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ABSTRACT

The oceanic internal wave spectrum has long been interpreted as being shaped by nonlinear processes. The
empirical Garrett and Munk synthesis of oceanic observations is E (m, v) } Nm22v22 at high wavenumber and
frequency. Results of both approximate analytic and numerical estimates of weak nonlinear interactions under
the resonant interaction approximation have previously been interpreted as implying the dominance of scale-
separated interactions and that the Garrett and Munk spectrum is stationary with respect to the nonlinear inter-
actions. However, dimensional analysis cobbled together with several basic observational constraints requires a
stationary spectrum of E (m, v) } Nm22v23/2 at high vertical wavenumber and frequency. Given this stationary
spectrum, dimensional analysis and extant data are used to infer a flux representation for the spectral transports.
The resulting semiempirical flux laws can be described as a relaxation to the stationary power laws. The stationary
spectrum is consistent with energy sources at low frequencies and dissipation at higher frequencies and vertical
wavenumber. The analysis is then extended to include vertically asymmetric wave fields. Vertical wavenumber
spectra of horizontal velocity that exhibit a difference between rotary (clockwise and counterclockwise phase
rotation of the velocity vector with depth) spectra at large wavelengths tend to be symmetric at smaller scales.
This pattern is hypothesized to be a result of nonlinearity within the wave field. In particular, vertical symmetry
is linked here to the issue of momentum conservation. A backscattering process is invoked to achieve momentum
conservation. This representation of nonlinearity is used in a numerical scheme to assess the spatial evolution
of a bottom-generated wave field. The predicted patterns of relaxation and vertical symmetry are in reasonable
agreement with finescale observations above rough bathymetry in the Brazil Basin.

1. Introduction

The oceanic internal wave literature is a disordered
mélange. Research into the processes responsible for
the observed wave field has numerous facets: generation
by many plausible yet distinct mechanisms, linear prop-
agation at turning points, interactions with geostrophic
currents, nonlinear interactions between internal waves,
reflection from planar sloping boundaries, scattering
from irregular boundaries, and, finally, dissipation by
instability and wave breaking. There are many fine re-
views that create an ordered perspective of these pieces
(e.g., Garrett and Munk 1975, 1979; Thorpe 1975; Munk
1981; Müller et al. 1986; Gregg 1987). In addition, the
series of ’Aha Huliko’a meeting reports is a rich source
of material, distilled and otherwise. But there is an in-
trinsic disorder in that the various elements are usually
not connected to each other in a systematic way. The
most intrinsically difficult piece of a synthetic treatment
is to account for nonlinearity and dissipation in the wave
field. The key to a synthetic treatment is developing a
sufficiently simple understanding of nonlinearity and
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wave breaking such that their effects can be more easily
recognized and appreciated.

The tools for developing a simple understanding of
nonlinearity and wave breaking are limited. Numerical
simulations in the spatial/temporal domains are usually
idealized, computationally intensive, resolve a limited
range of scales, have issues with boundary conditions,
and invoke subgrid-scale closures whose effects may
not be fully appreciated. Alternately, one can consider
solutions to a ‘‘radiation balance equation’’ (e.g., Müller
and Olbers 1975), which describes the wave field in the
spatial/temporal/spectral domains. Closures for the ra-
diation balance equation are expressed in the spectral
domain. The promise of this approach is the possibility
of more easily separating the influences of forcing, prop-
agation, boundary conditions, and nonlinearity. One
drawback is the possible complexity of the closure. A
second drawback is that no extant closure scheme is
formally valid for internal waves having vertical wave-
lengths smaller than about 60 m.

The present work is primarily a tool-building exercise
to construct a relatively simple closure for the internal
wave radiation balance equation. The approach taken
here is heuristic; a set of semiempirical flux laws is
proposed. The intent is to use these flux laws to quantify
patterns within the oceanic internal wave field and it-
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eratively refine our knowledge of internal wave dynam-
ics. The first product of this iterative approach examines
the near-boundary decay of the finescale internal wave
field and models of internal wave generation (Polzin
2004). A second effort (Lvov 2003, manuscript sub-
mitted to Phys. Rev. Lett.) reviews extant datasets and
interprets variability of observed vertical wavenumber–
frequency power laws in terms of a family of stationary
states resulting from nonlinear interactions.

Implicit in this study is the notion that ‘‘far’’ from
forcing regions and boundaries in the spectral/spatial/
temporal domains, the internal wave field manifests the
character of the underlying nonlinearity. In the far field,
the spectrum will relax back to a characteristic shape
that is stationary with respect to the nonlinearity. To be
explicit, a stationary spectrum has the property that var-
iance executes a nondivergent cascade through the spec-
trum. This cascade can be quantified at centimeter scales
by identifying the spectral transport with the rate of
dissipation of turbulent kinetic energy e.

Several nonlinear interaction models exist (Müller et
al. 1986). The first of these is based upon the fact that
energy and momentum can be systematically transferred
between internal wave triads if certain resonance criteria
are met. This approach is generically referred to here
as the resonant interaction approximation (RIA). The
second considers the refraction of internal waves by the
time-varying velocity field of other internal waves using
eikonal (ray tracing) techniques. The results of the mod-
els are in general agreement but differ in details. Dis-
sipation in both models is quadratically dependent upon
spectral level and buoyancy frequency, and the energy
transfers increase with increasing wave frequency. Dif-
ferences include the power laws of the associated sta-
tionary spectra and the sign of the transport in the fre-
quency domain. Neither model is formally valid when
applied to the finescale oceanic internal wave field. Di-
mensional analysis is invoked here and, with the aid of
observational studies, a detailed spectral transport
scheme is developed that is independent of either model.

In section 2a, validation studies of existing wave–
wave interaction models are critically examined. The
intent is twofold: to summarize measurements relating
turbulent dissipation to variability of the internal wave
field and to dispel an apparent myth that resonant in-
teraction schemes tend to overestimate observed trans-
ports. The radiation balance equation of Müller and Ol-
bers (1975) is then modified in section 2b to describe
the temporal evolution of spatially inhomogeneous in-
ternal wave spectra before developing a consistent rep-
resentation of nonlinearity. This representation is based
upon dimensional considerations and assumes that non-
linearity is unrelated to boundaries in the spectral do-
main. Nonlinearity is treated by first defining a station-
ary spectrum (section 2c) and then defining flux rep-
resentations of spectral transports (section 2d). These
flux representations have the character of relaxation
back to the stationary spectrum. Section 3a briefly de-

scribes extant observations that relate to the issue of
momentum conservation. Section 3b discusses the issue
of momentum conservation in the context of a flux trans-
port scheme for vertically asymmetric wave fields. The
resulting momentum closure (section 3c) can be char-
acterized as a backscattering process. This scheme is
then used to briefly assess the spatial evolution of a
bottom-generated wave field (section 4). The general
patterns of spectral relaxation and variable asymmetry
associated with backscattering are in reasonable agree-
ment with finescale observations from the Brazil Basin.
Last, a critical eye is turned to extant theories of non-
linear wave–wave interactions (section 5) with the intent
of comparing those previous numerical and analytic re-
sults with the flux representations derived here.

2. Energy transports in the spectral domain

a. Observational constraints on transport schemes

Like waves on the ocean’s surface, in which white-
capping and dissipation are related to the transport of
energy to smaller scales as the net product of nonlinear
interactions, turbulent dissipation in the stratified ocean
interior can be interpreted as the product of nonlinear
interactions between internal waves. The association is
most tangible as the scale separation between waves and
turbulence is reduced. Several different groups in the
last 10–15 years have reported model validation studies
relating the rate of dissipation of turbulent kinetic en-
ergy, e, measured at centimeter scales, to variability in
the finescale internal wave field over vertical wave-
lengths of tens to hundreds of meters.

