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Energy Spectra of the Ocean’s Internal Wave Field: Theory and Observations
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The high-frequency limit of the Garrett and Munk spectrum of internal waves in the ocean and the
observed deviations from it are shown to form a pattern consistent with the predictions of wave
turbulence theory. In particular, the high-frequency limit of the Garrett and Munk spectrum constitutes
an exact steady-state solution of the corresponding kinetic equation.
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Introduction.—Internal waves are an important piece
of the energy and momentum budgets for the earth’s
atmosphere and ocean. The drag associated with internal
wave breaking needs to be included in order to obtain
accurate simulations of the atmospheric jet stream [1],
and it has been argued that the ocean’s meridional over-
turning circulation [2] is forced by the diffusion of mass
[3] associated with internal wave breaking [4] rather than
by the production of cold, dense water by convection at
high latitudes. Both circulations represent important ele-
ments of the Earth’s climate system.

In a classical work [5], Garrett and Munk demonstrated
how observations from various sensor types could be
synthesized into a combined wave-number-frequency
spectrum, now called the Garrett-and-Munk (GM) spec-
trum of internal waves. Consistent only with linear in-
ternal wave kinematics, the GM spectrum was developed
as an empirical curve fit to available data. Even though
deviations have been noted near boundaries [6], and at the
equator [7], the last significant model revision [8,9] has
surprisingly stood the test of time. However, a review
of open-ocean data sets reveals subtle variability in
spectral power laws. We show in this Letter that predic-
tions based upon a weakly nonlinear wave turbulence
theory are consistent with both the high-frequency—
high-wave-number limit of the GM spectrum and the
observed variability.

In this Letter, we consider only the high-frequency—
high-wave-number limit of GM; for brevity, we denote
this henceforth as GM,,. The GM,, is given by

E(m, ) = Nm 2w 2 (1

Here E is the spectral wave energy density, N the buoy-
ancy frequency, m the vertical wave number, and w
the frequency. The total energy density of a wave field is
E= [E(m w)dmdw.

The possibility that the internal wave field might ex-
hibit a universal character represents an attractive theo-
retical target, and much effort (as reviewed in [10]) was
devoted to studying the issue of nonlinearity in the con-
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text of resonant wave interactions. That line of work is
based on a Lagrangian description of the flow, with two
main approximations: that fluid particles undergo small
displacements, and that nonlinear interactions take place
on a much longer time scale than the underlying linear
dynamics. An approximate kinetic equation describing
the time evolution of the spectral wave energy was de-
rived, and it was shown [11] that the GM,, spectrum (1)
was close to being a stationary solution.

An alternative to the Lagrangian formulation, based on
a Hamiltonian description in isopycnal (density) coordi-
nates, was recently proposed [12]. This approach does not
invoke a small-displacement assumption and yields a
comparatively simple kinetic equation with an exact
steady power-law solution in the high-frequency limit.
That steady-state solution [see (5) below] is close to the
GM,, spectrum (1), yet there is a noticeable difference.
Motivated by this difference, we tried to estimate the
accuracy of the GM,, power laws and thus reviewed extant
observations from the literature. In the process of analyz-
ing the data, we found that there was subtle variability in
the high-wave-number, high-frequency spectrum, form-
ing a distinct pattern.

We then reexamined the kinetic equation of [12] and
found its full family of steady-state solutions, of which
the solution reported in [12] is just one member. This
family of solutions compares well with the variability
found in the observations. Moreover, the GM,, spectrum
(1) is a member of this family, thus describing the GM,,
spectrum simply as an exact steady-state solution to the
kinetic equation derived in [12].

