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Penetration of a salinity front into a rotating basin:
Laboratory experiments and a simple theory

by O. Marchal1,2, J. A. Whitehead1 and A. Jensen1

ABSTRACT
Freshwater is released along a wall of a basin containing salt water and rotating anticlockwise. The

freshwater source is located near the surface between the center of the cylindrical basin and a corner
along the wall. Experiments are performed with different discharge rates and the same rotation rate.
The freshwater initially forms a bulge near the source, and then a buoyant gravity current bends to the
right and flows along the wall toward the periphery of the basin. Separation of the current at the corner
is never observed. The salinity front along the wall moves persistently away from the wall with a time
scale greatly exceeding the rotation period. Its movement is compared to numerical solutions of a two-
layer theory, where friction in the Ekman layer straddling the layer interface is the sole ageostrophic
effect. The theory shows that the depth of the interface (h) satisfies a nonlinear diffusion equation. The
symmetric part of the diffusion tensor causes light fluid to move down the gradient of h and represents
the effect of vertical friction. The associated diffusivity reaches a maximum at h/δ = π/2, where δ

is the Ekman layer depth. The antisymmetric part of the diffusion tensor causes light fluid to move
perpendicularly to ∇h and represents the effect of geostrophic motion. The associated diffusivity
increases monotonically with h/δ and greatly exceeds the diffusivity of the symmetric part if h/δ is of
order of one or more. Comparison of numerical solutions with experimental data supports the theory.

Recollection by Jack Whitehead

In 1979 and 1980, I was extremely fortunate to have the opportunity to experimentally test
results of a theory that Professor Stern was then finishing up. A demonstration film that we
playfully entitled “Rotating Bores” (Stern, Whitehead) finished off the project. We greatly
enjoyed working together, and soon developed both a close friendship and a collaboration
of convenience; he used the project to support travel to the laboratory and the GFD summer
school at WHOI, I picked his fruitful brain for new studies of coastal currents and eddies,
and the projects always involved numerous students and colleagues. This present study, in
collaboration with O. Marchal, reminds me of those days with great satisfaction. Here, we
look at a laboratory current with a balance between Coriolis, pressure and viscous forces
that is found in the limit of very small volume flux. That is exactly the opposite limit to
the Coriolis, pressure and inertia balance for currents with large flux that Stern investigated
twenty-three years ago. I miss him and regret that we cannot show these new results to him.
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1. Introduction

The flow produced by buoyant water released along the side wall of a rotating basin
has long been investigated in the laboratory (e.g., Whitehead and Miller, 1979; Stern,
1980; Griffiths and Linden, 1981). The problem is relevant to a variety of geophysical
phenomena, such as light water entering the ocean from a natural dam that is suddenly
broken or, equivalently, from the rapid melting of continental ice (Nof, 1987). A general
observation is that the buoyant fluid turns to the right (in a basin rotating anticlockwise)
and forms a buoyant gravity current along the wall (hereafter referred to as simply a gravity
current).
The gravity current along the wall arises from the following reason (Griffiths, 1986).

When fluid is injected along a wall, the component of the buoyancy force parallel to the
wall, which is proportional to the gradient of the fluid layer thickness parallel to the wall,
‘causes the injected fluid to spread along the boundary.’ The condition of no normal flow
at the wall implies that the component of the Coriolis force parallel to the wall vanishes.
‘However, fluid spreading along the wall with the wall on its left (. . .) experiences a Coriolis
force to its right and cannot move away from the source . . . On the other side of the source,
motion along the wall experiences a Coriolis force toward the wall . . . and a flow proceeds
along the boundary’ (Griffiths, 1986).
Gravity currents produced in the laboratory with rotating tables are bounded by a density

front that separates the incoming light fluid from the ambient heavier fluid. The evolution
of these fronts has received considerable attention (e.g., Whitehead andMiller, 1979; Stern,
1980; Griffiths and Linden, 1981; Stern et al., 1982; Griffiths and Hopfinger, 1983; Avicola
andHuq, 2002; Thomas andLinden, 2007;Gregorio et al., 2011). For example, Griffiths and
Linden (1981) created a gravity current from a continuous point source that was positioned
along the outer vertical wall of a cylinder placed at the center of a larger cylinder. They
observed that, at any point on thewall, the depth andwidth of the current increasedwith time.
The flow was diverted perpendicularly to the wall and was entirely laminar. The current,
however, became eventually unstable to breakingwaves. Stern et al. (1982) andGriffiths and
Hopfinger (1983) generated gravity currents by removing vertical barriers which initially
retained a layer of freshwater that laid at one end of a long channel and floated on a much
larger volume of salt water. The resulting currents displayed three-dimensional turbulence.
The width of the currents varied with distance behind the nose and increased with time.
Avicola andHuq (2002) released freshwater along the rim of a cylinder containing seawater.
The width of the resulting current was found to increase with time, as in subsequent work
(Gregorio et al., 2011). Other aspects of gravity currents in a rotating basin have been studied
in the laboratory, particularly in the context of buoyant river water or ‘plumes’ entering the
ocean (e.g., Lentz and Helfrich, 2002; Avicola and Huq, 2003a,b; Horner-Devine et al.,
2006).
The dynamics of gravity currents overlying a layer of deep water have been investigated

in several theoretical studies. The volume flux of these currents is predicted to be, from
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the thermal wind balance, close to g′h2/2f , where g′ is the reduced gravity based on the
density contrast between the resident and incoming waters, h the thickness of the current,
and f the Coriolis parameter. This prediction is borne out by many models that rely on
energy, potential vorticity, and momentum conservation contraints (e.g., Whitehead et al.,
1974; Stern, 1980; Nof, 1987; Hacker and Linden, 2002). Thewidth of the currents naturally
scales with the Rossby radius

√
g′h/f , although it is observed to vary with distance along

the wall (e.g., Stern et al., 1982; Griffiths and Hopfinger, 1983).
Gravity currents can be affected by the vertical shear of horizontal velocity at the inter-

face between the buoyant water and the dense water below. Friction at the interface could
eventually break down the geostrophic constraint and allow the density front to move down
the pressure gradient, i.e., away from the coast (e.g., Wright, 1989). The primary objective
of this study is to test the prediction that interfacial friction leads to a spreading gravity cur-
rent in the laboratory. Accordingly, plumes that most readily spread by interfacial friction
would have a thickness approaching the order of the Ekman layer depth,

√
2ν/f , where

ν is the kinematic viscosity. Therefore, the limit we investigate here is for currents whose
volume flux has an order of magnitude comparable to g′ν/f 2 (previous studies generally
considered greater flux).
Anothermechanismof export of buoyantwater away from the coast is the separation of the

gravity current near a coastline irregularity. Laboratory experiments suggest that separation
at a corner occurs when the radius of curvature of the corner is less than the inertial radius
of the current (e.g., Whitehead andMiller, 1979; Boormans and Garrett, 1989). A relatively
well-studied current along a coast is the long and narrow current flowing equatorward along
northeastern North America (for reviews see, e.g., Loder et al. (1998) and Lentz (2008)).
Observations indicate that the transports of volume and freshwater in the current drop by
two orders of magnitude from Cape Chidley near 60◦N to Cape Hatteras near 35◦N (Loder
et al., 1998). It has been suggested that the drop in volume and freshwater transports results
from the detachment of the current near the Tail of the Grand Banks (see Fratantoni and
McCartney (2010); and references therein).
In this paper, simple experiments are conducted in the laboratory and are augmented by

a theoretical model. Freshwater is discharged along the vertical wall of a basin containing
salt water and rotating anticlockwise. Emphasis is placed on two aspects of the resulting
gravity current along the wall: (i) the widening of the current and (ii) the possibility of
current separation near an irregularity along the wall. In order to observe the widening of
the current over a relatively large amount of time, freshwater is released along the wall of
a basin of a relatively large size. Likewise, in order to represent a coastline irregularity
such as the Grand Banks, the wall along which freshwater is discharged has a corner
with a right angle. The resulting basin geometry is similar to that adopted in a laboratory
study of the North Atlantic Ocean (Rossby and Nilsson, 2003) and is fully described in
Section 2.
This paper is organized as follows. The laboratory experiments are described in Section 2.

