Simple Decay: Radioactive Parent \Rightarrow Stable Daughter

Consider the decay series $\mathrm{N}_{1} \rightarrow \mathrm{~N}_{2} \rightarrow \mathrm{~N}_{\mathbf{3}}$

Remember
$-\mathrm{dN} / \mathrm{dt}=\lambda_{1} \mathrm{~N}$
Now we consider N_{2}, that is produced by decay of N_{1} and itself decays to N_{3} :
2)
$\mathrm{dN}_{2} / \mathrm{dt}=\lambda_{1} \mathrm{~N}_{1}-\lambda_{2} \mathrm{~N}_{2}$
Remember:
3)
4)
$\mathrm{d} \mathrm{N}_{2} / \mathrm{dt}=\lambda_{1} \mathrm{~N}_{1,0} \mathrm{e}^{-\lambda \mathrm{ltt}}-\lambda_{2} \mathrm{~N}_{2}$
Rearrange:
5)
$\mathrm{d} \mathrm{N}_{2} / \mathrm{dt}+\lambda_{2} \mathrm{~N}_{2}-\lambda_{1} \mathrm{~N}_{\mathrm{t}, \mathrm{0}} \mathrm{e}^{-\lambda \mathrm{\lambda tt}}=0$
Solving this first order differential equation for N_{2} yields.
6)

$$
\mathrm{N}_{2}=\lambda_{1} /\left(\lambda_{2}-\lambda_{1}\right) \mathrm{N}_{\mathrm{l}, 0}\left(\mathrm{e}^{-\lambda 1 \mathrm{t}}-\mathrm{e}^{-i 2 t}\right)+\mathrm{N}_{2,0} \mathrm{e}^{-\lambda 2 t}
$$

The solution, as well as equivalent solutions for three nuclides and the general case, are known as Bateman (1910) equations/solutions.

The first term in equation 6) is the number of N_{2} atoms decayed from N_{1} not yet decayed to N_{3}
The second term in equation 6) is number of N_{2} atoms that remain from the initial N_{2}.

Decay Series: Radioactive Parent \Rightarrow Radioactive Daughter

Decay of parent

Ingrowth from parent and decay of daugther

Complications...

a) Constant sedimentation rate
b) Change in sedimentation rate
c) Mixing at the top
d) ${ }^{238} \mathrm{U}$-supported ${ }^{230} \mathrm{Th}$ dominates

Depth in the core

Measurement Uncertainties

All measurements are afflicted with uncertainties. For large number of events, binomial distributions
symptotically approach Gaussian (or normal) distributions. The spread in events (here numerical values of asympotically approates ansian (or nom
isotope ratios, count rates or ion currents) is equal to $v \mathrm{~N}$. According to Gaussian stataistics about $2 / 3$ of the results lie within the range $\mathrm{N} \pm \sqrt{ } \mathrm{N}$ (one standard deviation), about 95% lie within the range $\mathrm{N} \pm 2 \sqrt{ } \mathrm{~N}$ (two standard deviationss), and -99% lie within the range $\mathrm{N} \pm 3 \sqrt{ } \mathrm{~N}$. The fractional uncertainty is thus $\sqrt{ } \mathrm{N} \mathrm{N}$, or 1
$\sqrt{\mathrm{~N}}$. If you measure twice as long ($\mathrm{N}^{\text {t }}$) you get wice as many events
$\mathrm{N}^{*}=2 \mathrm{~N}$
the fractional uncertainty is $\quad \sqrt{ }(2 \mathrm{~N}) / 2 \mathrm{~N}=1 / \sqrt{(2 N)}$
i.e.

$$
=\sqrt{ } 1 / 2 * 1 / \sqrt{N}
$$

reducing the fractional uncertainty only by $\sim 30 \%$. The fractional uncertainty improves only as the square root of time (or ion current, or count rate). If you attempt to improve the uncertainty by a factor of two, you need to measure four times as long, or measure a four-times stronger ion current
In order to evaluate if uncertainties associated with small ion beam intensities measured ratios it is often helpful to assume that all uncertainties are associated with uncertainties in the smallest ion current (least abundant isotope). By assuming an araitrary uncertainty in the measurement of
this ion current you can plot an error trend on plots of isotope ratio versus another isotope ratio (same this ion current you can plot an error trend on plots of isotope ratio versus another isotope ratio (same
isotope in the denominator, i.e. $m_{2}=m_{4}$, if m_{1} and m, are isotopes in the numerator). This trend is ofte distinct from a instrumental fractionation trend and helps to assess what process dominates the uncertainty of your analysis.

The Reporting of Data \& Uncertainties

70

Chaperer 4 introuduction to Statistics and Statistical Mechanics

$$
\begin{aligned}
\text { mean concentration } & =\bar{C}=\sum_{i=1}^{N} \frac{C_{i}}{N} \\
\text { r.m.s. deviation from average } & =\sigma=\left\{\sum_{i=1}^{N} \frac{\left(C_{i}-\bar{C}\right)^{2}}{N}\right\}^{1 / 2}
\end{aligned}
$$

For this particular data set, \bar{C} turns out to be 99.944 mM , but one glance at Fig-
re 4.2 shows that not all of those digits are significant. σ turns out to be 0.66 mM , so e 4.2 shows that not all of those digits are significant. σ turns out to be 0.66 mM , so $=99.944 \pm 1.29 \mathrm{mM}$. In practice, we would not report so many digits: the usual conention is that the last repored
30 uniss. So we would write $99.9 \pm 1.3 \mathrm{mM}$ (the last digitit in the tenth-millimolar po ition, is uncertain by 13 units) in writing confidence limits for the distribution. This mplies that 95% of the time a bottle selected at random would have a concentration etween 98.6 and 101.2 mM
We can also generalize re
 on $1 / \sqrt{N}$. Thisuremensis is the texpected to to be in error by ban amount which is proportional
expected to be $\sqrt{1000}$ timese behind signal tveraging. The average of 1000 trials is xpected to be $\sqrt{1000}$ times more accurat than the result of a single trial. So we would
1 eport $99.974 \pm(1.96 \cdot 0.66) / \sqrt{1000} \mathrm{mM}=99.94 \pm 0.04 \mathrm{~m}(2)$ report $99.974 \pm(1.96 \cdot 0.66) / \sqrt{1000} \mathrm{mM}=99.94 \pm 0.04 \mathrm{mM}$ (again to the correct -

From: Warren S. Warren, 2000, The Physical Basis of Chemistry, $2^{\text {nat }}$ ed, Harcourt Acad. Press

Subject: Re: usual convention
From:

Sorry about the delay in responding- it occurred because I have moved from Princeton, and my books
just got unpacked!. The best source I can give you is the latest (seventh) edition of Garland, Niblec and Shocmaker.
Experiments in Physical Chemistry (McGraw- Hill, New York, 2003). Shoemaker was the lead the carly editions, and this is a standard reference textbook. You will find this convention on page 3 o. in he slighly differerent but equivalent form:
 After your inguiry, I found that most textbooks are much more vague abour assigning specific rules. perhaps because staisisicians do not ine signiticant ance.
one I remembercd when I began experimenal science.
Dear Prof. Warren:

$$
9 / 1 / 20205 \text {, you wrot }
$$

Your splendid book on the physical basis of chemistry contains a satement (page 70 , lines 4.6 below
cquation 4.21) that is very sensible and that I would like to trace to its source. My local expers here at


```
With kind regards and thanks
With kind rega,
```


