x , T (i)

z )[Tz − T (i)
z ]

+O
(
[ψx − ψ(i)

x ]2, [ψz − ψ(i)
z ]2, [Tx − T (i)

x ]2, [Tz − T (i)
z ]2

)
, (13)

where, for example, F T
Tx

denotes the Frechet derivative of the function F T (ψx, ψz, Tx, Tz)
with respect to Tx. By defining correction terms

ψ(i+1) ≡ ψ(i) + φ̂, T (i+1) ≡ T (i) + θ̂, (14)

and computing the Frechet derivatives, the linear differential equations for the cor-
rections are given by

∇2φ̂+Raθ̂x = Fψ(T (i)
x )−∇2ψ(i), (15)

∇2θ̂ + T (i)
z φ̂x − T (i)

x φ̂z − ψ(i)
z θ̂x + ψ(i)

x θ̂z = F T (ψ(i)
x , ψ

(i)
z , T

(i)
x , T (i)

z )−∇2T (i), (16)

subject to the boundary conditions

T = 1, ψ = 0, θ̂ = 0, φ̂ = 0 on z = 0, (17)

T = 0, ψ = 0, θ̂ = 0, φ̂ = 0 on z = 1, (18)

Tx = 0, ψ = 0, θ̂x = 0, φ̂ = 0 on x = 0, (19)

Tx = 0, ψ = 0, θ̂x = 0, φ̂ = 0 on x = L. (20)

Equations (15) and (16) can be rewritten in matrix form[
Dxx +Dzz RaDx

T
(i)
z Dx − T (i)

x Dz Dxx +Dzz − ψ(i)
z Dx + ψ

(i)
x Dz

] [
φ̂

θ̂

]
=

[
−RaT (i)

x −∇2ψ(i)

ψ
(i)
z T

(i)
x − ψ(i)

x T
(i)
z −∇2T (i)

]
,

(21)
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Figure 1: Surface plot of Nusselt number in (Ra,L) parameter space. Darker shading
represents higher values of Nu. The solid line marks the ridge along which Nu is
maximum; the dashed line is the linear stability boundary; the dashed-dotted line is
L = 501/2Ra−1/2; and the dotted line is L = 501/4Ra−1/4. The jagged contours at
high Ra are resolution artefacts.

where, for example, Dx denotes the partial derivative with respect to x.
We iterate the system of equations (21) for a given Rayleigh number Ra and

cell-width – or inter-plume spacing – L, subject to the boundary conditions (17)–
(20), using a pseudospectral collocation method. A convergence criterion requiring
max(|φ̂|) < 10−10 and max(|θ̂|) < 10−10 was employed. A Chebyshev tensor-product
formulation with 60 nodes in both the horizontal and vertical directions was used to
provide adequate resolution of the boundary layers.

Simulations were performed starting at Ra = 50, just above the critical Rayleigh
number Racrit = 4π2 ≈ 39.5, and initial cell width L = 1. Once convergence was
achieved, Ra was increased by a factor of 101/10 with the previous converged state
used as the new “initial” condition. This was repeated for cell widths from L = 1 to
L = 0.01, reduced in steps of 101/10 in order to thoroughly explore (Ra,L) parameter
space. At each point the Nusselt number Nu was recorded.

The results of these simulations are summarized in figures 1 and 2. In figure 1
a surface plot of the Nusselt number in (Ra,L) parameter space is presented. The
dashed line indicates the linear stability boundary, L ∼ πRa−1/2. To the right of this
line there is no convection and so Nu = 1; the jagged contours at high Ra are resolu-
tion artefacts. The solid line denotes the maximum value of Nu, and hence marks a
ridge on the surface. To elucidate scalings, the lines L = 501/2Ra−1/2 (dashed–dotted)
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Figure 2: Plot of Nu vs. Ra along different paths L = L(Ra). The asterisks are
the data along the maximum Nu ridge; the circles are the data along the curve
L = 501/2Ra−1/2, and the crosses are the data along the curve L = 501/4Ra−1/4. The
solid line is the best fit curve 0.18Ra0.59, and the dashed line is the best fit curve
0.25Ra0.52.

and L = 501/4Ra−1/4 (dotted) are also plotted. The constants 501/2 and 501/4 were
used so that L = 1 when Ra = 50 in each case.