The pioneering work of Gregg (1989) produced an
observationally based estimate of turbulent dissipation
(e) associated with the Garrett and Munk spectrum:

2 4N ^S &10210 21e 5 7 3 10 (W kg ), (1)obs 2 4N ^S &o 10GM

with buoyancy frequency N(z), a reference value No of
(3 cph), and 10-m, first-difference shear estimates (S10)
referenced to the GM76 value, S10GM. Note that the Gar-
rett and Munk spectrum refers to a series of empirical
fits to oceanic spectra that attempt to characterize the
background internal wave field. GM76 refers to the Gar-
rett and Munk (1975) model as revised by Cairns and
Williams (1976). M81 refers to the Munk (1981) revi-
sion. Gregg (1989) compared estimates of e obs with two
theoretical estimates of the energy flux through the in-
ternal wave spectrum to dissipation scales that were
based on different representations of wave–wave inter-
actions. The first of these, an approximate representation
of the transport under the resonant interaction approx-
imation (RIA; McComas and Müller 1981b), was re-
ported to be an overestimate:

G89e ù 3.4 3 e .MM obs (2)

The second model, based on eikonal (ray tracing) tech-
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niques (HWF; Henyey et al. 1986), was deemed an un-
derestimate:

G89e ù e /2.HWF obs (3)

Gregg (1989) made three mistakes in extracting results
from McComas and Müller (1981b) and Henyey et al.
(1986). The first two are discussed in Polzin et al.
(1995): (i) Henyey et al. (1986) used the M81 version
of the GM spectrum, and so, noting that ^ & 54S10M81

^ &/2, Gregg’s data actually support4S10GM76

e ù e ,obs HWF (4)

and (ii) Gregg (1989), when estimating as the sumG89eMM

of the fluxes associated with the parametric subharmonic
instability (psi) and induced diffusion (id) mechanisms,
incorrectly quoted the id transport as the quotient of the
internal wave energy density and a time scale. The id
transport is actually set by the psi transport and is about
40% of the total (Müller et al. 1986). (iii) The third error
is that McComas and Müller (1981b) used a modified
version of the GM spectrum, one without an inertial
peak having a vertical wavenumber energy density 2/p
times as small as the GM76 spectrum. Accounting for
both errors in interpreting McComas and Müller
(1981b), one obtains

e ù e .obs MM (5)

Thus, one cannot distinguish e obs from either eMM or
eHWF: Both theoretical predictions agree with the data
to within 20%. Note further that the two theoretical
models share a functional similarity in the dependence
of e upon N and spectral level, as in (1).

Gargett (1990) further criticized Gregg (1989) for the
following: (i) insufficient N variability within the ob-
servations to distinguish a scaling of N 2 from N 3/2 and
(ii) S10 can be a biased estimate of the shear spectral
level.

Wijesekera et al. (1993) tested modified versions of
the above predictions for e with data obtained from a
wave field that contained significant high vertical wave-
number, high-frequency energy. The parameterizations
used by Wijesekera et al. (1993) did not account for
variations in the frequency content of the wave field and
thus did not do a good job predicting the observed dis-
sipation.

Polzin et al. (1995) tested data with sufficient range
in N to address the issue of buoyancy scaling, appro-
priately analyzed the data in the spectral domain, and
attempted to account for variability in e associated with
variability in the frequency content of the internal wave
field. In particular, they tested a slight revision (Henyey
1991) of the Henyey et al. (1986) parameterization,

mc

21 2e 5 0.1m N m E (m) dmHWF c E k

0

1/2N 2 2v 2 f
3 E(m , v) dv, (6)E c2 21 2N 2 vf

in which E(m, v) is the vertical wavenumber–frequency
(m 2 v) energy density and integration over the fre-
quency domain in (6) defines an energy-density-weight-
ed aspect ratio, kh/m 5 [(v2 2 f 2)/(N 2 2 v2)]1/2 with
Coriolis frequency f and wave vector k 5 (k, l, m)
having horizontal magnitude kh 5 (k2 1 l2)1/2. The ver-
tical wavenumber spectrum Ek(m) represents kinetic en-
ergy density; Ep(m) represents potential energy. Inte-
gration of E(m, v) over frequency is indicated by the
presence of a single variable in the argument of E: E(m)
5 E(m, v) dv. A spectral cutoff at mc is defined byN# f

mc

2 22 m9 E (m9) dm9 5 0.7N . (7)E k

0

With aspect ratios estimated from shear [m2Ek(m)] and
strain [m2Ep(m)] spectra, (6) predicts the observed e to
within a factor of 62, the approximate statistical un-
certainty of the measurements presented in Polzin et al.
(1995) (Fig. 1). Aside from differences associated with
the spectrum utilized by McComas and Müller (1981b),
Polzin et al. (1995) report that variability in their data
is insufficient to distinguish between the two model pre-
dictions.

Polzin et al.’s (1995) study encompassed observations
that deviated from the GM spectral model [spectral am-
plitude, spectral shape in both the vertical wavenumber
and frequency domain, asymmetry/anisotropy (non-
equal distribution of spatial energy flux with respect to
direction), and inhomogeneity (spatial gradients in N-
scaled spectral amplitude)]. In order of decreasing im-
portance, the dissipation rate was determined to depend
upon N 2, the spectral amplitude, and the average fre-
quency content of the internal wave field. Notably, the
dissipation rate appeared to be insensitive to variations
in the shape of the finescale vertical wavenumber spec-
trum, asymmetry, and inhomogeneity.

Carter and Gregg (2002) infer very poor agreement
between these model predictions and observations from
Monterey Canyon. Implicit in the comparison of e with
the model predictions is an assumption that energy cas-
cades through the wavenumber domain. In Monterey
Canyon, there is a spatial convergence of energy as-
sociated with the onshore propagation of nearly critical
internal waves. These waves will undergo a transfor-
mation of spatial scales under reflection, and this trans-
formation may well short circuit the normal cascade
process. Indeed, since Kunze et al. (2002) find that 2p/
mc is larger than the total water column depth for their
more energetic profiles, the data may not be sufficiently
far from forcing and boundaries to invoke a cascade
representation.

Implicit in (6) (and in the RIA) is an f scaling, that
is, e } | f | , where f is the Coriolis parameter, for the
background internal wave field. Data discussed by
Gregg et al. (2003) document general agreement be-
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FIG. 1. Results of a model validation study from Polzin et al. (1995). The vertical axis represents
observed centimeter-scale shear variance represented as diapycnal diffusivity (Kr } e/N 2); the
horizontal axis represents (6) similarly presented as Kr. (a) A comparison between data and model
without accounting for the frequency-dependent terms; (b) such terms are included. The thick
diagonal line denotes agreement with (6). The various symbols represent different datasets. See
Polzin et al. (1995) for further details.

tween (6) and observations obtained from mid- and low
latitudes: e decreases as | f | decreases.

Given the functional similarity of the two dissipation
predictions, and with e obs ù eMM ù eHWF, there is no
observational support for one dynamical model over the
other. What can be concluded, however, is that observed
dissipation rates associated with wave–wave interac-
tions depend quadratically upon N and energy density,
and transports increase with increasing wave frequency.
These observational constraints will be used to help
construct flux representations in section 2c.

b. The radiation balance equation

In a wave packet derivation, for example, Phillips
(1977), the evolution of a wave packet’s amplitude is
governed by a wave action conservation statement,
which has an equivalent spectral representation as the
radiation balance equation (cf. Müller and Olbers
1975):

] A(k) 1 = · C A(k) 1 = · F(k) 5 S (k) 2 S (k). (8)t g k o i

Here A(k) is the action spectrum; k is a 3D wave vector;
transports of A(k) through the spectral domain are rep-
resented as F(k), sources by So(k), and sinks as Si(k).
There are several immediate problems associated with
using (8) as the basis for a descriptive tool. The most
daunting is that action is neither directly observed nor
intrinsically conserved by internal wave–wave inter-
actions. Internal wave interactions conserve energy and
momentum, not action (Müller et al. 1986). See section
5 for further discussion.

The first step in the tool-building exercise is to con-
struct a transport scheme that directly addresses the in-
formation content of the observations. This focus dic-

tates the following: 1) Observations typically do not
permit characterization of the field in terms of discrete
wave packets, so a spectral representation is pursued.
Conservation statements are constructed here using a
simple kinematic box in the spatial/temporal/spectral
domain. 2) Observations are generally obtained in the
temporal and/or vertical spatial domain, rather than the
horizontal, so that a description in terms of the vertical
wavenumber and frequency domain is pursued rather
than a 3D wave vector space. 3) Energy and momentum
conservation are pursued here because wave energy and
e are the observed variables.

Consider a point (m2, v2, z2) in vertical wavenumber
(m), frequency (v), and vertical coordinate (z) space
(Fig. 2). The energy density in the volume defined by
the line segments Dm 5 m3 2 m1, Dv 5 v3 2 v1, Dz
5 z3 2 z1 is DmDvDz E6(m2, v2, z2, t), where E6(m,
v, z, t) is the vertical wavenumber–frequency energy
density of either the upward (1) or downward (2) prop-
agating wave field, and Dm, Dv, and Dz are assumed
to be small. The time rate of change of energy density
in the volume,

6DmDvDz][E (m , v , z , t)]/]t,2 2 2

is balanced by the difference of energy fluxes through
the surfaces defined by z 5 z1 and z 5 z3,

6[C (m, v)E (m, v, z, t)]DmDv,gz

where | Cgz | 5 (v2 2 f 2)(N 2 2 v2)/vm(N 2 2 f 2) is
the vertical group velocity; the difference of downscale
spectral transports of energy F6(m, v, z, t)DzDv
through the surfaces at m 5 m1 and m 5 m3; the dif-
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ference of spectral transports in the frequency domain
across v 5 v1 and v 5 v3, G6(m, v, z, t)DmDz; and

local energy sources (So) or sinks (Si) within the volume,
DmDzDv( 2 ):6 6S So i

6]E (m , v , z , t)2 2 2 6 6DmDvDz 6 DmDvC (m , v , z )E (m , v , z , t) 7 DmDvC (m , v , z )E (m , v , z , t)gz 2 2 1 2 2 1 gz 2 2 3 2 2 3]t
6 6 6 61 DvDzF (m , v , z , t) 2 DvDzF (m , v , z , t) 1 DmDzG (m , v , z , t) 2 DmDzG (m , v , z , t)1 2 2 3 2 2 2 1 2 2 3 2