Details about the experimental protocol are provided and the movement of the salinity front
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Figure 1. A top view of the rotating basin, walls, and freshwater source.

away from the wall is characterized. In Section 3 the movement of the front as observed
in the laboratory is given a dynamical interpretation. A theory of a surface layer of light
fluid over a deep layer of dense fluid, where the layer interface may intersect the free
surface, is discussed. The theory assumes uniform rotation and includes vertical friction as
the sole ageostrophic effect in both layers. Numerical solutions of the theory are obtained
and compared to laboratory results in Section 4. The differences between experimental and
numerical results are discussed in Section 5. A summary follows in Section 6.

2. Laboratory experiments

a. Protocol

A rotating table in the Geophysical Fluid Dynamics Laboratory at WHOI is used. The
table supports a cylindrical tank with a radius of 1m and a height of 0.45m. For our
experiments the tank is modified to contain a sectorial basin with an angle of 120◦ at the
apex (Fig. 1). The basin has a flat white bottom and vertical walls made of foamed PVC
with a height of 0.43m (Fig. 2). The wall along which freshwater is released runs from
the apex toward the arc of the basin. It has a corner (C1 in Fig. 1) which has a right angle
on the inner side and which is at a distance of 0.58m from the apex. A square opening
(5 cm×5 cm) is made in the wall near the apex and a sponge is embedded into the opening.
Below, the wall along which freshwater is released (through the sponge) is called simply
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Figure 2. A side view of the rotating basin.

the ‘wall.’ The other wall joining the apex to the arc is straight and is perpendicular to the
wall. It is called the ‘adjacent wall.’ The entire basin is covered with a polycarbonate lid.
A video camera that co-rotates with the table is used to observe the evolution of the dyed

freshwater above thewhite floor of the basin during the experiments. The camera ismounted
on top of a vertical post fixed along the outer side of the wall (corner C2 in Figs. 1 and 2).
The lens of the camera is approximately facing corner C1 of the wall and is at a distance
of about 2.11m above the water surface in the basin. In this way, none of the freshwater is
hidden by the walls.
The spin-up proceeds as follows. The sectorial basin is filled with salt water (seawater)

to a level of about 0.23m from the bottom of the basin. It is then set in anticlockwise
rotation at a rate Ω = 0.5 s−1, which corresponds to a Coriolis parameter f = 2Ω = 1 s−1.
Freshwater is pumped into the basin only after salt water in the basin is (or is close to being)
at rest in the rotating frame. Then, the pump is turned on and freshwater flows into the basin
through the sponge near the surface along the wall. The freshwater discharge is maintained
at constant rate q throughout the experiment. The experiment lasts from about 5 minutes for
the largest inflow rate to about 15 minutes for the smallest inflow rate (see below). For each
inflow rate, duplicate experiments are conducted in order to assess the reproducibility of the
results. Further details about the laboratory set-up and spin-up are provided in Appendix A.
A density meter (DMA 58) is used to measure the densities of freshwater and salt water

at 20◦C. Duplicate measurements on the same sample give a density value of 1000.22 ±
0.02 kgm−3 for freshwater and 1024.09±0.07 kgm−3 for salt water (mean± one standard
deviation). Based on these measurements, a reduced gravity g′ = 0.23m s−2 is selected in
subsequent calculations unless stipulated otherwise.
Two pumps with different ranges of flow rate are used for our experiments (Cole-Parmer

and Micropump Inc.). Each pump is calibrated by measuring the volume of water delivered
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by the pump for a given reading on the pump and over a given amount of time (5 trials). Six
different flow rates (q) ranging from 1.03 ± 0.00ml s−1 to 4.51±0.08ml s−1 (mean± one
standard deviation) are considered for our experiments. The reading on the pump during
our experiments is the same value as for the calibration, except for experiments with q =
1.85 ± 0.00ml s−1 for which the flow rate and its standard deviation are determined by
extrapolation from calibration at another reading on the same pump.

b. Results

All experiments exhibit three basic features (in chronological order): (i) a bulge that forms
near the freshwater source, (ii) a buoyant current that moves along the wall toward and then
along the arc of the basin, and (iii) a slowmigration, away from the wall, of the salinity front
between the incoming light water and the ambient dense water. To our surprise, the buoyant
current does not separate from the wall at corner C1 in any of the experiments. Accordingly,
emphasis is primarily placed on the third feature (iii). In the remainder of this Section, the
movement of the salinity front is described and dimensionless numbers which characterize
the buoyant current are compared with observational estimates for buoyant discharges into
the coastal ocean.
We first illustrate the nature of the flow in our experiments, using as an example results

from a preliminary experiment for which the salinity front was particularly regular and a
color camera was used (Fig. 3). Results from this experiment are representative of those of
subsequent experiments for which the front showed comparable regularity but which were
recorded with a black-and-white camera. For this experiment, the rate of freshwater inflow
amounts to q = 1.82ml s−1 and the basin is covered with plastic instead of a polycarbonate
lid. Otherwise, the experimental protocol is similar to that described in Section 2a. Figure 3
shows the spreading of buoyant water (red patch) in the rotating basin at different times after
starting the freshwater release at the wall. The salinity front moves both along and away
from the wall. In the context of our experiments, the internal deformation radius is defined
as lD = √

g′hw/f , where hw is the depth of the buoyant layer at the wall. If the flow along
the wall is in thermal wind balance with constant vertical shear, the depth of the buoyant
layer at the wall is given by hw = √

2f q/g′, so lD = (2g′q/f 3)1/4. The parameters for
the experiment displayed in Figure 3 result in lD = 3.0 cm. In comparison, the width of the
gravity current at corner C1 is 20–24 cm about four minutes after the initiation of freshwater
release (bottom panel of Fig. 3). This is consistent with the notion that there is considerable
spreading through the frictional layer.

i. Movement of salinity front. All experiments are recorded on a video tape from the co-
rotating camera. For each experiment a digitized sequence with time step of 10 s is produced
from the video tape using the software XCAP. The sequence is used to determine the
evolution of the salinity front. The distance of the front from the wall is measured in the
direction normal to thewall and fromcornerC1 of thewall (see double arrow in bottompanel
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Figure 3. Distribution of buoyant water (in red) observed in the laboratory at three different times
since the initiation of freshwater discharge (q = 1.82ml s−1): ca. 50 seconds (top panel), ca. 2
minutes (middle), and ca. 4 minutes (bottom). For reference, the black and white marks on top
of the wall at the bottom of each panel have a width of 2 cm. The position of the salinity front is
determined from corner C1 at the wall (see double arrow in bottom panel). Glittering features are
produced by light reflection on the plastic surface covering the basin.
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of Fig. 3). It is determined using a graduation on top of the adjacent wall. The graduation
marks are equally spaced by 4 cm and are located at distances ranging from lo = 2 cm
to lo = 38 cm from the wall. The actual distance of the salinity front from the wall (l) is
obtained by correcting l0 for a geometrical effect due the obliqueness of the line of sight
between the lens of the camera and the apparent position of the front at the water surface,

l = lo
hst + htl

htl
. (1)

Here hst is the height of the top of the wall above the water surface and htl is the height
of the camera lens above the top of the wall. Assuming hst = 0.43 − 0.23 = 0.20m and
htl = 2.11 − 0.20 = 1.91m, the correction factor l/ lo is 1.10.

The uncertainty in each value of l is obtained from (1) by propagating the uncertainty
in the measured distance (σlo), the uncertainty in the height of the camera lens above the
water surface (σhtot , where htot = hst + htl), and the uncertainty in the height of the camera
lens above the top of the wall (σhtl), assuming no correlation between these individual
uncertainties,

σl

l
=

√(
σlo

lo

)2

+
(

σhtot

htot

)2

+
(

σhtl

htl

)2

. (2)

The following values are adopted: σlo = 0.5 cm and σhtot = σhtl = 5 cm (the uncertainty
in hst is taken as negligible compared to that of htl). Hence the uncertainty in the actual
distance of the front from the wall ranges from σl = 0.6 cm for lo = 2 cm to σl = 1.6 cm
for lo = 38 cm. Further details about the determination of the movement of the salinity
front are reported in Appendix A.
The distance of the salinity front from the wall is displayed as a function of time for each

experiment (Figs. 4a–4f). The distance is corrected for the geometrical effect described
above and normalized by

√
g′h0/f = 11 cm, where h0 is the height of the freshwater inlet.