As noted in § 1, the DNS results presented in Otero et al. [14] suggest that the
inter-plume spacing scales with the wavelength of the fastest growing linear mode:
from (6), L ∼ π/kf =

√
πRa−1/4. However, the experimental results of Lister [12]

suggest that the inter-plume spacing scales as (Ra + C)−1/2. We can see in figure 1
that the maximum Nu ridge satisfies the L ∼ Ra−1/4 scaling up to Ra ≈ 150, as it
closely follows the dotted line. Above Ra ≈ 150, the ridge shifts to the right and for
Ra > 500 it follows the relationship L ∼ 7.02Ra−0.52. With this scaling, however, the
ridge would eventually cross the linear stability boundary into the conduction Nu = 1
regime. Therefore, it seems plausible that the maximum Nu ridge (at least for steady
2D unicellular convection) must eventually scale as L ∼ Ra−1/2, in agreement with
Lister’s results [12].

Figure 2 shows the variation of Nu with Ra along the ridge (asterisks) and along
the curves L = 501/2Ra−1/2 and L = 501/4Ra−1/4 (circles and crosses, respectively).
In the range 50 ≤ Ra ≤ 350, all three curves lie on top of one another; however, at
higher values of Ra the L = 501/4Ra−1/4 curve drops below the other two. Across
the range 1000 . Ra . 10000, the data along the curve L = 501/4Ra−1/4 scale as
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Nu ∼ 0.25Ra0.52 (dashed line), and the data along the curve L = 501/2Ra−1/2, as
well as the ridge, scale as Nu ∼ 0.18Ra0.59 (solid line). Although none of these
steady-state unicellular solutions exhibits the Nu–Ra scaling presented in Otero et
al. [14], they do reveal a clear and non-trivial dependence of the heat transport on
the inter-plume spacing.

3.1 Solution structure

In this section, we examine the spatial structure of the numerical solutions across the
range 1000 . Ra . 10000, where we obtain the clean Nu ∼ Ra0.6 relationship with
a cell width that scales as L ∼ 501/2Ra−1/2, to gain further insight into the steady
unicellular flows that maximize the heat transport.

Figure 3 shows contour plots of the temperature T (x, z) and streamfunction
ψ(x, z) for Ra = 997 and Ra = 9976. Note the aspect ratio distortion in each
set of plots: when Ra = 997, L ≈ 0.2239, and when Ra = 9976, L ≈ 0.0708. Clear
evidence of a thermal boundary layer, which thins as Ra is increased, can be seen in
figure 3(a) and (c). In figure 3(b) and (d) there is evidence of a momentum boundary
layer that also thins as Ra is increased but remains thicker than the thermal bound-
ary layer. Furthermore, in the centre of the cell, which we will denote the core, the
streamlines become vertical as Ra increases, suggesting ψ becomes independent of z
there.

To extract scalings from the numerical results, it is convenient to decompose the
total temperature into its horizontal mean, denoted with an overbar, and a fluctua-
tion; i.e., T (x, z) = T (z)+θ(x, z), where θ(x, z) is the fluctuation. We note that with
this decomposition, (1) and (2) become

∇2ψ = −Ra∂θ
∂x
, (22)

− ∂

∂z

(
∂ψ

∂x
θ

)
=
∂2T

∂z2
, (23)

∂ψ

∂z

∂θ

∂x
− ∂ψ

∂x

∂θ

∂z
− ∂ψ

∂x

∂T

∂z
+

∂

∂z

(
∂ψ

∂x
θ

)
= ∇2θ, (24)

where an overbar again denotes a horizontal average.
Figure 4 shows vertical profiles of T , θ and ψ for Ra = 9976. The existence of

two distinct boundary layers is now very clear, with the momentum boundary layer
being thicker than the thermal boundary layer. In the core, both the temperature
fluctuation θ and the streamfunction ψ are independent of z, whereas the average
temperature gradient is weakly unstable.

Figure 5 shows horizontal profiles of θ and ψ in both the core (top row) and the
thermal boundary layer (bottom row). In the core, the solution appears to consist of
a single Fourier mode, whereas in the boundary layer the solution clearly involves a
superposition of many Fourier modes.
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Figure 3: Contour plots of (a) temperature T (x, z), (b) streamfunction ψ(x, z) for
Ra = 997; and (c) temperature T (x, z), (d) streamfunction ψ(x, z) for Ra = 9976. In
each plot contours are evenly spaced. Note the aspect ratio distortion.
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Figure 4: Vertical profiles of (a) T (z) and (b) θ and (c) ψ at x = L/2 for Ra = 9976.