6 65 DmDzDv(S 2 S ). (9)o i

Dividing by DmDvDz and taking the limit as Dm, Dv, and Dz approach zero results in:
6 6 6 6]E (m, v) ][C (m, v)E (m, v)] ]F (m, v) ]G (m, v)gz 6 66 1 1 5 [S (m, v) 2 S (m, v)], (10)o i]t ]z ]m ]v

where Cgz has been assumed to be positive definite. The
convention here is that both wavenumber and frequency
are positive. The direction of propagation or sign of a
spatial flux is given explicitly. The group velocity be-
longs inside the spatial divergence operator in this rep-
resentation. There is no intrinsic limitation to the num-
ber of spatial dimensions referenced by the kinematic
argument resulting in (10). In general, one can infer
conservation statements of the form

] E(k) 1 = · [C E(k)] 1 = · F(k)t g k

5 S (k) 2 S (k). (11)o i

Equation (10) describes the evolution of the vertical
wavenumber–frequency energy density as a function of
depth and time. The fluxes F6(m, v) and G6(m, v)
represent transfers of wave energy in vertical wavenum-
ber–frequency space resulting from a variety of physical
mechanisms, including wave–wave interactions, buoy-
ancy scaling, and wave–mean flow interactions. Of ex-
clusive interest here are wave–wave interactions. The
source–sink terms on the right-hand side of (10) can
represent either the production and dissipation of energy
or the transfer of energy between waves having different
wavenumber and frequency. In the oceanic context,
wave generation typically occurs at the boundaries. In
such cases the energy sources enter through boundary
conditions rather than having an (m, v) representa-6S o

tion.
Dissipation is viewed here as being implicitly rep-

resented in (10) through high-wavenumber transports
F6(m, v) rather than having an explicit (m, v) rep-6S i

resentation. Integrating over the vertical wavenumber
and frequency domains ( dv dm) and then summing` N# #0 f

the up–down spectra (E [ E1 1 E 2) returns
` N]E ]Etotal flux1 5 S (m, v) dv dmE E o]t ]z 0 f

N

2 F(m 5 `, v) dv, (12)E
f

in which no-flux boundary conditions [F(m 5 0, v) 5
0, G(m, v 5 f ) 5 0 and G(m, v 5 N) 5 0] have been
invoked. Here Etotal represents the total energy and Eflux

the total vertical energy flux. It has been assumed that
nonlinear interactions can be written as transports F(m,
v) and G(m, v). The energy transport at high wave-
number is interpreted as representing the rate of dissi-
pation of internal wave energy:

N

(1 2 R ) F(m 5 `, v) dv 5 e, (13)f E
f

in which the flux Richardson number (R f , R f ù 0.2)
expresses the partitioning of turbulent production into
potential energy fluxes and dissipation; see, for example,
Gregg (1987).

Transfers associated with resonant interactions have
an explicit ( 2 ) representation. Closures can be6 6S So i

developed that lead to expressions for the energy ex-
change among three waves of the form

]
SA(k ) 5 dk dk T d(k 2 k 2 k )3 EE 1 2 3 1 2]t

3 d(v 2 v 2 v )3 1 2

3 [A(k )A(k ) 2 A(k )A(k ) 2 A(k )A(k )]1 2 3 1 3 2

D1 2T d(k 2 k 1 k )d(v 2 v 1 v )3 1 2 3 1 2

3 [A(k )A(k ) 1 A(k )A(k )1 2 3 1

2 A(k )A(k )], (14)3 2

in which TS and TD are interaction matrices, ki is a 3D
wave vector, subscripts are used to distinguish the three
waves, and the d functions represent the resonance con-
ditions (Müller et al. 1986). Aside from concerns about
the formal validity of the assumptions required to pro-
duce (14), one can build little intuition from numerical
evaluation of (14). Any synthetic treatment that seeks
to understand how generation, propagation, nonlinear-
ity, wave breaking, and boundary conditions conspire
to shape the observed wave field pragmatically requires
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FIG. 2. A schematic of the energy balance for the vertical wave-
number energy spectrum, E, at vertical wavenumber m2 and vertical
coordinate z2. The vertical flux of energy density is CgzE, and transfers
of energy to smaller scales are represented by F. Transports of energy
in the frequency domain, G, are normal to the forward face but are
not depicted.

an approximate treatment of (14). An obvious course of
action is to represent (14) in terms of fluxes F and G
(10).

In the next section, flux representations for wave–
wave interaction transports are developed in the context
of a spatially homogeneous wave field:

]E(m, v) ]F(m, v) ]G(m, v)
1 1 5 S (m, v), (15)o]t ]m ]v

in which transfers of energy between waves are assumed
to be represented in terms of F(m, v) and G(m, v).
Thus, the right-hand side of (15) represents only wave
generation processes.

c. A heuristic assessment

In what follows, input of energy into the internal wave
field is assumed to occur at vertical scales of 100s to
1000s of meters by unspecified processes (e.g., by the
wind or tides). The removal of energy by wave breaking
is assumed to occur at small scales (smaller than 1 m).
Thus, there is an intermediate range of scales well re-
moved from dissipation and forcing where energy is
assumed to be transferred between scales via the agency
of nonlinear interactions between internal waves.

The perspective here is that the oceanic internal wave
field in this intermediate range reflects the character of
the nonlinear interactions. In the context of (15), this
implies

O[] E(m, v), S (m, v)] # O[] F(m, v), ] G(m, v)]t o m v

K O[F(m, v)/m, G(m, v)/v],

in which O denotes the order of magnitude. In the fol-
lowing, a stationary spectrum is sought for which
]mF(m, v) 5 ]vG(m, v) 5 0 (energy density executes
a nondivergent cascade). Dimensional analysis and the
identification of F(m, v) dv with e within the cascadeN# f

regime will be used.

1) THE STATIONARY SPECTRUM

The process of identifying the stationary spectrum
using dimensional analysis is straightforward if there
are single time and length scales. For instance, in the
inertial subrange of 3D turbulence, the one-dimensional
energy spectrum E(k) depends only on the total wave-
number k 5 | k | [the wave vector is k 5 (k, l, m), with
m being vertical wavenumber] and the transport of en-
ergy to smaller scales (assumed to be nondivergent and
hence given by the rate of dissipation of turbulent ki-
netic energy e) so that

1/q 2pE(k) } ae k , (16)

where the exponent p is the stationary power law, q is
an exponent relating the spectral density to the transport,
and a is an O(1) constant. Since E(k) has the dimensions
of length3/time2 and e has dimensions of length2/time3,
p 5 5/3 and 1/q 5 2/3 out of dimensional necessity.

Unlike the Kolmogorov cascade in which the time
scale is given by the transport e and the length scale
k21, there are several time scales to consider in the
internal wave problem. Wave frequency is likely to be
most important, but other parameters (such as f and N)
and nondimensional combinations could enter. Because
of this multiplicity, there are a number of points of
ambiguity.

These ambiguities are resolved through a heuristic
approach. In a heuristic study, one proceeds along em-
pirical lines using rules of thumb. The rules of thumb
followed here are (i) consistency with extant observa-
tions and (ii) an assumption that the character of the
nonlinearity is not intrinsically related to boundaries in
the spectral domain (v 5 f, v 5 N and m 5 0). This
assumption is similar to a scale-invariant analysis of
(14) in Lvov and Tabak (2001). Here, the assumption
that spectral boundaries are not intrinsically related to
the cascade dictates that nondimensional ratios of v/N
be interpreted as an aspect ratio,

2 2 1/2v/N ù (v 2 f ) /N 5 k /m.h

The buoyancy frequency enters through the basic ki-
nematic scaling for internal waves in variable stratifi-
cation; E(m, v) } N under the WKB approximation.
With this requirement, an assumption that the stationary
spectrum depends upon the (nondivergent) transport

F(m, v) dv and the postulate that the only importantN# f

length and time scales determining the energy density
at a vertical wavenumber m and frequency v are 1/m
and 1/v, dimensional arguments are used to evaluate
the grouping:
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1/q 2p 2rE(m, v) } Ne m v . (17)

Here E(m, v) has the dimensions of length3/time, e has
dimensions of length2/time3, m21 has the dimension of
length, and N 21 and v21 have the dimension of time.
The exponents p and r are the stationary power laws
and q is an exponent relating the spectral density to the
transport. Solving (17) for the spatial and temporal di-
mensions returns two relations between three parame-
ters, 3 5 2/q 1 p and 21 5 21 2 3/q 1 r.

Nondimensional groupings involving e, m2, and
time23 in which N, v, and/or f could represent time21

have also been neglected. By construction, such non-
dimensional groups would have to occur as the argument
of a function, such as log(N 3/em2), rather than as a
power law. The observational database (e.g., Fig. 1)
suggests that this nondimensional grouping is of little
consequence. But this prejudice may simply be arrived
at through ignorance.