Note that this value is larger than the deformation radius lD , which ranges from 2.6 cm for
the experiment with q = 1.03ml s−1 to 3.8 cm for the experiment with q = 4.51ml s−1

(Table 1). Likewise, time is normalized by the rotation period 4π/f . In all experiments,
the salinity front migrates persistently away from the wall, reaching a distance from the
wall of many deformation radii lD (Figs. 4a–4f). Duplicate experiments show that results
are generally reproducible for each rate of freshwater inflow in the initial stage of the
experiments. In the final stage significant differences are often found. These differences
arise primarily from small irregularities of the salinity front which develop as the front
moves away from the wall. The precise location and amplitude of the irregularities vary
from one experiment to another. One exception resides in the duplicate experiments with the
lowest flow rate (q = 1.03± 0.00ml s−1), where results disagree in the initial stage of the
experiment and agree in the final stage. Note that the time uncertainty generally increases
with distance from the wall. Indeed, the salinity front appears as more diffuse and its precise
location is more difficult to determine as the front moves into the interior of the basin.
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Figure 4. Experimental measurements of the distance of the salinity front from the wall (l) as a
function of time (t) for different rates of freshwater inflow (in ml s−1): 1.03±0.00 (a), 1.85±0.00
(b), 2.51 ± 0.03 (c), 3.05 ± 0.02 (d), 3.73 ± 0.04 (e), and 4.51 ± 0.08 (f). The distance from the
wall (time) is normalized by

√
g′h0/f (4π/f ), where g′ is the reduced gravity (gr in the figure).

Results from duplicate laboratory experiments are shown by solid and open circles (horizontal and
vertical bars denote uncertainty estimates). The horizontal dashed line shows the ratio lD/

√
g′h0/f

for each experiment, where lD = (2g′q/f 3)1/4 is the deformation radius.

The variation with time of the distance of the salinity front from the wall can be described
to a good approximation by a quadratic regression for all experiments (not shown). Such
description is useful since the coefficients of the regression model l = α0 + α1t + α2t

2 + ε,
where t is time and ε is an error, have an obvious kinematical interpretation. Consider first
the coefficient α1, which is the speed of the front near the wall. The least-squares estimates
of α1 are denoted by a1. They are normalized by

√
g′h0 and displayed as a function of the
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Table 1. Laboratory experiments with flow scales and dimensionless numbers†

qa lbD hc
w h̄d Ke F

f
‖ F

g
⊥ εh‖ εi⊥ E

j
hw

Ek

h̄
Rl⊥ δm

ml s−1 cm mm mm ×10 ×10 ×102 ×102 ×102 ×103

1.03 2.6 3.0 0.9 1.9 1.0 0.4 0.6 0.2 0.2 2.5 2.4 2
- - - 0.6 - 2.1 0.3 1.2 0.1 - 5.6 2.0 1
1.85 3.0 4.0 1.3 1.7 2.6 0.4 1.7 0.2 0.1 1.2 2.6 3
- - - 1.1 - 2.7 0.4 1.8 0.2 - 1.7 3.1 3
2.51 3.3 4.7 1.4 1.5 4.0 0.5 2.9 0.2 0.1 1.0 3.2 3
- - - 1.0 - 6.0 0.5 4.3 0.3 - 2.0 4.6 2
3.05 3.4 5.1 1.6 1.5 5.3 0.5 4.0 0.2 0.1 0.8 3.5 4
- - - 1.3 - 6.0 0.5 4.5 0.3 - 1.2 4.4 3
3.73 3.6 5.7 1.7 1.4 8.4 0.6 6.7 0.2 0.1 0.7 4.0 4
- - - 1.7 - 6.6 0.5 5.3 0.2 - 0.7 4.0 4
4.51 3.8 6.3 1.5 1.3 7.5 0.7 6.2 0.3 0.1 0.9 5.5 4
- - - 1.2 - 6.3 0.7 5.3 0.4 - 1.4 7.1 3

† For all experiments, f = 1 s−1, Δρ = 23.87 ± 0.07 kgm−3, and g′ = 0.23m s−2

a Freshwater inflow rate
b Internal deformation radius, lD = (2g′q/f 3)1/4

c Buoyant layer depth (h) near the wall, hw = √
2f q/g′

d Average of h at final time of experiment tf , h̄ = qtf /S where S is surface area of basin
e Kelvin number K = lI / lD , where lI = 5 cm is width of freshwater inlet
f Froude number F‖ = U‖/C, where U‖ is velocity parallel to the wall and C = √

g′hw
g Froude number F⊥ = U⊥/C, where U⊥ is velocity normal to the wall
h Rossby number ε‖ = 1/Δt‖f , where Δt‖ is travel time from bulge to corner C1
i Rossby number ε⊥ = 1/Δt⊥f , where Δt⊥ is travel time from lo = 2 cm to lo = 38 cm
j Ekman number based on hw , Ehw = 2ν/h2wf
k Ekman number based on h̄, Eh̄ = 2ν/h̄2f
l Reynolds number R⊥ = L2⊥∗/νΔt⊥, where L⊥∗ = (38 − 2) × 1.10 = 40 cm
m Aspect ratio δ = h̄/L⊥, where L⊥ = 38 × 1.10 = 42 cm

dimensionless flow rate q ×(2f/g′h2
0), where g′h2

0/2f is the volume transport of a buoyant
flow in thermal wind balance with reduced gravity g′ and inflow depth h0 (Fig. 5). The front
speeds are lower than

√
g′h0 by two orders of magnitude and tend to increase with the rate

of freshwater inflow.
Consider then the coefficient α2, which is half the (constant) acceleration of the salinity

front. The least-squares estimates ofα2 (a2) are normalized byf
√

g′h0/2 and also displayed
as a function of the dimensionless flow rate q × (2f/g′h2

0) (Fig. 6). As expected from the
evolution of the front (Fig. 4), the acceleration is negative for all experiments (Fig. 6). Thus,
the front decelerates for all values of the rate of freshwater inflow. The deceleration rate
increases also in amplitude as the rate of freshwater inflow increases (Fig. 6).

ii. Dimensionless numbers. Dimensionless numbers characterizing the gravity currents in
our experiments are estimated in order to compare with bulk properties of buoyant water
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Figure 5. Initial speed of the salinity front as a function of the rate of freshwater inflow. The dimen-
sional speed a1 is normalized by

√
g′h0, where g′ is the reduced gravity (gr in the figure). It is

determined for each experiment by quadratic regression of l versus t (note that in the regressions
errors in l but not in t are considered). Vertical bars denote uncertainty estimates obtained by regres-
sion. The freshwater inflow q is normalized by g′h20/2f . The uncertainties in freshwater inflow
are smaller than the diameter of the circles and are not shown. Results from duplicate experiments
in the laboratory are shown by solid and open circles.

discharges into the coastal ocean and to give insight into the dynamics (Table 1). All these
numbers vary with the rate of freshwater inflow. The inlet Kelvin number K is the ratio
of the width of the buoyant water inlet to the deformation radius. For K of order one or
more, rotation should be important for the evolution of the buoyant plume (e.g., Garvine,
1987, 1999). The inlet Kelvin numbers from 1.3 to 1.9 in our experiments (Table 1) are
comparable to observational estimates for some buoyant inflows into the coastal ocean. For
example, the inlet Kelvin number for the inflow from the Delaware Bay has been estimated
to be 1.3 by Garvine (1999) and to be 4 by Avicola and Huq (2003a). A Kelvin number
has also been defined as the ratio of the across-shore scale of the buoyant current to the
deformation radius and estimated to lie in the range from 0.1 to 10.0 for twelve coastal
discharges (see Garvine (1995); Table 1). The across-shore scale of the buoyant current
reaches a value much larger than lD in all our experiments (Fig. 4). However, comparing
the resulting Kelvin numbers to observational estimates for coastal discharges is difficult
since the across-shore scale of the buoyant current varies significantly with time in our
experiments, preventing a stable definition.
The Froude number for the along-shore flow, F‖, is the ratio of along-shore velocity U‖

to phase speed of internal gravity wave, C (e.g., Garvine, 1995). For F‖ 	 1, the advective
acceleration is negligible compared to the pressure gradient in the momentum balance for



614 Journal of Marine Research [69, 4-6

Figure 6. Acceleration of the salinity front as a function of the rate of freshwater inflow. The dimen-
sional acceleration 2a2 is normalized by f

√
g′h0, where g′ is the reduced gravity (gr in the figure).