Hence, in this Letter we present evidence for variabil-
ity in the high-frequency—high-wave-number open-
ocean internal wave field, and find that a wave turbulence
approach predicts that both GM;, and the observed vari-
ability are stationary states of the kinetic equation. The
variability itself, and its likely roots in variable forcing,
Coriolis effects, underlying stratification and currents, as
well as the low frequency range of the energy spectrum,
are fundamental problems posing exciting challenges for
future research.
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Overview of observations: a family of spectra—Below
we present a summary of historical oceanic internal wave
energy spectra. These observations are reanalyzed to
study whether the high-frequency, high-wave-number
spectra may form a pattern. We review seven data sets
available in the literature. We shall present a detailed
analysis of these data sets elsewhere; here we just list
them along with their high-frequency, high-wave-
number asymptotics. Let us assume that, in this limit,
the three-dimensional wave action n(k,m) can be ap-
proximated by horizontally isotropic power laws of the
form

iem = nolk| ™ m| ™, 2

where k is the horizontal wave vector, k = |k| is its
modulus, m is the vertical wave number, and ng is a
constant.

Using the linear dispersion relation of internal waves,
wyn © |k|/m, this action spectrum can be transformed
from the wave-number space (k, m) to the vertical wave-
number-frequency space (w, m). Multiplication by the
frequency yields the corresponding energy spectrum,

E(m, w) < > *m?> <.

The total energy of the wave field is then
E= fw(k, m)n(k, m) dkdm = fE(a) m) dwdm.

Below we list extant data sets with concurrent vertical
profile and current meter observations and some major
experiments utilizing moored arrays, along with our best
estimate of their high-wave-number high-frequency
asymptotics (the order is chronological).

The Mid-Ocean Dynamics Experiment (MODE),
March—July 1973, Sargasso Sea (260°0' N, 69°40’ W):
m—2.25w—1.6 [13]

The Internal Wave Experiment (IWEX), 40 d observa-
tions in November—December 1973, Sargasso Sea ther-
mocline (27°44' N, 69°51' W): k= 24+044 =175 [14].

The Arctic Internal Wave Experiment (AIWEX),
March to May of 1985, Canada Basin thermocline,
(74° N, 143°-146° W): m >B w12 [15,16].

The Frontal Air-Sea Interaction Experiment
(FASINEX), January to June of 1986, Sargasso Sea ther-
mocline (27° N, 70° W): m~ 190 =204 ~175 117,18].

Patches Experiment (PATCHEX), 7.5 d during October
of 1986, eastern Subtropical North Pacific, (34° N,
127° W)Z m*l.75w71.65 to —2.0 [19]

The Surface Wave Process Program (SWAPP)
experiment, 12 d during March, 1990, eastern Sub-
tropical North Pacific thermocline, (35° N, 127° W):
m—1.9w—2.0 [20]

North Atlantic Tracer Release Experiment (NATRE),
February—October 1992, eastern Subtropical North
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Atlantic thermocline, (26° N, 29° W): m 2w %6 (for
1 < w<6cpd) [21].

These deep ocean observations (Fig. 1) exhibit a higher
degree of variability than one might anticipate for a
universal spectrum. Moreover, the deviations from the
GM,, spectral power laws form a pattern: they seem to
roughly fall upon a curve with negative slope in the (x, y)
plane. We show in the next section that the predictions of
wave turbulence theory are consistent with this pattern.

A wave turbulence formulation for the internal wave
field—In this section we assume that the internal wave
field can be viewed as a field of weakly interacting
waves, thus falling into the class of systems describable
by wave turbulence. Wave turbulence is a universal
statistical theory for the description of an ensemble of
weakly interacting particles or waves. This theory has
contributed to our understanding of spectral energy
transfer in complex systems [22], and has been used for
describing surface water waves since pioneering works
by Hasselmann [23], Benney and Newell [24], and
Zakharov [25,26].