Using these numerical results, we can attempt to quantify the dependencies on
Ra of the boundary layer thicknesses and the amplitudes of θ and ψ in the core
(figure 6). Since neither boundary layer is uniformly thick across the domain, we
plot both the maximum (crosses) and minimum (asterisks) thicknesses of each layer.
Figure 6 (a) and (b) shows the results for the thermal and momentum boundary layer,
respectively, with the best fit curves for each case shown by the solid and dashed lines.
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Figure 5: Horizontal profiles of the temperature fluctuation θ (left column) and
streamfunction ψ (right column) through the centre of the domain (a, b) and near
the bottom of the domain, within the thermal boundary layer (c, d), at Ra = 9976.

In the thermal boundary layer both the thickest and thinnest parts of the layer scale
as δ ∼ Ra−0.6. However, in the momentum boundary layer there is quite a difference
between the scalings of the thinnest and thickest parts, with the minimum thickness
scaling as ∆ ∼ Ra−0.5 and the maximum thickness as ∆ ∼ Ra−0.2.

The amplitude scalings are estimated by plotting the maximum values of θ and ψ
in the core region versus Ra, as shown in figure 6 (c) and (d), respectively. The solid
line in each plot represents the best fit curve. In this way, we find that in the core
ψ ∼ Ra0.3 and θ ∼ Ra−0.1.

4 Asymptotic reduction

Motivated by the numerical results presented in §3, we seek a matched asymptotic
description of steady unicellular convection in a cell of varying aspect ratio L =
lRa−1/2, with l = O(1), in the large Rayleigh number limit. The numerics suggest
that the flow can be divided into three subdomains as shown in figure 7: a core,
a momentum boundary layer of thickness ∆, and a thinner thermal boundary layer
of thickness δ. This nested boundary layer structure is similar to that presented by
Fowler [6] for unicellular porous media convection in a cell of fixed, O(1) aspect ratio.
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Figure 6: (a, b) Approximate location of the minimum (asterisks) and maximum
(crosses) thicknesses of the thermal and momentum boundary layers, respectively.
The solid lines represent the best fit curve for the minimum thickness: δ ∼ 5.0Ra−0.6

for the thermal boundary layer, and ∆ ∼ 3.5Ra−0.5 for the momentum boundary
layer. The dashed lines represent the best fit curve for the maximum thickness:
δ ∼ 5.9Ra−0.6 for the thermal boundary layer, and ∆ ∼ 1.1Ra−0.2 for the momentum
boundary layer. (c, d) Asterisks represent the approximate maximum values of θ and
ψ in the core, respectively. The solid lines in each case indicate the best fit curves
θ ∼ 0.48Ra−0.1 and ψ ∼ 1.3Ra0.3.

Each of the subdomains is characterised by a different dominant balance of terms
in (22)–(24). The various dominant balances are fixed once the Ra dependencies
of the dependent and independent variables in the three subdomains is specified.
Here, we opt to determine these scalings a priori by insisting that four asymptotic
constraints are satisfied and subsequently compare our predictions with the scalings
extracted from the numerical results in §3.

Firstly, in the thermal boundary layer, the mean advective and diffusive heat
fluxes are both significant. Hence, (23) requires

ΨBΘB =
1

δRa1/2
, (25)

presuming T = O(1), where ΨB and ΘB are the magnitudes of ψ and θ, at leading
order, in the thermal boundary layer. Balancing wall-normal diffusion with advection
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Figure 7: Schematic showing hypothesized three-subdomain asymptotic structure for
porous media convection at high Rayleigh number.

of the mean temperature in (24) yields

ΨB =
1

δ
Ra−1/2ΘB, (26)

and combining (25) and (26) then gives

ΘB = 1, ΨB =
1

δRa1/2
. (27)

Secondly, given our hypothesized asymptotic structure, we require ψz to vary
smoothly everywhere within the momentum boundary layer. In particular, this im-
plies

ΨM

∆
=

ΨB

δ
. (28)