The acceleration 2a2 is determined for each experiment by quadratic regression of l versus t (note
that in the regressions errors in l but not in t are considered). Vertical bars denote uncertainty esti-
mates obtained by regression. The freshwater inflow q is normalized by g′h20/2f . The uncertainties
in freshwater inflow are smaller than the diameter of the circles and are not shown. Results from
duplicate experiments in the laboratory are shown by solid and open circles.

the along-shore flow. For our experiments,U‖ is taken as the average velocity of the buoyant
water from the freshwater inlet to corner C1 along the center of the wall. Thus, U‖ is the
ratio l‖/Δt‖, where l‖ = 58 − 12.5 = 45 cm is the distance from the center of the inlet to
C1 and Δt‖ is the difference between the time when buoyant water exits the bulge and the
time when it reaches C1. Note that only the time when buoyant water first appears in the
basin (t0) and the times when the salinity front reaches different apparent distances lo from
the wall (tlo=2 cm = t1, . . .) have been measured in our experiments. Thus, Δt‖ is taken as
the difference t1 − t0 corrected for the time spent by buoyant water in the bulge (Δtb) and
for the transit time of the salinity front from corner C1 at the wall to the apparent position
lo = 2 cm (Δtw). The time interval Δtb is estimated by assuming that the circulation of
buoyant water within the bulge is in gradient wind balance (e.g., Yankovsky and Chapman,
1997) and that buoyant water circulates within the bulge over a distance equal to one half its
circumference. Experimental support for a gradient-wind balance in the bulge is provided
by Horner-Devine et al. (2006). From the two assumptions above,

Δtb = π

f

3g′h0 + v2i
2g′h0 + v2i

, (3)
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where vi is the velocity of the freshwater inflow (i.e., the freshwater inflow rate q divided by
the surface area of the freshwater inlet). In our experiments, the product g′h0 always exceeds
v2i by several orders of magnitude, implying that to a good approximation Δtb is equal to
3π/2f ≈ 5 s. The transit time of the salinity front from corner C1 to lo = 2 cm is computed
fromΔtw = (0.02×1.10)/a1 where a1 is speed of the front near the wall (Section 2bi). The
phase speed C, on the other hand, is computed from C = √

g′hw, where hw = √
2f q/g′

is the depth of the buoyant layer near the wall. In our experiments, hw ranges from 3.0mm
for q = 1.03ml s−1 to 6.3mm for q = 4.51ml s−1 (Table 1), which corresponds toC equal
to 2.6 cm s−1 and 3.8 cm s−1, respectively. Hence the Froude number F‖ varies from 0.10
to 0.84 (Table 1), indicating that the motion of the current nose along the wall is subcritical
to near-critical. This range is close to the range of observational estimates from 0.1 to 1.0
for eleven of the twelve coastal discharges considered by Garvine (1995) (his Table 1).
Finally, a Rossby number can be defined for the along-shore flow as ε‖ = 1/Δt‖f . The

resulting values from 0.006 to 0.067 (Table 1) suggest that the Coriolis acceleration domi-
nates the total acceleration of the buoyant current along the wall. Observational estimates
for coastal discharges from 0.002 to 5 are computed from parameter estimates reported
in Table 1 of Garvine (1995) (specifically, ε‖ is equivalent to γF/K , where γ, F , K are
parameter estimates listed in his Table 1). Our experimental values bracket observational
estimates for five of the twelve coastal discharges considered by this author.
Other dimensionless numbers characterizing the gravity currents in our experiments are

also calculated (Table 1). Whereas observational estimates of these numbers for coastal
discharges are unknown to us, they are useful in providing insight into the dynamics of the
migration of the salinity front away from thewall. The Froude number for the frontmigration
is F⊥ = U⊥/C, where U⊥ is the velocity in the direction normal to the wall. It is estimated
fromF⊥ = a1/

√
g′hw, which gives values ranging from 0.03 to 0.07 (Table 1). As expected,

the slow movement of the salinity front is strongly subcritical. The Rossby number for the
front migration is computed from ε⊥ = 1/Δt⊥f , where Δt⊥ is the travel time of the front
from the apparent positions lo = 2 cm to lo = 38 cm. The small values of ε⊥ (from 0.001
to 0.004; Table 1) suggest that the total acceleration of the flow in the direction normal to
the wall is also dominated by the Coriolis acceleration. Two different Ekman numbers are
computed: one based on the depth of the buoyant layer near the wall (Ehw = 2ν/h2

wf ) and
onebasedon the average depth of this layer in the basin (Eh̄ = 2ν/h̄2f ). The resulting values
ofEhw andEh̄ are, respectively of order 0.1 and1 (Table 1), suggesting that vertical friction is
not a negligible term in themomentumbalance of the layer. Finally, theReynolds number for
the front migration is computed fromR⊥ = l2⊥/νΔt⊥, where l⊥ = (38−2)×1.10 = 40 cm
is the actual distance covered by the front during Δt⊥. The estimated values of R⊥ � 1
(Table 1) suggest that horizontal advective acceleration is more important than horizontal
friction.
In summary, the Kelvin, Froude, and Rossby numbers characterizing the gravity currents

in our experiments compare favorably with observational estimates for buoyant discharges
into the coastal ocean. The widening of the currents or, equivalently, the migration of the
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salinity fronts away from thewall appears to be governed by a dynamical balance dominated
by the Coriolis acceleration, horizontal pressure gradient, and vertical friction.

3. Theory

In this section, the movement of the salinity front observed in the laboratory is given a
dynamical interpretation. We consider the evolution of a thin layer of fluid on top of denser
fluid that is infinitely deep. Both layers have constant density and are subject to uniform
rotation. Although the free surface has a (variable) slope in our experiments, this slope
is assumed to have a negligible influence and the free surface is flat in the theory (for a
discussion of this influence see Section 5a). On the other hand, the layer interface varies
with space and time, and it is allowed to meet the free surface.
The equations of motion for each layer are, in Cartesian coordinates (e.g., Pedlosky,

1987),

∂u

∂t
+ (u · ∇)u − f v = −1

ρ

∂p̃

∂x
+ ν∇2u, (4a)

∂v

∂t
+ (u · ∇)v + f u = −1

ρ

∂p̃

∂y
+ ν∇2v, (4b)

∂w

∂t
+ (u · ∇)w = −1

ρ

∂p̃

∂z
+ ν∇2w, (4c)

∇ · u = 0. (4d)

Here u = (u, v, w) is the velocity with components in the directions (x, y, z), (x, y) are
the horizontal directions, z is the vertical direction, t is time, f the Coriolis parameter, p̃
the sum p + ρgz, p the pressure, ρ the density, g the acceleration due to gravity, and ν the
kinematic viscosity. The nabla operator is ∇ = x̂∂/∂x + ŷ∂/∂y + ẑ∂/∂z, where (x̂, ŷ, ẑ)

are unit vectors. The free surface is at z = 0 and z is positive vertically upwards.
The equations of motion (4a–4d) are expressed in dimensionless form in order to clarify

the nature of the dynamical approximations to be made. We set t = T t ′, (x, y) = L(x ′, y ′),
z = Dz′, (u, v) = U(u′, v′), w = (D/L)Uw′, and p̃ = ρf ULp̃′, where the primed
quantities are dimensionless andT ,L,D,U are scales for time, length, depth, and horizontal
velocity, respectively. Eqs. (4a–4d) then take the form,

εT

∂u′

∂t ′
+ εu′ · ∇′u′ − v′ = −∂p̃′

∂x ′ + δ2
E

2

(
∂2u′

∂x ′2 + ∂2u′

∂y ′2

)
+ E

2

∂2u′

∂z′2 (5a)

εT

∂v′

∂t ′
+ εu′ · ∇′v′ + u′ = −∂p̃′

∂y ′ + δ2
E

2

(
∂2v′

∂x ′2 + ∂2v′

∂y ′2

)
+ E

2

∂2v′

∂z′2 (5b)

δ2εT

∂w′

∂t ′
+ δ2εu′ · ∇′w′ = −∂p̃′

∂z′ + δ4
E

2

(
∂2w′

∂x ′2 + ∂2w′

∂y ′2

)
+ δ2

E

2

∂2w′

∂z′2 , (5c)