The dynamics of oceanic internal waves can be most
easily described in isopycnal (i.e., density) coordinates,
which allow for a simple and intuitive Hamiltonian de-
scription [12]. To describe the wave field, we introduce
two variables: a velocity potential ¢(r, p) and an isopyc-
nal straining I1(r, p). The horizontal velocity is given by
the isopycnal gradient V of the velocity potential,
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FIG. 1 (color). Ocean observations and analytical zeros of the
kinetic Eq. (4) in the (x,y) plane, with the high-frequency
action spectrum given by the power law (2). Solid red dots
represent the thermodynamical equilibrium solution, the
closed-form zero [5], and the GM,, spectrum (1). Blue circles
represent different observational sets. The solid black curve
marks the numerically computed zeros of the kinetic equation.
Contour lines of the right-hand side of Eq. (4) with high-
frequency action spectrum given by the power law (2),
I(x,y), are also shown, with red curves corresponding to
positive values and blue curves to negative values.
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u(r, p) = Ve(r, p). The straining Il = p/(d.p) can
also be interpreted as the fluid density in isopycnal
coordinates.

These two variables form a canonically conjugated
Hamiltonian pair, so that the primitive equations of
motion (i.e., conservation of horizontal momentum, hy-
drostatic balance, mass conservation, and the incompres-
sibility constraint) can be written in canonical form,

0,11 =83H /5, d,p = —8H /811,
1 II 2
H = (H|V¢|2— ]’J—arp1 )drdp. 3)
2 P1
The first term in the Hamiltonian clearly corresponds to |
9 aH

i—ay = —,
Jat da,
fl

—+ —

6

with wave-wave interaction matrix elements given by
[12]: Vll))1P2 = Uglpz + Ugll)z + Ugf)l with
N k2 * k3

_ wl’zwp.zk
428  koks w,

These field equations are equivalent to the primitive
equations of motion for internal waves (up to the hydro-
static balance and Boussinesq approximation); the work
reviewed in [10] instead resorted to a small-displacement
approximation to arrive at similar equations. We will
argue elsewhere that this extra assumption does not pro-
vide an internally consistent description of interactions
between extremely scale separated waves. For the
purposes of this Letter, it suffices to note that the two
kinetic equations are different and yield different steady
solutions.

We shall characterize the field of interacting internal
waves by its wave action 8, _,n, = (apa;,).

Under the assumption of weak nonlinear interaction,
one derives a closed equation for the evolution of the
wave action, the kinetic equation. Assuming horizontal
isotropy, the kinetic equation can be reduced further by
averaging over all horizontal angles, obtaining [with p =
(k, m) and dp,dp, = dk,dm,dk,dm;]

P —
UPle -

dnk m 1 14 p p k

dr ;f(RPIPZ = Rpb, — Rpip)dpidpy/Af

D _ P 14 2
Rpip, = 5wp*w171*wp2fP1P2|VP1P2| Sm*mrmzkklkz» S
where  fp,p, = n,n, —ny(n, +n,) and Af =

QLK) + (kk)? + (ki ky)2] = K* = K — K3}/ /2.

A family of steady-state power-law solutions to the
kinetic equation.— In wave turbulence theory, three-
wave kinetic equations admit two classes of exact sta-
tionary solutions: thermodynamic equilibrium and
Kolmogorov flux solutions, with the latter corresponding
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the kinetic energy of the flow, and the second term can be
shown to correspond analogously to the potential energy.

Perturbing an equilibrium reference profile Il, =
—g/N?, performing the Fourier transform, and introduc-
ing a complex field variable a, via

B iN, jo,

- _ /8
N

k
P ,/2pr

bp I

(ap —a’y), (ap +a*p),

where p = (k, m) is the 3D wave vector, N is buoyancy
frequency, and g is gravity acceleration; the canonical
pair of equations of motion and the Hamiltonian (3) read

where H = f“’plapl2 dp + ]Vg?pZ(a;lazzal’} + ap, ap,ap,)Sp, —p, —p, dP1dP2dP3

P3 * %k
VPlpz(aP1ap2ap3 + aplapzaps)6P|+Pz+p3 dpldpzdp3’

| to a direct cascade of energy —or other conserved quan-
tities—toward the higher modes. The fact that the ther-
modynamic equilibrium—or equipartition of energy—
ny, =1 / w, 18 a stationary solution of (4) can be seen by
inspection, whereas in order to find Kolmogorov spectra
one needs to be more elaborate. In [12] we used the
Zakharov-Kuznetsov conformal mapping [25-27] to
show analytically that the following wave action spec-
trum constitutes an exact steady-state solution of (4) [note
the difference with (1)]:

i = nolk| /2 m] 12 s

E(m, w)« w™ Y m™2

&)