Thirdly, the existence of the momentum boundary layer requires that z derivatives
become comparable to x derivatives in (22), and hence that ∆ = Ra−1/2. Equations
(26) and (28) then yield

ΨM = Ψ2
B =

1

δ2Ra
. (29)

The final constraint requires the convective heat flux to dominate the diffusive
heat flux in the core,

−ψxθ ∼ Q, (30)

where Q is the constant advective heat flux there. Since integration of (23) in z gives
the exact result

−ψxθ − T z ≡ Nu, (31)

Q ∼ Nu = O(1/δ), noting that 1/δ is an estimate of the magnitude of T z near z = 0
and z = −1. Assuming ΨM = ΨC (see figure 4(c)), then (30) implies

ΘC = δRa1/2. (32)
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Numerical Asymptotic

Nu Ra0.59 Ra2/3

δ Ra−0.6 Ra−2/3

∆ Ra−0.2–Ra−0.5 Ra−1/2

ΘC Ra−0.1 Ra−1/6

ΘM – Ra−1/6

ΘB – 1

ΨC Ra0.3 Ra1/3

ΨM – Ra1/3

ΨB – Ra1/6

Table 1: Comparison of numerical and asymptotic scalings.

Also, in the core, the leading order balance in (22) is

ψxx = −Raθx. (33)

Substituting the scalings for ΘC and ΨC gives δ = Ra−2/3, implying Nu ∼ Ra2/3.
The complete list of asymptotic scalings is presented in Table 1, along with the

numerical scalings found in §3.1 for finite Ra for comparison. Although they do not
match identically, there is general agreement between the numerical and asymptotic
scalings. Presumably, the discrepancies are attributable either to finite-Ra effects or
to inherent limitations in our method of data processing for the numerics.

4.1 Core

In the core, the leading order versions of (22)–(24) are

ψCxx = −RaθCx, (34)

−ψCxθC = Q, (35)

−ψCxTCz = θCxx, (36)

where a subscript “C” again refers to a core field. Integrating (34) with respect to x
gives

ψCx = −RaθC + f(z), (37)

where f(z) = 0 from mass conservation, and substituting this expression into (35)
yields

Raθ2
C = Q. (38)
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Thus, we deduce that both θC and ψC are independent of z, in accord with the
results of our numerical calculations. Substituting (37) into (36) reveals that the
mean temperature gradient within the core must be constant, i.e. TCz ≡ −g, say,
and that θC and hence ψC admit single mode solutions:

θCxx +RagθC = 0, (39)

and so
θC(x) = −ΘC cos(Ra1/2g1/2x). (40)

A similar asymptotic structure was found by Blennerhassett & Bassom [1] in their
study of strongly nonlinear, high wavenumber Rayleigh–Bénard convection. Because
the lateral boundary conditions require θCx = 0 at x = 0, L, g = (π/l)2. In figure
8, this prediction is compared with the exact (numerically computed) mean temper-
ature gradient at Ra = 9976 and l =

√
50; the evident excellent agreement provides

strong support for the presumed asymptotic structure of the flow within the core.
Specifically,

θC(x) = −AΘC cos(Ra1/2π

l
x), (41)

ψC(x) =
l

π
Ra1/2AΘC sin(Ra1/2π

l
x), (42)

where A = O(1) is a constant to be determined, while

TC =
1

2
−
(π
l

)2
(
z − 1

2

)
. (43)

4.2 Momentum boundary layer

In the momentum boundary layer, (22)–(24) become, at leading order,

ψMxx + ψMzz = −RaθMx, (44)

−ψMxθMz = 0, (45)

ψMzθMx − ψMxθMz = ψMxTMz, (46)

presuming TMz = O(ΘM/∆) – see figure 4. From (46) it follows that

θM = F (ψM)− TM(z). (47)

Noting that both θ and ψ must smoothly transform from their z-independent profiles
in the core to functions of both x and z such that θ = F (ψ) in the far-field of the
momentum boundary layer, we rewrite θC as a function of ψC :

θC(x, z) = F (ψC) = ∓AΘC

√
1−

(
π

lAΘC

)2

Ra−1ψ2
C . (48)
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Figure 8: Comparison of the numerically computed T z at Ra = 9976 and l =
√

50
(asterisks) with the predicted value in the core given by TCz = (π/l)2 (solid).