∇′ · u′ = 0. (5d)
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Here εT = 1/(f T ) is a Rossby number based on the local acceleration, ε = U/(f L)

is a Rossby number based on the advective acceleration, E = 2ν/(D2f ) is the Ekman
number, and δ = D/L is the aspect ratio of the motion. Clearly, u′ = (u′, v′, w′) and
∇′ = x̂∂/∂x ′ + ŷ∂/∂y ′ + ẑ∂/∂z′.
The movement of the salinity front that is observed in the laboratory is characterized by

small Rossby number and small aspect ratio, so that ε⊥ = O(10−3), δ2Ehw = O(10−4), and
δ2Eh̄ < O(10−2) (Table 1). Consequently, terms of order (εT , ε, δ2E) and higher are omitted
from equations (5a–5d). The resulting equations contain the Ekman number E as the sole
parameter. Note that the value of E = 2ν/(D2f ) is not known precisely (there is no unique
definition of the vertical scale D), whereas the dimensional equations contain parameters
that can all be determined unambiguously from experimental conditions. Accordingly, the
approximate equations are considered below in dimensional form in order to compare
quantitatively predictions from the theory with our experimental results. Variables in the
upper (lower) layer are designated with subscript 1 (2).

a. Upper layer

The equations of motion for the upper layer are:

−f v1 = − 1

ρ1

∂p̃1

∂x
+ ν

∂2u1

∂z2
, (6a)

+f u1 = − 1

ρ1

∂p̃1

∂y
+ ν

∂2v1
∂z2

, (6b)

0 = − 1

ρ1

∂p̃1

∂z
, (6c)

∂u1

∂x
+ ∂v1

∂y
+ ∂w1

∂z
= 0. (6d)

It is convenient to express these equations in terms of the depth of the upper layer, h =
h(x, y, t). First, continuity of pressure at the interface between the two layers at depth
z = −h implies that

ρ1gh + p̃1 = ρ2gh + p̃2, (7)

since p̃ in each layer does not vary with depth. The pressure difference between the lower
layer and the upper layer is thus given by

p̃2 − p̃1 = −(ρ2 − ρ1)gh. (8)

The horizontal gradient of p̃ in the lower layer is zero if the horizontal components of
velocity in this layer, which is infinitely deep, are zero at z = −∞. Indeed, in this case,
the horizontal gradient of p̃ vanishes at z = −∞ and, since ∂p̃/∂z is nil, this gradient
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must vanish at all depths in the lower layer. Hence, with ∂p̃2/∂x and ∂p̃2/∂y both equal
to zero, the horizontal pressure gradient in the upper layer can be expressed in terms of the
horizontal gradient of h, e.g,

− 1

ρ1

∂p̃1

∂x
= −g′ ∂h

∂x
, (9)

where g′ = g(ρ2 − ρ1)/ρ1 is the reduced gravity. A similar expression holds for the
pressure gradient component in the y-direction. Second, the incompressibility condition
(6d) is integrated from the layer interface at z = −h to the free surface at z = 0,

w1(0) − w1(−h) = −
0∫

−h

[
∂u1

∂x
+ ∂v1

∂y

]
dz. (10)

The following kinematical conditions are imposed,

w1 = 0 at z = 0, (11a)

w1 = −
[
∂h

∂t
+ u1

∂h

∂x
+ v1

∂h

∂y

]
at z = −h(x, y, t). (11b)

The first condition follows from the free surface being flat and the second condition states
that the interface is a material surface. Inserting both conditions in (10) gives

∂h

∂t
+ u1(−h)

∂h

∂x
+ v1(−h)

∂h

∂y
= − ∂

∂x

0∫
−h

u1 dz + u1(−h)
∂h

∂x
− ∂

∂y

0∫
−h

v1 dz + v1(−h)
∂h

∂y
,

(12)

upon application of the Leibniz rule for the derivation of an integral with variable limits.
The equations of motion for the upper layer can then be cast in terms of h,

−f v1 = −g′ ∂h

∂x
+ ν

∂2u1

∂z2
, (13a)

+f u1 = −g′ ∂h

∂y
+ ν

∂2v1
∂z2

, (13b)

∂h

∂t
+ ∂

∂x

0∫
−h

u1 dz + ∂

∂y

0∫
−h

v1 dz = 0. (13c)

Note that the statement of volume conservation (13c) is nonlinear owing to the variable
limit h = h(x, y, t) of the integrals.
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The momentum equations (13a–13b) are the equations of the Ekman problem for a fluid
with uniform density. Here these equations are solved with a condition of no stress at the
surface,

ν
∂u1

∂z
= ν

∂v1
∂z

= 0 at z = 0. (14)

The solutions of (13a–13b) which satisfy these conditions are

u1 = A1 cos
z

δ
cosh

z

δ
− B1 sin

z

δ
sinh

z

δ
+ ug, (15a)

v1 = A1 sin
z

δ
sinh

z

δ
+ B1 cos

z

δ
cosh

z

δ
+ vg, (15b)

where (A1, B1) are real constants, δ = √
2ν/f is the Ekman layer depth, and (ug, vg) =

(g′/f )(−∂h/∂y, ∂h/∂x) are the geostrophic velocities.

b. Lower layer

The same approximations are made as for the upper layer, with the additional restriction
that the horizontal components of the pressure gradient are zero (see Section 3a). Hence,
the horizontal momentum equations for the lower layer are simply

−f v2 = ν
∂2u2

∂z2
, (16a)

+f u2 = ν
∂2v2
∂z2

. (16b)

These equations are solved with the condition that the horizontal velocity components
vanish at depth,

u2 = v2 = 0 at z = −∞. (17)

The solutions of (16a–16b) which satisfy these conditions are

u2 = A2 ez/δ cos
z

δ
− B2 ez/δ sin

z

δ
, (18a)

v2 = A2 ez/δ sin
z

δ
+ B2 ez/δ cos

z

δ
, (18b)

where (A2, B2) are also real constants.

c. Matching conditions

The horizontal velocity in each layer is provided by expressions (15a–15b) and (18a–
18b). These expressions contain four constants (A1, B1, A2, B2) that are determined by
conditions imposed at the interface between the upper layer and the lower layer. More
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specifically, continuity of horizontal velocity and of vertical stress is invoked at the interface
between the two layers,

u1 = u2 at z = −h(x, y, t), (19a)

v1 = v2 − (19b)

ν
∂u1

∂z
= ν

∂u2

∂z
− (19c)

ν
∂v1
∂z

= ν
∂v2
∂z

− (19d)

Applying these conditions to (15a–15b) and (18a–18b) leads to a system of four alge-
braic equations which are linear in A1, B1, A2, B2 and from which these constants can be
determined:

A1 = −e−h/δ

(
ug cos

h

δ
+ vg sin

h

δ

)
, (20a)

B1 = +e−h/δ

(
ug sin

h

δ
− vg cos

h

δ

)
, (20b)

and

A2 = ug cos
h

δ
sinh

h

δ
− vg sin

h

δ
cosh

h

δ
, (21a)

B2 = ug sin
h

δ
cosh

h

δ
+ vg cos

h

δ
sinh

h

δ
. (21b)

Inserting (20a–20b) and (21a–21b) into (15a–15b) and (18a–18b) allows one to express the
horizontal velocity in the upper and lower layers solely in terms of the upper layer depth
and of its horizontal variations.

d. Horizontal velocities

We consider the vertical distribution of the horizontal velocity components in both layers
for varying values of h/δ. Since rotation is uniform, no particular horizontal direction is
dynamically significant; the axes (x, y) of the Cartesian reference frame are arbitrary and
can been chosen for convenience. For example, the x-axis can be aligned in the direction of
the horizontal pressure gradient, so ∂h/∂y vanishes and the expressions for the horizontal
velocity in the two layers take a simpler form. In this Section, ∂h/∂y is taken as zero without
loss of generality, and the horizontal velocity components are normalized by the geostrophic
value (g′∂h/∂x)/f .
Consider first the case where h/δ = 10 (Fig. 7a). Over most of the upper layer, the

velocity component u1 has a very small amplitude as there is no pressure gradient to bal-
ance geostrophic motion in the x-direction, whereas the velocity component v1 is close to
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Figure 7. Solutions of the two-layer theory.Vertical distribution of the horizontal velocity components
u (solid line) and v (long dashed) for the cases where h/δ = 10 (a) and h/δ = 1 (b). The two
components are normalized by (g′∂h/∂x)/f , where g′ is the reduced gravity (gr in the figure).