Remarkably though, this is not the only steady-state
solution of the kinetic equation having nonzero spectral
energy fluxes. In fact, there is a full family of such power-
law steady solutions. To see this, consider the kinetic
Eq. (4), and substitute into it the ansatz (2). Let us
now denote the resulting right-hand side of (4) by
I(k, m). For steady states, I(k, m) needs to vanish for all
values of k and m, for appropriately chosen values of
(x, y). However, once I vanishes for one such wave number
(k, m), it does so for all, due to the fact that I is a
bihomogeneous function of k and m:

I(ak, Bm) = a** 2BV I(k, m). (6)

Hence, we can fix k and m, and seek zeros of I as a
function of x and y. The exact analytical solution (5)
cannot correspond to an isolated zero of I, since
(0,1,9,I) is nonzero (it is proportional to the energy
flux in the Kolmogorov solution [22]). Hence, by the
implicit function theorem, there must exist a curve of
zeros of I(x, y).

Since this family of steady-state solutions is not all
apparently amenable to a closed form, we sought the
zeros of I by numerical integration. This involves a
certain amount of work. First, the delta functions in (4)
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restrict contributions to the resonant set. Consider, for
example, the resonant set

k:k1 +k2, m=m1+m2, wk1m=wk1,m] +wk2,m2'

Given k, k{, k,, and m, one can find m; and m, satisfying
this resonant condition by solving

k/m = ki/|lmi| + ky/|lm — m|.

This equation reduces to a quadratic equation for m;, and
then one can find m, from m, = m — m,. After this
reduction, one is left with a two-dimensional integral,
over |k;| and |k,|. This infinite domain is further re-
stricted by the requirement that |k;|, |k,|, and |k| are
such that they can correspond to the sides of a triangle;
this restricted (though still infinite) domain is called the
kinematic box in the oceanographic literature. The next
problem for the numerical integration is that the inte-
grand diverges (typically in an integrable fashion) at the
boundaries of the domain. This is solved by a suitable
change of variables. Finally, a second substitution renders
the domain of integration finite.

The resulting family of zeros is depicted in Fig. 1.
Notice that the curve passes through the exact solution
(5). More importantly, it also passes through the point
(4, 0), corresponding to the GM,, spectrum (1). Hence this
classical spectrum is for the first time shown to corre-
spond to an exact steady solution to a kinetic equation
based on first fluid principles.

Finally, we note the integrals converge in the parameter
regime occupied by the observations. In regions of tightly
spaced contour lines (x < 1.7 and y < 0.7, x > 4.2 and
y < —0.4) (4) is nonintegrable.

The other points marked on the figure correspond to
the observational sets discussed above. Notice that, with
the exception of NATRE, they all lie very close to the
zeros of I. Therefore, the predictions of wave turbulence
are consistent with the observed deviations from GM;,,.

In fact, the NATRE point lies in an area of (x, y) space
where z = I and z = 0 are nearly tangential, thus making
the line of zeros effectively ““thicker’ (in other words, the
collision integral is not zero at the observed points, but it
is very small, possibly allowing other, typically smaller
effects to take over.)

Conclusions.—We have shown that the wave turbulence
formalism captures much of the variability apparent in
the oceanic internal wave field. This includes the charac-
terization of the spectral curve put together by Garrett
and Munk as an exact steady solution to a kinetic equa-
tion for the evolution of the wave field, derived from first
principles. In addition, the curve of steady solutions to
this kinetic equation is consistent with much of the ob-
served variability in the energy spectra. We conjecture
that the placement along this curve of individual obser-
vations depends on the nature of the forcing (for instance,
by tides and atmospheric winds), the local degree of
stratification, vorticity and shear, and the variable mag-
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nitude of the Coriolis parameter. This is the subject of
ongoing research.
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