The positive square root applies on the left half of the domain, where θC < 0, while
the negative square root applies on the right half of the domain, where θC > 0.
Furthermore, moving from the core to the momentum boundary layer at, say, z = 0,
TC → T

∞
M , where T

∞
M is the limiting value of TM(z):

T
∞
M =

1

2

(
1 +

(π
l

)2
)
. (49)

Hence,

F (ψM) = ∓AΘC

√
1−

(
π

lAΘC

)2

Ra−1ψ2
M + T

∞
M . (50)

Equation (44) becomes a nonlinear Poisson equation for ψM :

ψMxx + ψMzz = −RaF ′(ψM)ψMx

= −ψMx

ψM
AΘC

(π
l

)2
(

1−
(π
l

)2 ψ2
M

RaA2Θ2
C

)−1/2

, (51)

subject to the boundary conditions

ψM = 0 on x = 0, L and z = 0, and as Z ≡ z

∆
→∞, ψM → ψC . (52)

We can then use (47) to find θM(x, z) once TM(z) has been determined, presumably
by requiring θM = 0, in which case TM(z) = F (ψM).

14



4.3 Thermal boundary layer

In the thermal boundary layer, the leading order versions of (22)–(24) are

ψBzz = −RaθBx, (53)

−ψBxθBz = TBzz, (54)

ψBzθBx − ψBxθBz − ψBxTBz + ψBxθBz = θBzz. (55)

This system is equivalent to

ψBzz = −RaTBx, (56)

ψBzTBx − ψBxTBz = TBzz, (57)

which must be solved (e.g., at the bottom of the domain) subject to the boundary
conditions

ψB = 0 on z = 0,

TBx = 0 on x = 0, TB = 1 on z = 0, (58)

and, as Ẑ ≡ z

∆
→∞, ψB → ψM and TB → TM .

5 Time-dependent numerical simulations

Our asymptotic reduction suggests that the heat transport is described by the scaling
Nu ∼ Ra2/3, which differs from the classical scaling Nu ∼ Ra of Howard [10] and
from that exhibited in the DNS of Otero et al. [14]. Therefore, in this section, we
employ time-dependent simulations to find the heat transport when our steady-state
solutions are used as initial conditions.

As before, we consider (1)–(2) subject to the boundary conditions given by (3).
Numerical simulations were carried out using a pseudospectral collocation method
involving a Chebyshev tensor-product formulation with 70 nodes in both the horizon-
tal and vertical directions to provide adequate resolution of the boundary layers. A
semi-implicit time discretization scheme was employed, with the nonlinear and insta-
bility terms advanced using a second-order Adams-Bashford method, and the linear
diffusive terms advanced using the trapezium rule. The resulting linear algebraic
system was solved by direct matrix inversion.

The results of these simulations are summarized in figure 9, which shows the
variation of the time-averaged Nu with Ra. In the range 1000 ≤ Ra ≤ 4000, the
data scale as Nu ∼ Ra0.6, identically to the steady state scaling found in §3. For
Ra > 4000, however, the data appear to scale as Nu ∼ Ra0.92, comparable to the
Nu ∼ Ra0.9 scaling found by Otero et al. [14] in a domain of fixed width L = 1.
Of course, the accuracy of this scaling may be suspect given the limited data in this
region. Nevertheless, these preliminary results are at least suggestive that Nusselt
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Figure 9: Plot of time-averaged Nu against Ra. The solid line is the best fit curve
0.168Ra0.6, and the dashed line is the best fit curve 0.005Ra0.92.
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Figure 10: Evolution of the Nusselt number for Ra = 5000 (solid line). The dashed
line represents the approximate value of the long-time average of Nu given by Otero
et al. [14] at the same Ra in a box of fixed width L = 1 (in our notation).
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Figure 11: Contour plots of (a) T (x, z), (b) ψ(x, z) for Ra = 5000 just before the first
peak in Nu(t) (denoted by the circle in figure 10). In each plot contours are evenly
spaced. Note the aspect ratio distortion.
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Figure 12: Contour plots of (a) T (x, z), (b) ψ(x, z) for Ra = 5000 at a later time
(denoted by the cross in figure 10). In each plot contours are evenly spaced. Note
the aspect ratio distortion.
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numbers comparable to those achieved in much wider domains might be attained in
narrow domains with aspect ratios shrinking according to L ∼ Ra−1/2.