(g′∂h/∂x)/f . In contrast, near the interface, both u1 and v1 show large variations. In this
region, friction becomes important in the momentum balance. Thus, ν∂2u1/∂z2 balances
the pressure gradient and ν∂2v1/∂z2 balances the Coriolis acceleration of the flow in the
x-direction, leading to an Ekman spiral (cf. upper branch of solid line in Fig. 8). In the
deep layer, where no horizontal gradient of pressure occurs, friction balances the Corio-
lis acceleration over the whole layer. The stress exerted by motion in the upper layer is
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Figure 8. Solutions of the two-layer theory. Velocity component v versus velocity component u for
the cases where h/δ = 10 (solid line) and h/δ = 1 (dashed). The two components are normalized
by (g′∂h/∂x)/f .

communicated to the lower layer. Motion is to the right of the stress owing to the Coriolis
acceleration, leading to another Ekman spiral (cf. lower branch of solid line in Fig. 8).
Consider then two cases where h/δ is much smaller. For h/δ = 1, the vertical variations

in the horizontal velocity components are relatively smooth in both layers (Fig. 7b). Here
friction influences the momentum balance in regions far from the interface between the
two layers. An Ekman spiral is present only in the deep layer (dashed line in (Fig. 8). For
h/δ = 0.1, the horizontal velocity components are nearly uniform in the upper layer and
their amplitudes decrease very slowly with depth (not shown).

e. Governing equation for h

A governing equation for h is obtained by inserting the expressions for u1, v1 (15a–15b),
where A1, B1 are provided by (20a–20b), into the statement of volume conservation (13c).
Details are reported in Appendix B. Interestingly, the equation for h can then be written as
a diffusion equation,

∂h

∂t
= ∂

∂x

(
κs

∂h

∂x

)
+ ∂

∂x

(
κa

∂h

∂y

)
+ ∂

∂y

(
−κa

∂h

∂x

)
+ ∂

∂y

(
κs

∂h

∂y

)
, (22)

where the effective diffusivites κs and κa depend on h,

κs = +κ0

{
1 − e−2h/δ

(
sin

2h

δ
+ cos

2h

δ

)}
, (23a)
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κa = −κ0

{
1 + e−2h/δ

(
sin

2h

δ
− cos

2h

δ

)
− 4

h

δ

}
, (23b)

with κ0 = g′δ/(4f ) being a constant factor. The governing equation for h can be written
more compactly as

∂h

∂t
= ∇ · (K(h)∇h), (24)

where the diffusion tensor K(h) is the sum of a symmetric part S(h) proportional to κs and
an antisymmetric part A(h) proportional to κa:

S(h) =
(

κs(h) 0
0 κs(h)

)
and A(h) =

(
0 κa(h)

−κa(h) 0

)
. (25)

Note that Eq. (24) can also be written as an advection-diffusion equation.
The transport that is produced by S and A is quite distinct, as shown for any scalar

quantity satisfying an equation of the form (24) (Vallis, 2006). The symmetric tensor S
produces a flux of light fluid −S∇h which is down the gradient of h since S is positive
definite, i.e., ∇h · (S∇h) > 0. In contrast, the antisymmetric tensor A produces a flux of
light fluid −A∇h which is perpendicular to the gradient of h since ∇h · (A∇h) = 0. From
a dynamical point of view, S represents the effect of vertical friction and A represents the
effect of geostrophic motion, although the two tensors depend formally on both ν and f .
The transport that is produced by S or A does not modify the average of the layer depth
h in a closed basin along which the normal derivative of h vanishes, i.e., each tensor is
separately volume-conserving. On the other hand, the transport induced by S decreases the
basin average of h2, whereas the transport induced by A does not alter this average. Indeed,
the ‘skew flux’−A∇h is equivalent to the advection by a solenoidal velocity (Vallis, 2006).
Note that, if the layer depth h and its spatial derivatives are continuous, the mixed deriva-

tives ∂/∂x(∂h/∂y) and ∂/∂y(∂h/∂x) are equal. In this case, the two terms with κa in (22)
cancel each other. The flux −A∇h has no divergence and the light fluid spreads exclusively
in the downgradient direction. Such a situation, however, should not occur in regions where
the gradient ∇h is discontinuous such as a front. Thus, it is expected that the movement of
the front is at least partly influenced by the antisymmetric tensor A.
The variations of κs/κ0 and κa/κ0 with h/δ are displayed in Figure 9. The symmetric

diffusivity κs increases with h/δ for small h/δ and reaches a maximum at h/δ = π/2. In
contrast, the antisymmetric diffusivity κa increases monotonically with h/δ. At large h/δ,
the increase is about linear due to the secular term4h/δ in (23b). In this case, ambient rotation
becomes important compared to vertical friction and the light fluid spreads primarily in the
direction perpendicular to the gradient of h, i.e., perpendicular to the pressure gradient.
Note that κa always exceeds κs for h/δ > 0. The symmetric and antisymmetric diffusivities
tend to the same value as h/δ → 0, e.g., as rotation becomes small.
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Figure 9. Effective diffusivities for the depth of the upper layer versus the ratio of layer depth to
Ekman layer depth. The symmetric (antisymmetric) diffusivity is shown by the solid (dashed) line.
Each diffusivity is normalized by κ0 = g′δ/(4f ).

f. Limiting cases h/δ 	 1 and h/δ � 1

We consider Eq. (22) for h as this depth becomes very thin or very thick compared to the
depth of the Ekman layer. For simplicity, it is assumed that the sum of the terms containing
κa in (22) vanishes. As we have seen, this assumption is a significant limitation since it
should not be valid in regions where ∇h is discontinuous. Nevertheless, it leads to useful
insight into the movement of this layer for contrasting h/δ. For convenience, the equation
for the two cases, h 	 δ and h � δ, is derived by scaling the layer depth h with δ, the
time t with f −1, the horizontal coordinates (x, y) with

√
g′δ/f , and the diffusivity κs with

g′δ/f . Dimensionless variables are denoted with a prime.
Consider first the case where h′ 	 1. Expanding (23a) in Taylor series shows that

κ′
s = h′2 + O(h′3). (26)

The equation for h′ becomes to order O(h′3) a diffusion equation where the effective diffu-
sivity increases quadratically with h′:

∂h′

∂t ′
= ∂

∂x ′

(
h′2 ∂h′

∂x ′

)
+ ∂

∂y ′

(
h′2 ∂h′

∂y ′

)
. (27)

For an instantaneous point source of light fluid, diffusion is expected to be radial everywhere
and Eq. (27) is more conveniently expressed in cylindrical coordinates,

∂h′

∂t ′
= 1

r ′
∂

∂r ′

(
r ′h′2 ∂h′

∂r ′

)
, (28)
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where r ′ = √
x ′2 + y ′2 is the radial distance from the source. This equation has been solved

analytically for an instantaneous point source in a different physical context (Pattle, 1959).
The solution of (28) for a unit source at (r ′ = 0, t ′ = 0) and for h′(r ′ = 0, t ′ = 0) = 1 is

h′(r ′, t ′) =
(

t ′

t ′∗

)−1/3 (
1 − r ′2

r ′2∗

)1/2

for r ′2 ≤ r ′2
∗ , (29a)

h′(r ′, t ′) = 0 for r ′2 ≥ r ′2
∗ , (29b)

where

t ′∗ = 1

4π
and r ′2

∗ = 3

2π

(
t ′

t ′∗

)1/3

. (30)

The layer depth h′ when expressed as a function of the distance r ′ from the source describes
one-half of an ellipse. The edge of the layer is at r ′ = ±r ′∗ and moves away from the source
at the rate t ′1/6. Note that the pressure gradient (i.e., ∂h′/∂r ′) is infinite at r ′ = ±r ′∗, so
terms of higher order in (28) should be considered to obtain a physically realistic solution
at the edge.
Consider then the case where h′ � 1. In this limit expression (23a) shows that

κ′
s = 1

4
. (31)

The equation for h′ then reduces to a diffusion equation with constant diffusivity:

∂h′

∂t ′
= 1

4

(
∂2h′

∂x ′2 + ∂2h′

∂y ′2

)
. (32)

The solution of (32) for a unit point source at (r ′ = 0, t ′ = 0) is well-known (e.g., Crank,
1975),

h′(r ′, t ′) = e−r ′2/t ′

πt ′
. (33)

The layer depth never vanishes and there is no edge sensu stricto for finite r ′ and t ′.
In summary, analysis of the two extreme cases h/δ 	 1 and h/δ � 1 indicates that the

evolution of the upper layer will have a fundamentally different character depending on the
ratio of the layer depth to the depth of the Ekman layer. If h is small compared to δ, motion
along the pressure gradient occurs throughout the upper layer. The layer diffusivity depends
on layer depth. In contrast, if h is large compared to δ, motion along the pressure gradient
is confined to a region near the interface between the two layers. In this case, the evolution
of h is dictated mostly by diffusion with approximately constant diffusivity.