Section 2a summarized observational constraints for the
relation between e and finestructure parameters. The ob-
servations provide solid evidence for a quadratic relation-
ship among e, m2E(m), and N. The observations are con-
sistent with q 5 2 and p 5 2. As 3 5 2/q 1 p, the
observations are dimensionally consistent with (17). Fi-
nally, solving 21 5 21 2 3/q 1 r for r with q 5 2
returns r 5 3/2: E(m, v) } Nv23/2. Since I assume the
character of the nonlinearity is not related to boundaries
in the spectral domain, the factor N/v is interpreted as N/
(v2 2 f 2)1/2 and the stationary spectrum is given by

1/2 22 21/2 2 2 21/2E(m, v) } Ne m v (v 2 f ) . (18)

This differs from the empirical GM spectrum: EGM(m,
v) } Nm22v21(v2 2 f 2)21/2.

2) VERTICAL WAVENUMBER TRANSPORT F(m, v)

In this effort to define the energy transport through
the vertical wavenumber domain, F(m, v), dimensional
analysis and the observed relation between e and E(m)
provide the guidance that

N

4 2F(m, v) dv } t( f, N )m E(m) , (19)E
f

where t is an undefined function of f and N having
dimensions of time. A point of ambiguity is how to
represent F(m, v) in terms of E(m) and/or E(m, v) given
the integral relation in (19). Since (6) demonstrates a
remarkable ability to summarize the observations, the
heuristic approach undertaken here suggests

4F(m, v) 5 AH( f, v, N )m E(m, v)E(m), (20)

in which A is a nondimensional constant and H( f, v,
N) is a factorization of the scaling associated with the
temporal dimension. The specific representation of F(m,
v) in terms of the energy spectrum is local in the vertical
wavenumber domain and nonlocal in the frequency do-
main. It states that the transport at (m, v) is proportional

to the product of the energy density E(m, v) and the
energy at m integrated over all frequencies. The semi-
empirical transport (20) differs from (6) in the vertical
wavenumber domain through the approximation m#0

m92Ek(m9) dm9 ù m3Ek(m). This expression is exact for
a white shear spectrum. Based upon results for nonwhite
shear spectra presented in Polzin et al. (1995), one can
infer little difference in the predictive capability of (20)
and (6).

In order to specify H( f, v, N), the heuristic approach
again motivates an appeal to the observations, which
dictate a quadratic dependence of F(m) upon buoyancy
frequency and linear dependence upon Coriolis fre-
quency for the GM wave field. That is,

N

4 2Am E (m) H( f, v, N )V (v) dvGM E GM

f

2[ e } fN , (21)GM

with EGM(m, v) 5 EGM(m)VGM(v). Given m2EGM(m) 5
0.075N 2 (m s22) at high m and

2 f 1
V (v) 5 ,GM 2 2 1/2p v(v 2 f )

it is straightforward to infer that the observed f depen-
dence requires eliminating the inertial cusp in the in-
tegrand of (21):

2 2 1/2 2H( f, v, N) 5 (v 2 f ) /N (22)

is consistent with e } fN 2 to within a logarithmic cor-
rection. The factor (v2 2 f 2)1/2/N represents an aspect
ratio [(v2 2 f 2)1/2/(N 2 2 v2)1/2 including nonhydro-
static effects], which cannot be inferred from dimen-
sional arguments alone. The transport is therefore pre-
scribed as

4 21F(m, v) 5 Am N f(v)E(m, v)E(m), (23)

with A 5 0.10 and
2 2 2 2 1/2f(v) 5 [(v 2 f )/(N 2 v )] .

The functional representation denoted by f implies in-
creasing transport with increasing wave frequency, as
suggested by the observations. The transport magnitude
set by the nondimensional constant A is taken from the
validation studies of Polzin et al. (1995) and Gregg
(1989), who tested similar expressions [section 2a and,
in particular, (6)]. Equation (6) is equivalent to the pa-
rameterization published in Henyey et al. (1986), and
(6) can be obtained from that work by simply assuming
energy transports F(m) are nondivergent for the GM
vertical wavenumber spectrum. This formulation of
Henyey et al. (1986) is written here in such a manner
as to facilitate interpretation of past observational stud-
ies relative to (19).

3) FREQUENCY DOMAIN TRANSPORT G(m, v)

Unlike the transport in the vertical wavenumber do-
main, F(m), there are no direct observations to quan-
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titatively constrain the transport in the frequency do-
main, G(m, v). One can, however, infer that, to the
degree variations in oceanic spectra can be explained
by a simple buoyancy scaling and can reasonably be
described as separable, there is likely a basic similarity
in the following:

• the functional representation of the quadratic nonlin-
earity,

• a relaxation to the stationary power law for v k f,
E(m, v) } v23/2.

Thus I assume the representation

3G(m, v) 5 Bm q(v)E(m, v)E(m). (24)

The factor q is nondimensional and requires an v3/2

dependence at high wavenumber. Consistent with the
principle that the cascade not be intrinsically linked to
boundaries in the spectral domain, a nondimensional
expression is accomplished through the argument v/N
and this argument is interpreted as an aspect ratio:

3/42 2v 2 f
q(v) 5 . (25)

21 2N

As written, G(m, v) represents a relaxation to a spec-
trum with slightly increased inertial peak relative to
(18). Ratios of kinetic to potential energy are about 2
for the stationary spectrum, 3 for the GM spectrum, and
4 for a frequency spectrum having the inverse functional
dependence as G(m, v), (v2 2 f 2)23/4. Away from to-
pography, observed ratios are typically 5–10 at m 5
0.01 cpm and 3 at 0.1 cpm, and tend to values of 1–2
at smaller vertical wavelengths (Polzin et al. 2003). Pol-
zin et al. (2003) interpret this decrease as being asso-
ciated with increasing levels of quasi-permanent density
finestructure rather than a relative increase of high-fre-
quency waves. While the difference between the fre-
quency dependence of the stationary spectrum (18) and
the flux law G(m, v) is unsettling, G(m, v) is not ob-
viously inconsistent with finescale observations. Re-
gardless, the transport G(m, v) is nonzero for f , v
, N. Preliminary analysis of extant data suggests the
nondimensional constant B is positive and smaller than
A. Energy transport is to higher frequency, which is
consistent with low-frequency sources. In contrast, en-
ergy transports are to lower frequency in the dynamical
balance of McComas and Müller (1981b). I anticipate
future studies will suggest improvements for G(m, v).

4) BOUNDARY CONDITIONS ON THE TRANSPORT

SCHEME

Unlike the cascade in the vertical wavenumber do-
main, in which the transport F(m 5 0, v) 5 0 simply
because there is no internal wave energy at m 5 0 and
the transport F(m 5 `, v) is accommodated by a non-
specified energy sink, freely propagating waves are not
allowed outside of the frequencies of f and N: the cas-

cade in the frequency domain is thus inhibited by the
boundaries at v 5 f and v 5 N. With the stipulated
q(v) (25), G(m, f ) 5 0. The remaining issue is how
to prescribe the transports such that G(m, N) 5 0. This
is accomplished here by invoking the hydrostatic ap-
proximation in (24) but not in (23). Thus vertical wave-
number domain transports become much more efficient
than frequency domain transports as v approaches N
and the combination of (23) with (24) assures that E(m,
N) 5 0. While producing a physically reasonable result
at v 5 N, the dispersion relation used here assumes a
constant N profile. Turning point dynamics might ob-
viate such arguments. Again, future studies will suggest
improvements.

5) SUMMARY

Dimensional analysis was used to specify functional
forms for the spectral transports through the vertical
wavenumber and frequency domains. The transports
were written such that they yield nondivergent fluxes
for power laws of m22 and v23/2. As written, the flux
laws produce energy transports to higher wavenumber
and frequency. The transports are quadratically depen-
dent upon spectral level and buoyancy frequency for the
background (GM) internal wave field. Transports in both
vertical wavenumber and frequency domains increase
with increasing frequency.

3. Momentum conservation

a. Vertical symmetry of finescale spectra

The shear (likewise velocity) spectrum can be de-
composed into components that quantify the clockwise
(cw) and counterclockwise (ccw) phase rotation of the
shear vector with depth (Leaman and Sanford 1975).
For a single wave, this rotary decomposition depends
upon the wave and Coriolis frequency as

2cw (v 1 f )
5 , (26)

2ccw (v 2 f )

with an excess (deficit) of ccw phase rotation denoting
an excess (deficit) of upward-propagating energy in the
Northern Hemisphere. The opposite applies to the
Southern Hemisphere. Interestingly, most, if not all,
spectra that exhibit a difference between rotary com-
ponents at large wavelengths are symmetric at smaller
scales (Fig. 3). Here the transition between large and
small appears to coincide with the vertical wavenumber
cutoff mc (7). At scales smaller than 1/mc the shear
spectra roll off, tending toward an m21 dependence
(Gargett et al. 1981). This roll off is interpreted as being
in response to strong nonlinearity not captured by the
closure scheme under consideration.