Figures 10–12 illustrate the behaviour of the model for Ra = 5000, at the start
of the Nu ∼ Ra0.92 regime. Figure 10 shows the evolution of the Nusselt number for
Ra = 5000, with the dashed line denoting the long-time average value of Nu given
by Otero et al. [14]. The initial steady solution is unstable, and the time-dependent
solution quickly deviates away from it, corresponding with the first increase in Nu(t).
The Nusselt number then peaks before settling into a roughly periodic dynamic.
Eventually, the system is again excited and the Nusselt number peaks a second time
before settling back into a time-periodic behavior.

The temperature and streamfunction fields just before the first peak in the Nusselt
number (at the time denoted by the circle in figure 10) are shown in figure 11. In the
temperature field (figure 11 (a)) there is evidence of a plume (as defined by Graham
& Steen [7]) in the lower (upper) thermal boundary layer at x ≈ 0.06 (x ≈ 0.04),
corresponding with a roll in the streamfunction field (figure 11 (b)). As noted in §1,
Graham & Steen [7] argue that the classical Nu ∼ Ra scaling corresponds to the
onset of plume formation, which they define to occur when the isotherms contouring
the thermal boundary layer become nearly vertical away from the downstream corner
of the cell. Furthermore, both DNS and upper bound theory suggest that convection
cells within the thermal boundary layer are required to achieve this scaling (Chini et
al. [4]).

This simulation does not, however, achieve the same overall long-time average
value of Nu as Otero et al. [14]. Figure 12 illustrates the temperature and stream-
function fields at a later time (denoted by the cross in figure 10). The simple uni-
cellular flow has been replaced with an irregular convective pattern. We postulate
that this irregular flow pattern is a result of the way in which our lateral symmetry
boundary conditions constrain the system.

6 Conclusion

We have presented the results of a set of numerical experiments on a model of steady
2D unicellular convection in a fluid-saturated porous medium and quantified the heat
transport over a range of Rayleigh numbers and aspect ratios. We observe that over
the decade Ra = 103–104 the maximum value of the Nusselt number occurs in a cell
whose aspect ratio scales as L ∼ Ra−1/2, and not as that of the fastest growing linear
mode, i.e. L ∼ Ra−1/4, which may be postulated from the data presented in Otero
et al. [14]. Furthermore, in this cell the heat transport is described by the scaling
Nu ∼ Ra0.6.

Guided by our numerical results we have formulated an asymptotic reduction for
the structure of the solutions that maximize the Nusselt number. We divide the cell
into three subdomains: a central core region, and at both the top and bottom of the
layer, a momentum boundary layer with a thinner thermal boundary layer within
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it. With this reduction the heat transport is described by the scaling Nu ∼ Ra2/3.
To complete the matched asymptotic analysis outlined here, the solutions in the
boundary layers must be numerically computed and matched between the layers.

Our heat transport results from both the steady state numerical solutions and the
matched asymptotic analysis differ from those given by the DNS of Otero et al. [14]
and the classical scaling of Howard [10]. Graham & Steen [7] show that this scaling
corresponds to the onset of plume formation; until then the appropriate scaling is
Nu ∼ Ra2/3. However, plume formation is a time-dependent process, and therefore
is not realisable in our steady model.

Furthermore, both the DNS and upper bound theory suggest that convection cells
within the thermal boundary layer are required to achieve the Nu ∼ Ra scaling (Chini
et al. [4]). Evidence of this can also be seen when we use our steady solution as the
initial condition in a time-dependent model. In this case, at high Ra, Nu periodically
approaches values reported by Otero et al. [14] and, in fact, appears to achieve the
scaling Nu ∼ Ra0.92. At these times, embryonic rolls in the thermal boundary layer
can be seen. However, the overall behaviour of the temperature and streamfunction
fields in this time-dependent model is highly irregular, possibly as a result of the
imposed lateral symmetry boundary conditions.

It remains to complete the asymptotic analysis, and to repeat the time-dependent
numerical simulations with periodic lateral boundary conditions to see whether Nus-
selt numbers found by Otero et al. [14] are attained more consistently. In addition, it
would be interesting to investigate whether a multicellular asymptotic structure, sup-
porting convection cells within the thermal boundary layer and achieving the maximal
Nu–Ra scaling, can be found.
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