626 Journal of Marine Research [69, 4-6

g. General case for h/δ

Whereas the exact solutions (29) and (33) are revealing, they do not correspond to condi-
tions in the laboratory where the freshwater source is continuous. Both solutions are further
limited in the sense that the first predicts an infinite pressure gradient at the edge and the sec-
ond does not predict the existence of an edge at all. Here the governing equation for h (22)
is solved for a continuous source and arbitrary h/δ using a numerical method. The method
of solution is a finite-difference method that is second-order accurate in time and space,
positive definite, and conservative. It solves the governing equation for h in the advective
form

∂h

∂t
+ ∂

∂x
(ūh) + ∂

∂y
(v̄h) = 0, (34)

where

ū = −κs

h

∂h

∂x
− κa

h

∂h

∂y
, (35a)

v̄ = +κa

h

∂h

∂x
− κs

h

∂h

∂y
, (35b)

are the horizontal components of an effective velocity. This equation is solved on a domain
corresponding to the rotating basin in the laboratory. The coordinate x is antiparallel to the
adjacent wall and the coordinate y is parallel to the wall. Thus, the velocity component ū

(v̄) is normal (parallel) to the wall. Further details about the method of solution are reported
in Appendix C.
The initial conditions, boundary conditions, and parameters of equation (34) are all

constrained from conditions in the laboratory. Initially, the layer depth h is zero everywhere.
The volume fluxes per unit length (ūh, v̄h) vanish everywhere along the boundary except
along the opening made through the wall. There ūh = −q/lI , where lI = 5 cm is the width
of the opening. The parameters governing the transport of buoyant fluid in the theory are the
diffusivity factor (κ0) and the Ekman layer depth (δ) (Eqs. (23a–23b)). They are determined
from g′ = 0.23m s−2 based on density measurements (Section 2a), ν = 10−6 m2 s−1 based
on viscosity measurements on pure water at 20◦C (Weast and Astle, 1981), and f = 1 s−1

corresponding to the turntable rotation rate (Section 2a). Consequently, in our numerical
solutions, the diffusivity factor κ0 is 1.0 × 10−4 m2 s−1 and the Ekman layer depth δ is
1.4mm.

4. Comparison of laboratory results with theory

In this section, the observations made on the rotating table are compared to numerical
solutions of the governing equation for h (34). Numerical solutions are obtained for the
different rates of freshwater discharge considered for the laboratory experiments.
Wefirst compare the distributions of buoyantwater observed on the turntable and obtained

numerically for the case where q = 1.82ml s−1 (Figs. 10a–10b). The distributions are
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Figure 10. Distribution of buoyant water observed in the laboratory (upper panel) and calcu-
lated numerically (lower panel) four minutes after freshwater is introduced into the basin (q =
1.82ml s−1). Upper panel: buoyant water is shown by the red patch. Lower panel: buoyant water is
shown by isopleths of h/δ with contour interval of 0.5. The dashed line (isopleth of 0.01) approxi-
mately coincides with the front.

those four minutes after buoyant water is introduced along the wall. The buoyant water
distribution obtained numerically appears similar to that observed on the turntable at the
same time (Figs. 10a–10b). As in the laboratory, the buoyant source has led to the formation
of a gravity current along the wall flowing toward the arc of the basin and to the development
of a density front along the wall. The distance of the front from the wall greatly exceeds
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Figure 11. Experimental measurements and theoretical predictions of the distance of the salinity front
from the wall as a function of time for different rates of freshwater inflow (in ml s−1): 1.03± 0.00
(a), 1.85 ± 0.00 (b), 2.51 ± 0.03 (c), 3.05 ± 0.02 (d), 3.73 ± 0.04 (e), and 4.51 ± 0.08 (f). The
distance from the wall (time) is normalized by

√
g′h0/f (4π/f ), where g′ is the reduced gravity

(gr in the figure). Results from duplicate laboratory experiments are shown by solid and open
circles (horizontal and vertical bars denote uncertainty estimates). Numerical solutions of the two-
layer theory with g′ = 0.23m s−2 (0.12m s−2) are shown by solid (dashed) lines. The horizontal
dashed line shows the ratio lD/

√
g′h0/f for each experiment, where lD = (2g′q/f 3)1/4 is the

deformation radius.

the deformation radius, as in the laboratory. The gravity current along the wall does not
separate from corner C1, which is consistent with observation.

a. Position of salinity front

We compare the position of the salinity front at different times as observed in the lab-
oratory and obtained numerically (compare circles with solid line in Figs. 11a–11f). For
both the laboratory observations and the numerical solutions, the distance of the front from
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Figure 12. Comparison between the mean speed of the salinity front observed in the laboratory
and calculated numerically from theory. Results from duplicate experiments in the laboratory are
shown by solid and open circles. Vertical bars denote two standard deviations in the observational
estimates. The dashed line (slope = 1) is the line of perfect agreement between the experimental
and numerical results.

the wall is determined along the direction normal to the wall and from corner C1 of the
wall. The salinity front as computed numerically migrates persistently away from the wall
for all rates of freshwater inflow (Figs. 11a–11f). For each rate of freshwater inflow, the
front reaches a distance from the wall of several deformation radii and moves at a speed
decreasing with time, which is qualitatively consistent with observation. For the four largest
inflow rates, the numerical solution agrees closely with laboratory results with only a few
exceptions (Figs. 11c–11f). On the other hand, the distance of the front from the wall as
determined numerically exceeds systematically the observed distance for the two smallest
rates of freshwater inflow (Figs. 11a–11b).

b. Mean speed of salinity front

Wealso compare themean speed of the salinity front from the laboratory observations and
the numerical solutions. The mean speed of the front is defined asΔd/Δt = (lf − li )/(tf −
ti), where li = 2×1.10 cm (lf = 38×1.10 cm) is the initial (final) recorded distance from
the wall. The uncertainty (standard deviation) in the observed mean speed is calculated by
propagating the uncertainties in the initial and final distances and the uncertainties in the
initial and final times, assuming no correlation between the uncertainties. The difference
between the predicted and observed mean speeds is less than two standard deviations for
half of the experiments (Fig. 12). The mean speeds from the numerical solutions are smaller
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Figure 13. Difference between the distance of the salinity front from the wall predicted by theory
and observed in the laboratory. The difference is the average for the ten experimental distances
from the wall and is shown as a function of the rate of freshwater inflow. Results for duplicate
experiments in the laboratory are shown by solid and open circles. Horizontal and vertical bars
denote uncertainty estimates (the uncertainties in freshwater inflow rate for q ≤ 3.73ml s−1 are
smaller than the diameter of the circles and are not shown). The horizontal dashed lines show the
range of the deformation radius in the experiments.

than the observed ones for all experiments, suggesting the presence of a bias in the solutions,
in the observational estimates, or in both.