The data in Fig. 3 are taken from midlatitude regions
in the western North Atlantic: one from Mid-Ocean Dy-
namics Experiment (MODE; Leaman and Sanford
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FIG. 3. Rotary spectra from the western North Atlantic. (top left) Kinetic energy spectra from
MODE [redrawn from Leaman and Sanford (1975)]; (top right) shear spectra from FASINEX
(redrawn from Weller et al. 1991) corresponding to seasonal thermocline, 188 water, and the main
thermocline (from top to bottom) are offset by one decade. The dashed lines represent the GM76
spectrum. Data from the upper panels have been buoyancy scaled via WKB stretching to a
reference of No 5 3 cph. (bottom) Shear spectra from a Gulf Stream warm core ring (Kunze et
al. 1995); the clockwise (cw) spectra tend to lie above the counterclockwise (ccw) in all cases.
While difference between the two is apparent at large scales, that difference diminishes with
increasing vertical wavenumber.

1975), a second from the Frontal Air–Sea Interaction
Experiment (FASINEX; Weller et al. 1991), and a third
from a warm core ring of the Gulf Stream (Kunze et
al. 1995). Wave–wave interactions may not be the sole
agent that can produce a symmetric spectrum. Wave–
mean flow interactions are obviously significant for the
warm ring data, but the possible role of wave–mean
flow interactions in producing a symmetric pattern is

not obvious. The MODE data could possibly be ex-
plained as the sum of a symmetric background and
downward-propagating, near-inertial, internal waves be-
ing transported to larger vertical scales by buoyancy
scaling with an N(z) profile that decreases with depth.
Such an explanation does not suffice for the FASINEX
results as those data are averaged in depth bins coin-
ciding with structure in the N(z) profile. Data from the
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FIG. 4. A schematic depicting the direction of the vertical energy
flux (CgzE ) and horizontal momentum (P) in the (x, z) plane. The (1,
3) and (2, 4) quadrants are coupled through the flux representation
of nonlinear transports (33)–(34). The (1, 3) [and (2, 4)] quadrants
have oppositely signed wave vectors.

relative N 2 minimum associated with 188 water exhibit
a symmetric spectrum at high wavenumber. The sym-
metric pattern could represent a transition to higher in-
ternal wave frequency with higher vertical wavenumber.
However, (26) is not a particularly sensitive function of
frequency. Analysis of similar vertical profile data from
the eastern North Atlantic thermocline (Polzin et al.
2003) suggests that the internal wave field retains its
near-inertial character for m . mc, consistent with other
finescale observations (Kunze et al. 1990; Anderson
1992). The hypothesis is forwarded that vertical sym-
metry is linked to momentum conservation issues.

b. Integral constraints

Implicit in this work is the assumption that energy
transports are local in the vertical wavenumber domain.
Any internally consistent approach requires energy and
momentum conservation to be conserved locally. Non-
local closures in the resonant interaction approximation
are, however, certainly possible. See, for example, the
induced diffusion approximation described in McComas
and Bretherton (1977).

The issue of momentum conservation arises for spa-
tially inhomogeneous wave fields. One could, in gen-
eral, consider the evolution of a three-dimensional en-
ergy spectrum E(m, v, u) in vertical wavenumber (m),
frequency (v), and horizontal azimuth (u) in 3D space
and time. A simple result can be obtained by considering
the vertically asymmetric case for a single horizontal
azimuth. To be definite, the azimuth coincides with the
eastward coordinate. The evolution of the energy spec-
trum E(m, v) is defined by

6 6 6 6]E (m, v) ][C E (m, v)] ]F (m, v) ]G (m, v)gz e e6 1 1
]t ]z ]m ]v

6 65 [S (m, v) 2 S (m, v)] , (27)o i e

where Cgz has been assumed to be positive definite. The
convention has been taken that both wavenumber and
frequency are positive. The direction of vertical prop-
agation is indicated with the superscript notation, and
the sign of a spatial flux is given explicitly. Subscripts
of e are used to distinguish energy fluxes from mo-
mentum fluxes below. A similar conservation statement
can be had for wave momentum P 5 kE/v; that is,

66 66 66]P (m, v) ][C P (m, v)] ]F (m, v)gz p
6 6 6 6

]t ]z ]m
66]G (m, v)p

66 666 5 [S (m, v) 2 S (m, v)] , (28)o i p]v

in which (m, v) and (m, v) are flux represen-66 66F Gp p

tations for the spectral transport of momentum and k 5
(k, l, m) is the wave vector. Note the introduction of an
additional 6 denoting the sign of the horizontal wave-
number and, hence, sign of the horizontal momentum.
The internal wave frequency determines the angle of
propagation with respect to the vertical. In any vertical
plane there are four physically distinct waves for each
vertical wavenumber and frequency.

Rather general integral constraints can be derived from
(27) and (28). In the manipulations below, note that (27)
and (28) represent spectral balances, not wavepacket bal-
ances. Thus m and v are independent of z, permitting
the interchange of orders of integration and application
of simple rules for the inclusion of independent variables
within partial differentiation operations.

Consider trying to obtain the momentum balance (28)
from the energy equation (27) for an upward- and east-
ward-propagating (11) spectrum. Multiplication of
(27) by k/v 5 b(v)m with b 5 [(v2 2 f 2)/v2(N 2 2
v2)]1/2 returns

11 11 11]P (m, v) ][C P (m, v)] ][bF (m, v)]gz e1 1 m
]t ]z ]m

11][mG (m, v)]e1 b 5 0. (29)
]v

Integration of (29) returns
N11 11]P ]Ptotal flux 111 5 2 F (m 5 `, v) dvE p]t ]z f

` N

111 b(v)F (m, v) dm dvE E e

0 f

` N ]b(v)
111 mG (m, v) dm dv,E E e ]v0 f

(30)

where is the total momentum and is the total11 11P Ptotal flux
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vertical flux of horizontal momentum of the upward,
eastward wave field. In comparison, integration of the
momentum equation [(28) with no (m, v) 2 (m,66 66S So i

v) term] returns

N11 11]P ]Ptotal flux 111 5 2 F (m 5 `, v) dv. (31)E p]t ]z f

Clearly, either the identification of (m, v) as11F p

mb(v) (m, v) and (m, v) as mb(v) (m, v)11 11 11F G Ge p e

are wrong, or a flux representation as in (27) does not
conserve momentum.

c. A closure scheme

It is possible to construct a ( 2 )e representation6 6S So i

that serves to conserve momentum while still conserv-
ing energy. The trick is facilitated by realizing that,
while energy is positive-definite, momentum is a signed
quantity. The conservation of momentum can be guar-
anteed by backscattering wave energy into an oppositely
signed wave vector at a rate in proportion to the spectral
transports so that no net energy is generated or dissi-
pated. The best demonstration is by example. Consider
the energy and momentum balances for waves in each
of four quadrants (Fig. 4):

66 66 66 66]E (m, v) ][C E (m, v)] ]F (m, v) ]G (m, v)gz e e 66 666 1 1 5 [S (m, v) 2 S (m, v)] ,o i e]t ]z ]m ]v

66 66 66 66]P (m, v) ][C P (m, v)] ]F (m, v) ]G (m, v)gz p p
6 6 6 6 6 5 0. (32)

]t ]z ]m ]v

The convention that the momenta P66(m, v) are posi-
tive-definite has been adopted, and the sign of the mo-
mentum is given explicitly. If the source–sink terms for
the energy balances are judiciously chosen, one can con-

serve both the energy and the momentum of this coupled
system. A judicious choice is to add zero. For example,
if the first and third quadrants are coupled as

22 111 1 [G (m, v) 2 G (m, v)] ]be e11 11 22 11[S (m, v) 2 S (m, v)] 5 [F (m, v) 2 F (m, v)] 1 and (33)o i e e e2m 2 b ]v

11 221 1 [G (m, v) 2 G (m, v)] ]be e22 22 11 22[S (m, v) 2 S (m, v)] 5 [F (m, v) 2 F (m, v)] 1 , (34)o i e e e2m 2 b ]v

then total energy has been conserved:
11 22 11 22 11 22][E (m, v) 1 E (m, v)] ]{C [E (m, v) 2 E (m, v)]} ][F (m, v) 1 F (m, v)]gz e e1 1

]t ]z ]m
11 22][G (m, v) 1 G (m, v)]e e1 5 0. (35)

]v

The momentum balance of the coupled system [mb times the upward, eastward (11) energy balance and 2mb
times the downward, westward (22) energy balance] is simply

11 22 11 22 11 22][P (m, v) 2 P (m, v)] ]{C [P (m, v) 1 P (m, v)]} ]{mb(v)[F (m, v) 2 F (m, v)]}gz e e1 1
]t ]z ]m

11 22]{mb(v)[G (m, v) 2 G (m, v)]}e e1 5 0. (36)
]v

The second and fourth quadrants can be coupled to pro-
duce a similar result.

The coupling proposed here can be interpreted as a
backscattering process. Backscattering in the resonant
interaction approximation (a.k.a. elastic scattering) is

the transfer of energy between upward- and downward-
propagating waves having similar horizontal wavenum-
ber and vertical wavenumber of opposite sign but sim-
ilar magnitude (e.g., quadrants 1 and 4 in Fig. 4). It is
a process that tends to equalize the vertical fluxes of
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energy and horizontal momentum of the two waves. The
total horizontal momentum of the two waves is con-
served.

Backscattering in this present flux representation is
the transfer of energy between two waves of similar but
oppositely signed wave vectors. The rate of this transfer
is set by the transport of energy to smaller scales, which
on its own tends to increase momentum. Backscattering
in the flux representation cancels this tendency and acts
to equalize the horizontal momentum and vertical flux
of energy of the two waves.

Backscattering in this flux representation and in the
RIA are distinct. In particular, horizontal momentum in
the flux representation cannot be conserved by exchang-
ing quadrant 4 for quadrant 3 in Fig. 4. Exchanging
quadrant 2 for quadrant 3 can conserve horizontal (but
not vertical) momentum. Coupling quadrants 1 and 2
would not result in the transfer of energy between up-
ward- and downward-propagating waves and is incon-
sistent with the apparent symmetry of the finescale wave
field discussed in section 5. The coupling of quadrants
1 and 3 is consistent with the issue of diagonal domi-
nance discussed in Carnevale and Fredricksen (1983),
who found that coupling between quadrants 1 and 2 is
the mechanism that supports a vertical mass flux, that
is, wave breaking. In contrast, the closure scheme pre-
sented here is not intended to describe the effects of
wave breaking and strong nonlinearity at vertical wave-
numbers m . mc.

The central result of this section is that a general flux
representation of transfers associated with wave–wave
interactions that conserves both momentum and energy
can be obtained. The conservation of momentum can
be guaranteed by the backscattering of wave energy at
a rate in proportion to the spectral transports. In terms
of an upward–downward decomposition, a general ex-
pression is

6 6 6 6]E (m, v) ][C E (m, v)] ]F (m, v) ]G (m, v)gz e e6 1 1
]t ]z ]m ]v

1
7 65 [F (m, v) 2 F (m, v)]e e2m

7 61 [G (m, v) 2 G (m, v)] ]be e1 . (37)
2 b ]v

Only slight modification of (23) and (24) is required in
order to account for possible asymmetry: E(m, v) is
simply replaced with E6(m, v).

4. A brief demonstration of the transport scheme’s
utility as a prognostic model

a. Observations

An independent dataset is examined below to dem-
onstrate the transport scheme’s utility as a prognostic
model.

Observations obtained from the Brazil Basin as part
of an anthropogenic tracer release experiment (Polzin
et al. 1997; Ledwell et al. 2000) provided the initial
motivation for this study. In those data, turbulent dis-
sipation is orders of magnitude larger above rough to-
pography associated with the Mid-Atlantic Ridge than
above the smooth abyssal plain. Enhanced velocity fine-
structure occurs in conjunction with the increased dis-
sipation in stratified water removed from the bottom
boundary, implicating internal wave breaking as the
source of turbulent energy. Polzin et al. (1997) proposed
that the elevated finestructure levels were associated
with the local generation of internal waves at tidal fre-
quencies having horizontal scales characteristic of the
topographic roughness (#1000 m). Providing the quan-
titative link between the fine- and microstructure ob-
servations, though, required the development of this
heuristic description of internal wave dynamics. A brief
application of the model to those data is presented be-
low. A more detailed study is presented in Polzin (2004).

The observed shear spectrum near the bottom bound-
ary is peaked at vertical wavelengths of about 100 m.
Away from the bottom boundary, observed shear spectra
from the Brazil Basin appear to relax to uniform levels
with the substantive change being the decay of the spec-
tral peak (Fig. 5). Lower spectral levels at larger vertical
wavelengths are consistent with a spectral model of
baroclinic tide generation (Bell 1975) and the topo-
graphic roughness (Polzin 2004). Lower spectral levels
at smaller wavelengths are likely to be associated with
the effects of strong nonlinearity and/or wave breaking.

Near the spectral peak the difference between cw and
ccw spectra is largest; the difference is negligible at
higher wavenumber. The buoyancy profile in this study
area decreases weakly with increasing height above bot-
tom, implying small transports associated with buoy-
ancy scaling. Thus, the observed vertical symmetry is
interpreted as representing a balance between upward-
and downward-propagating internal waves in response
to nonlinearity.

Such features are qualitatively consistent with the
proposed flux representation. The transport represen-
tation (23) implies that deviations from the stationary
spectrum, presumably associated with boundary sourc-
es, are relaxed back to the stationary form in the absence
of forcing. As part of the relaxation, a decay of the
spectral level will occur in response to downscale energy
transports associated with nonlinearity. In addition, the
scattering of waves back toward the boundary associ-
ated with the right-hand side of (37) will tend to create
a vertically symmetric wave field at smaller scales.

b. A simplification

Much intuition about the spatial decay problem can
be gained by ignoring the frequency domain transfers
G(m, v). While certainly an idealization, this is far less
restrictive than might first appear. With regard to the
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directional evolution of the wave field, in the hydrostatic
nonrotating approximation,

7 61 [G (m, v) 2 G (m, v)] ]be e 5 0. (38)
2 b ]v

That is, regardless of the specification for (m, v),6Ge

momentum conservation does not result in a backscat-
tering of wave energy for f 2 K v2 K N 2. Moreover,
the spatial and temporal evolution of the vertical wave-
number spectrum (other than that associated with the
backscattering of waves to conserve momentum) does
not explicitly depend upon (m, v). This result can6Ge

be obtained by integrating (37) over the frequency do-
main and applying boundary conditions that (m, v6Ge

5 f ) 5 (m, v 5 N) 5 0:6Ge

N

6] C (m, v)E (m, v) dvE gz[ ]6 6f]E (m) ]F (m)e6 1
]t ]z ]m

1
7 65 [F (m) 2 F (m)]e e2m

N 7 61 [G (m, v) 2 G (m, v)] ]be e1 dv. (39)E2 b ]vf

Note further that the frequency dependence of the group
velocity cancels that of (m, v) for f 2 K v2 K N 2,6F e

and so, for steady solutions, E(m) does not depend upon
the frequency distribution of the bottom boundary con-
dition.

c. Results

The observed pattern of relaxation and vertical sym-
metry compares reasonably well with a numerical so-
lution of (37) (Fig. 5). The time-dependent version of
(37) with the closure (23) and G6(m, v) 5 0 was solved
using a simple upwind difference scheme. The bottom
boundary condition was handled by specifying the dif-
ference between E1(m) and E 2(m) at z 5 0. This dif-
ference represents a source of wave energy at the bottom
boundary that was assumed to have a peaked shear spec-
trum. The input function was taken as an approximate
representation of Bell’s (1975) internal tide generation
model using a barotropic tidal amplitude of 2 cm s21

and topographic spectral parameters obtained from Goff
(1992). See Polzin (2004) for further details. No scat-
tering transform was employed (i.e., downward-prop-
agating waves are considered to reflect as from a flat
bottom). A no-flux surface boundary condition was
used. The frequency spectrum was represented as a delta
function, E6 5 E6(m)d(v 2 vo), with vo 5 1.4025 3
1024 s21. Other environmental parameters were f 5
25.3 3 1025 s21 and N 5 1 3 1023 s21, and a water
depth of H 5 4000 m was assumed. The model was
run forward in time from an initial state of rest for 200

days, at which point the energy balance was in approx-
imate statistical equilibrium.

An upward-propagating semidiurnal tide at the lati-
tude of the Brazil Basin mixing study would exhibit a
cw/ccw ratio of 5. Ratios of 2–3 are observed at vertical
wavelengths of 200–250 m (Fig. 5), 100–2100 m above
the bottom. At larger wavelengths a difference of about
50% is noted. At large wavelengths, the wave field is
sufficiently linear as to reach the surface and reflect,
resulting in a near balance between up- and downgoing
energy. At smaller wavelengths, the cw/ccw decom-
position suggests a vertically symmetric wave field. At
small wavelengths, backscattering associated with mo-
mentum conservation will tend to create vertically sym-
metric spectra in a flux formulation.

The point here is not to claim that the numerical
solution accurately depicts the oceanic internal wave
energy balance in the Brazil Basin. While the degree of
agreement between model and data is impressive, this
solution is rather idealized. The following patterns are,
however, believed to be significant. First, the model re-
sponse to a peaked input spectrum is a relaxation to a
uniform shear spectrum over a decade of wavenumbers
m , mc. The transport specification does not capture
the strong nonlinearity at wavenumbers m . mc and
thus the model shear spectrum appears uniform rather
than tending to roll off in this regime. Second, the back-
scattering associated with momentum conservation pro-
duces model rotary spectra with greatest difference at
a wavenumber m , mc. Without the backscattering, the
model rotary spectra remain separated at high wave-
number and are inconsistent with the observations.

5. Discussion

Development of the transport scheme was motivated
by perceived limitations of the models grounded in first-
principle derivations. Specifically, both the RIA and the
eikonal representation violate basic assumptions under-
pinning the respective models. This places very real
limitations on their applicability when interpreting ob-
servations. On the other hand, both models result in
viable parameterizations of e, and it was apparent that
a transport scheme could be constructed from those pa-
rameterizations. Like Garrett and Munk (1972), much
of the effort here is a tool-building exercise. Having
concocted such a scheme, the intent is to use the tool
to quantify patterns within the oceanic internal wave
field and iterativly refine our knowledge about the oce-
anic internal wave field and internal wave dynamics.

One of the first incongruities brought up by this heu-
ristic approach is contained within the basic construction
of the transport scheme. The transport scheme proposed
here is local in the vertical wavenumber domain. In
contrast, discussion of nonlinearity in the resonant in-
teraction approximation has revolved around three triad
classes that are characterized in the limit of extreme



JANUARY 2004 227P O L Z I N

FIG. 5. Observed shear spectra from the Brazil Basin and model estimates. The observations represent an
average over the 30 stations that appear in Fig. 3 and east of 188W in Fig. 2 of Polzin et al. (1997). (a)
Shear spectra m2Ek(m) from a height above bottom (hab) of 100–612 (thick), 100–2148 (thin), and 1636–
2148 (dashed) m. The spectrum is peaked near the bottom and relaxes back to a shape that is approximately
uniform with wavenumber as the wave field propagates away from the bottom boundary. Cutoff wavenumbers
(mc) for the three spectra are depicted as well. (b) Rotary spectra (100–2148-m hab) for both observations
(thick) and model (thin). The clockwise (cw) spectra lie above the counterclockwise (ccw) at the midrange
of wavenumbers. The domain is shaded for wavenumbers m . mc. (c), (d) Model output at the bottom
boundary. The clockwise spectra are enhanced relative to ccw. The dashed line represents energy input at
the bottom-boundary cast in terms of the shear spectrum. Model output in (c) utilizes a closure that does
not conserve momentum in which the right-hand side of the energy equation (37) is set equal to zero. Model
output (d) correctly incorporates the flux representations (23) and (24) into the right-hand side of (37).

scale separation, and the eikonal representation makes
an explicit assumption of scale separation.

If one looks closely and thinks critically, justification
both for this tool-building exercise and for a local char-
acterization can be found within the extant theories.

a. The eikonal representation

The eikonal models are based upon infinitesimal-am-
plitude wave propagation in a background of other in-
ternal waves. The infinitesimal-amplitude assumption is
made in order to discard quadratic terms of the test
waves in the derivation of the test wave Hamiltonian.
The eikonal model also invokes a scale separation in
order to neglect advection of the background by the test
wave. In so doing, one can obtain a linear representation
governing test wave propagation for which the intrinsic
frequency v 5 s 2 k · U is given by the usual dis-
persion relation,

1/22 2 2 2N k 1 f mhv 5 .
2 21 2k 1 mh

The position and wavenumber of the test wave evolve
according to

]v ]v ]
ẋ 5 1 U and k̇ 5 2 2 U · k,

]k ]x ]x

in which U is the velocity of the background field. Wave
action A 5 E/v is conserved following a ray path and
changes in momentum kA are given by k̇A. Momentum
conservation has not been addressed in the context of
eikonal wave–wave interaction theories as the wave
fields are assumed to be vertically symmetric. Momen-
tum is not, in general, conserved, as k̇A ± 0.

Within this theoretical framework, transport estimates
in the eikonal representation are constructed using Mon-
te Carlo methods and tracing test waves through an
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ensemble of flows. The energy transport is given as the
product of the energy density of the background and an
average transport rate F(m) 5 . Henyey etE(m)dm/dt
al. (1986) considered only Doppler shifting by the hor-
izontal background currents. Sun and Kunze (1999a,b)
incorporate Doppler shifting associated with vertical
currents into the eikonal representation.

Henyey (1984) and Sun and Kunze (1999b) both de-
duce that the interactions are relatively local in the ver-
tical wavenumber domain. Filtering local vertical wave-
numbers from the background results in substantially
reduced transports; increasing the background scale by
a factor of 2 reduces the transport rates by about a factor
of 2. Neither Henyey et al. (1986) nor Sun and Kunze
strictly enforce a scale separation in the horizontal do-
main. This issue is most problematic for Sun and Kunze
as the vertical currents included in their simulations
have substantially smaller horizontal scales than the hor-
izontal currents and inclusion of the small-horizontal-
scale vertical currents is responsible for their large trans-
port estimates. Sun and Kunze (1999a) report that fil-
tering in both vertical and horizontal wavenumber to
ensure that the background wave field has similar or
larger scales than the test wave eliminates the transports
entirely. These model results are quite persuasive evi-
dence for locality. However, they just as persuasively
demonstrate that the eikonal representation is far from
being a robust summary of the interaction process.

The eikonal representation is limited by the fact that
the predicted transports are dominated by interactions
of test waves with background waves of similar scale
after making an explicit assumption of a scale separa-
tion. The scale-separation issue is a fundamental one
that goes beyond the validity of the WKB approxima-
tion. To the degree that the oceanic wave field is best
described as a superposition of finite-amplitude (but not
necessarily nonlinear) wave packets rather than a col-
lection of randomly phased, infinitesimal-amplitude
waves, identification of the test wave field with the oce-
anic wave field requires invoking a scale separation in
both vertical and horizontal wavenumbers in order to
ensure that advection by the background dominates the
nonlinearity (U k u, where U and u represent the am-
plitude of the background and test wave, respectively).
Without a scale separation in both dimensions, the in-
finitesimal-amplitude approximation is violated for low-
frequency test waves and high-frequency background
waves (u k U) if the relative amplitudes of those waves
are assumed consistent with the GM prescription. The
eikonal representation lacks even the approximate action
conservation statement for such interactions. Equiva-
lently, in order to obtain the desired Hamiltonian, a scale
separation in both dimensions is required.

b. Resonant interactions

A single plane internal wave is an exact solution of
the equations of motion in Eulerian coordinates. This is

not, in general, the case for a combination of waves.
However, Phillips (1960) noted that two waves with phas-
es (k1 · x 2 v1t) and (k2 · x 2 v2t) will tend to force a
third wave with the sum and difference phase:

k 6 k 5 k and v 6 v 5 v . (40)1 2 3 1 2 3

If the third component is a free wave, that is, if (k3, v3)
is a solution to the dispersion relation, then energy is
systematically transferred from the first two into the
third. Total energy (E) and linear wave momentum (P
5 kE/v) are conserved by such transfers between the
three waves, but not wave action A 5 E/v; see, for
example, Müller et al. (1986).

The formidable task of estimating the net energy
transport accomplished by these wave–wave interac-
tions for a particular region in the wavenumber/fre-
quency domain is facilitated by appealing to well-de-
veloped methods in theoretical physics. The resulting
transport (or kinetic) equation (14) has been numerically
evaluated for the Garrett and Munk spectrum by several
groups: Olbers (1976), McComas and Bretherton
(1977), and Pomphrey et al. (1980). McComas and
Bretherton (1977) introduce three limiting triad classes
in an attempt to provide ‘‘physical insight into an oth-
erwise mystifying computational exercise.’’ These triad
classes have a large separation in frequency and/or
wavenumber magnitude between components. That is,
the triad classes are defined in the limit of extreme scale
separations.

The most important criticism of this approach here is
that all three groups derive their Hamiltonian structure
by formulating a Lagrangian in Lagrangian coordinates.
This approach necessitates a small-amplitude approxi-
mation in addition to the assumption of weak nonlin-
earity that is required to derive the kinetic equation
(Müller et al. 1986). In contrast, Lvov and Tabak (2001)
derive a Hamiltonian in quasi-Lagrangian (density) co-
ordinates that requires no small-amplitude approxima-
tion to construct a kinetic equation. Assuming simply
that the interactions are scale invariant, Lvov and Tabak
derive high-frequency and wavenumber power laws for
the stationary spectrum (18). Rather than emphasizing
scale-separated interactions, the conceptual picture in
Lvov and Tabak (2001) is a scale-invariant cascade.

The reason for this change in emphasis may go back
to the initial derivation in Lagrangian coordinates. Yuri
V. Lvov (2003, personal communication) reports dif-
ferences between the interaction matrices of Lvov and
Tabak (2001) and Olbers (1976) on the resonance sur-
face. It is believed that these differences result from the
small-amplitude expansion in the Lagrangian analysis
being divergent for extreme scale-separated interactions.
Thus, much of conventional wisdom regarding the ap-
plication of resonant interactions to the oceanic internal
wave field needs to be reconsidered.

Previous considerations of interaction time scales at
small vertical wavelengths suggested that interaction
rates were too large for the RIA to be formally valid



JANUARY 2004 229P O L Z I N

(e.g., Müller et al. 1986). Such considerations are likely
still a concern with the Lvov and Tabak (2001) for-
mulation. However, the presence of large interaction
rates would seem to reinforce the importance of local
interactions as resonance broadening becomes a concern
first for scale-separated interactions.

c. Summary

One interpretation of the fast interaction rates at high
wavenumber predicted by resonant interaction theory
(Müller et al. 1986) is that they represent a broadening
of the dispersion curves by a simple kinematic Doppler
shifting. That frequency-broadening motivated attempts
to describe wave–wave interactions with the eikonal
representation, which returns the result that interactions
are local in the vertical wavenumber domain (funda-
mentally contradicting the assumption of a scale sepa-
ration). Understanding of the kinetic equation in its ap-
plication to oceanic internal waves derives largely from
the seminal work of McComas and Bretherton (1977)
and McComas and Müller (1981a,b). That approach em-
phasized the role of scale-separated interactions. A re-
evaluation of that work appears to be called for.

The scale-invariant analysis of Lvov and Tabak
(2001) and the local nature of interactions inferred from
the eikonal models suggest the present route: a flux
representation based upon dimensional analysis and re-
liance upon observations to define the basic parameter
dependence. How literally should one take the resulting
local parameterizations? The reader is reminded that the
prototypical cascade model, that of turbulent transfers
in the inertial subrange of 3D turbulence, is a useful
construct that is not literally true; see, for example, Ten-
nekes and Lumley (1987), their section 8.2.

Goals for future observational efforts include defining
(i) the bandwidth required to set up an inertial subrange
and (ii) the relative importance of the various theoretical
representations. In particular, there may be some non-
local transport of energy to lower frequency associated
with a psi-like mechanism, especially for low-mode in-
ternal tides. Moreover, the present transport scheme is
not intended to describe the transition to turbulence for
m . mc. The inconsistency between the near-inertial
cusp of the stationary spectrum and the transport G(m,
v) points to an unresolved issue.

6. Summary

The work presented herein describes a method for
assessing the spatial and temporal evolution of a ver-
tically anisotropic internal wave spectrum. This method
invokes a mixed spatial/spectral representation rather
than a wave packet or wave train formulation. Nonlin-
earity is explicitly treated as a flux in the spectral do-
main. Momentum conservation is attained by transfer-
ring energy into an oppositely signed wave vector at a
rate proportional to the nonlinear energy transports. Dis-

sipation is implicitly viewed as the end result of non-
linear transfers to high wavenumber.

Dimensional analysis cobbled together with several
basic observational constraints and the assumption that
nonlinearity is not intrinsically related to boundaries in
the spectral domain implies a stationary spectrum of
E(m, v) } Nm22v23/2 at high vertical wavenumber and
frequency. This differs from the GM spectrum, for
which E(m, v) } Nm22v22. Flux representations for the
spectral transports were inferred using dimensional
analysis with energy transports in the vertical wave-
number domain specified to be consistent with extant
empirical studies. Energy transports in the frequency
domain are to higher frequency. This is consistent with
an oceanic spectrum that results from forcing at low
frequency and is in the process of relaxing to an v23/2

shape. The major sources of internal wave energy are
believed to be at low (near-inertial and tidal) frequen-
cies.

A preliminary comparison with data from the abyssal
Brazil Basin is encouraging. The proposed transport rep-
resentation (23) and (24) dictates a relaxation of the
shear spectrum to a uniform spectral level and a ver-
tically symmetric wave field at the smallest scales. The
apparent relaxation of the observed spectra with height
above boundary and vertical symmetry of the spectrum
at small scales is replicated by the proposed transport
representation in response to a peaked shear spectrum
input as a source function at the bottom boundary. There
are quantitative differences between the presented nu-
merical solution and observations that require the in-
corporation of buoyancy scaling in the radiation balance
equation, a scattering transform in the bottom boundary
condition, and a realistic generation model to further
assess the adequacy of the closure scheme.

The proposed flux representation is not a detailed
description of the interaction process. It is intended as
a simplistic depiction of a local cascade within the fine-
scale internal wave regime for anisotropic, inhomoge-
neous wave fields that retains energy and momentum
conservation principles. Rather than seeking a detailed
theoretical understanding of nonlinear internal wave in-
teractions, the attempt here is to develop a relatively
simple prognostic model that can be easily tested and
is subject to refinement.
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——, J. Wright, and S. M. Flatté, 1986: Energy and action flow
through the internal wave field. An eikonal approach. J. Geophys.
Res., 91, 8487–8495.

Kunze, E., A. J. Williams III, and M. G. Briscoe, 1990: Interpreting
shear and strain finestructure from a neutrally buoyant float. J.
Geophys. Res., 95, 18 111–18 126.

——, R. W. Schmitt, and J. M. Toole, 1995: The energy balance in

a warm-core ring’s near-inertial critical layer. J. Phys. Oceanogr.,
25, 942–957.

——, L. K. Rosenfeld, G. S. Carter, and M. C. Gregg, 2002: Internal
waves in Monterey Submarine Canyon. J. Phys. Oceanogr., 32,
1890–1913.

Leaman, K. D., and T. B. Sanford, 1975: Vertical energy propagation
of inertial waves: A vector spectral analysis of velocity profiles.
J. Geophys. Res., 80, 1975–1978.

Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent,
R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced
mixing over rough topography in the abyssal ocean. Nature, 403,
179–182.

Lvov, Y. V., and E. G. Tabak, 2001: Hamiltonian formalism and the
Garrett and Munk spectrum of internal waves in the ocean. Phys.
Rev. Lett., 87, doi:10.1103/PhysRevLett.87.168501.

McComas, C. H., and F. P. Bretherton, 1977: Resonant interaction of
oceanic internal waves. J. Geophys. Res., 82, 1397–1412.

——, and P. Müller, 1981a: Timescales of resonant interactions among
oceanic internal waves. J. Phys. Oceanogr., 11, 139–147.

——, and ——, 1981b: The dynamic balance of internal waves. J.
Phys. Oceanogr., 11, 970–986.

Müller, P., and D. J. Olbers, 1975: On the dynamics of internal waves
in the deep ocean. J. Geophys. Res., 80, 3848–3860.

——, and N. Xu, 1992: Scattering of oceanic internal gravity waves
off random bottom topography. J. Phys. Oceanogr., 22, 474–
488.

——, G. Holloway, F. Henyey, and N. Pomphrey, 1986: Nonlinear
interactions among internal gravity waves. Rev. Geophys., 24,
493–536.

Munk, W., 1981: Internal waves and small-scale processes. Evolution
of Physical Oceanography, B. A. Warren and C. Wunsch, Eds.,
The MIT Press, 264–291.

Olbers, D. J., 1976: Nonlinear energy transfer and the energy balance
of the internal wavefield in the deep ocean. J. Fluid Mech., 74,
375–399.

Phillips, O. M., 1960: On the dynamics of unsteady gravity waves
of finite amplitude, I. J. Fluid Mech., 9, 193–217.

——, 1977: The Dynamics of the Upper Ocean. 2d ed. Cambridge
University Press, 336 pp.

Polzin, K. L., 2004: Idealized solutions for the energy balance of the
finescale internal wave field. J. Phys. Oceanogr., 34, 231–246.

——, J. M. Toole, and R. W. Schmitt, 1995: Finescale parameteri-
zations of turbulent dissipation. J. Phys. Oceanogr., 25, 306–
328.

——, ——, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability
of turbulent mixing in the abyssal ocean. Science, 276, 93–96.

——, E. Kunze, J. M. Toole, and R. W. Schmitt, 2003: The partition
of finescale energy into internal waves and subinertial motions.
J. Phys. Oceanogr., 33, 234–248.

Pomphrey, N., J. D. Meiss, and K. M. Watson, 1980: Description of
nonlinear internal wave interactions using Langevin methods. J.
Geophys. Res., 85, 1085–1094.

Sun, H., and E. Kunze, 1999a: Internal wave–wave interactions. Part
I: The role of internal wave vertical divergence. J. Phys. Ocean-
ogr., 29, 2886–2904.

——, and ——, 1999b: Internal wave–wave interactions. Part II:
Spectral energy transfer and turbulent production. J. Phys.
Oceanogr., 29, 2904–2919.

Tennekes, H., and J. L. Lumley, 1987: A First Course in Turbulence.
The MIT Press, 300 pp.

Thorpe, S. A., 1975: The excitation, dissipation, and interaction
of internal waves in the deep ocean. J. Geophys. Res., 80,
328–338.

Weller, R. A., D. L. Rudnick, C. C. Eriksen, K. L. Polzin, N. S.
Oakey, J. M. Toole, R. W. Schmitt, and R. T. Pollard, 1991:
Forced ocean response during the frontal air–sea interaction ex-
periment (FASINEX). J. Geophys. Res., 96, 8611–8638.

Wijesekera, H., L. Padman, T. Dillon, M. Levine, C. Paulson, and R.
Pinkel, 1993: The application of internal-wave dissipation models
to a region of strong mixing. J. Phys. Oceanogr., 23, 269–286.