5. Discussion

In this section, the differences between the experimental results and the numerical
solutions of the movement of the salinity front are given some consideration. The most
conspicuous difference is the overestimation of the distances of the front from the wall
which are predicted for the smallest rates of freshwater inflow (Figs. 11a–11b). The overes-
timation is reduced for higher inflow rates (Figs. 11c–11f). To better illustrate this, the mean
difference between the predicted and observed position of the front is computed for each
experiment and plotted against q (Fig. 13). The mean difference decreases from 7–10 cm
for q = 1.03ml s−1 to less than 2 cm for q = 4.51ml s−1. Another difference consists in
the underestimation of the mean speed at which the front moves away from the wall over
the course of the experiments (Fig. 12).
The differences described above are likely due to approximation(s) in the theory, although

systematic errors in the laboratory and in the numerical method to solve Eq. (34) cannot
be excluded. Below several approximations in the theory are discussed, with emphasis on
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their possible contribution to the differences. Approximations which appear unlikely to
contribute are considered first, followed by those whose effects on our experimental results
are more difficult to establish.

a. Variation of free surface

Whereas the free surface is assumed to be flat in theory (11a), rotation produces a radial
(parabolic) variation of the free surface in the laboratory basin. In a fluid of uniform density,
free surface variations provide a source of relative vorticity through the mechanism of
vortex stretching or compression (e.g., Pedlosky, 1987). In a two-layer fluid, however, such
variations are proportionally less, by a factor ofΔρ/ρ, than the deformation of the interface
between the two layers. Hence, to order Δρ/ρ, the motion of the free surface is negligible
compared to the motion of the interface and the free surface appears rigid, insofar as the
vertical velocity is concerned (e.g., Pedlosky, 1987). Consequently, free surface variations
are unlikely to be dynamically significant in our experiments. It can be shown that a radial
variation of the free surface caused by background rotation, η̄, does notmodify the governing
equation for h (when written in cylindrical coordinates) and the expressions for κs , κa (23a–
23b), provided that the layer depth in these expressions is identified as h + η̄.

b. Effect of mixing

The reduced gravity which is assumed in our numerical solutions is based on density
measurements on freshwater and seawater samples which were made prior to the laboratory
experiments. It has therefore a constant value. In the laboratory experiments, on the other
hand, the density of the buoyant layer is expected to change, at least to some extent, due
to mixing with ambient seawater. Sampling the buoyant layer during experiments such as
reported here, however, is difficult given the small layer thickness (of the order of 1mm)
and the relatively high rotation rate (Ω = 0.5 s−1). Accordingly, the density of the buoyant
layer was not measured and the amount of mixing which may have occurred during our
experiments is unknown.
On the other hand, it is unclear that turbulent mixing played a significant role in our

experiments. First, turbulence was not noticeable, except perhaps within the bulge. There
irregular and intermittent streaks of very red water were observed, which may have been
produced by the upwardmotion of buoyantwater bursting from the sponge. Second, it seems
unlikely that mixing is the sole explanation for the differences between the experimental
results and the numerical solutions. To illustrate this point, the equation for h (22) is again
solved numerically for each experimental value of q but with the reduced gravity arbitrarily
set to g′ = 0.12m s−2, which is half the measured value. The kinematical viscosity and
the Coriolis parameter are unchanged. Whereas the distance of the salinity front from the
wall predicted with g′ = 0.12m s−2 agrees better with observations for small values of q,
the agreement is clearly worse for high q (Figs. 11a–11f). A smaller value of g′ reduces
the mean speed of the salinity front propagation away from the wall (Figs. 11a–11f), which
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would worsen the agreement with the observed speeds (Fig. 12). Thus, the occurrence of
mixing in our experiments is unlikely to universally explain the discrepancies between the
experimental and numerical results.

c. Effect of surface tension

A possible effect of surface tension on gravity currents produced in the laboratory has
beenmentioned in earlier work (McClimans and Saegrov, 1982). Consider the triple contact
where the front between two liquid layers (liquid 1 above liquid 2) intersects the air, i.e.,
the free surface. The general condition for the upper liquid to initially spread on the lower
liquid due to surface tension is (Davis and Rideal, 1963)

γ2a > γ1a + γ12. (36)

Here γ1a (γ2a) is the surface tension of liquid 1 (2) against air and γ12 is the surface tension
between the two liquids. The difference γ2a −(γ1a +γ12) is called the spreading coefficient.
In (36) the surface tensions are those before mutual saturation of the liquids has occurred
and where, if the liquids are ultimately miscible, γ12 vanishes (Davis and Rideal, 1963).
Thus, if the liquids are freshwater and seawater (miscible), condition (36) reduces to

γ2a > γ1a. (37)

The surface tension of seawater against air is slightly greater (by O(10−3)Nm−1) than that
of pure water (Neumann and Pierson, 1966), suggesting that the above condition is met
in our experiments: at least initially, freshwater would spread on seawater. Whether this
effect is quantitatively important in our experiments, however, is difficult to establish given
the inevitable presence of surface impurities. Such impurities may greatly lower surface
tensions and usually reduce the spreading coefficient (Davis and Rideal, 1963).
The consideration of a surface tension gradient in the theory has some remarkable con-

sequences (Appendix D). For example, such a gradient produces the divergence (or con-
vergence) of an additional flux of volume in the upper layer, which tends to decrease (or
increase) the layer depth. The additional flux divergence tends to advect the front in the
direction of increasing surface tension, i.e., perpendicularly to the front line. These results
support the notion that a surface tension gradient tends to pull buoyant plumes outwards in
laboratory experiments (McClimans and Saegrov, 1982). On the other hand, their validity
is probably limited as surface tension in a two-layer theory may be best regarded as dis-
continuous at the front between two layers. Further analysis of this interesting problem is
beyond the scope of this paper.

d. Other possible effects

Other effects might contribute to the discrepancies between our experimental and numer-
ical results. One such effect is the formation of a recirculating bulge near the freshwater
source. A bulge was observed to grow in size in our laboratory experiments, although no
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specific measurements on the bulge were taken. The bulge is an inertial effect due to poten-
tial vorticity conservation in a plume of shrinking thickness near the source (e.g., Yankovsky
and Chapman, 1997; Nof and Pichevin, 2001). The resulting anticyclonic vortex near the
source competes with Kelvin wave dynamics, as in the related problem of nonlinear Rossby
adjustment in a channel (Hermann et al., 1989).
Earlier laboratory experiments with a rotating basin have determined that a significant

fraction of the buoyant water exiting the source may be stored in a bulge near the source
(Avicola and Huq, 2003b; Horner-Devine et al., 2006). Consequently, the length and width
of the gravity current along the wall are much reduced if a bulge is present near the source
(Avicola andHuq, 2003b). The numerical solutionswhich are considered in this paper do not
reproduce a bulge, likely because of the omission of inertia in the theory (e.g., Yankovsky
and Chapman, 1997; Nof and Pichevin, 2001). The lack of a bulge might explain why some
of these solutions overestimate the width of gravity current along the wall compared to
observations for the smallest values of q (Figs. 11a–11b). It is less clear, on the other hand,
why the speed of the salinity front migration away from the wall would then be generally
underestimated (Fig. 12).
Another possible effect is horizontal friction, in particular along the wall and along the

salinity front. The presence of horizontal boundary layers would invalidate the scaling
arguments of Section 3, since the horizontal scale of variation of dynamical variables such
as u, v would be much lower in these layers than elsewhere. Consequently, the horizontal
friction terms in (4a–4b) would not be negligible compared to the Coriolis acceleration in
these layers. Speculatively, horizontal friction would retard the movement of buoyant water
along the wall and hence contribute to the overestimation of the distance of the salinity front
from the wall in some numerical solutions (Figs. 11a–11b). On the other hand, it is again
less clear how horizontal friction could account for the fact that the speed at which the front
moves away from the wall is generally underestimated (Fig. 12).

6. Summary

Simple experiments are conducted in the laboratory, whereby the movement of buoyant
water released in a sectorial basin inscribed in a cylindrical tank is investigated. The basin
has an angle of 120◦ at the apex, a radius of 1m, vertical walls, and a flat bottom. Rotation is
anticlockwise and proceeds at the same rate in all experiments (f = 1 s−1). The wall along
which freshwater is released runs from the apex to the arc of the basin and is seen to be on
the left from the arc. It has a corner with a right angle on the inner side. The basin initially
contains salt water that is brought to solid body rotation. Freshwater is then released near
the surface along the wall between the apex and the corner. The rate of freshwater inflow
is kept constant in a given experiment and varies between experiments from about 1ml s−1

to about 4.5ml s−1.
The freshwater forms a bulge near the source and a gravity current then flows toward the

corner C1 along the wall. The current does not separate at the corner and remains attached
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to the wall. Depending on the experiments, the along-wall velocity U‖ between the source
and corner C1 ranges from 3mm s−1 to 30mm s−1, implying a critical radius of curvature
U‖/f of 3mm to 30mm (Boormans and Garrett, 1989). Although the radius of curvature
of corner C1, which is very sharp, has not been measured, it is clearly smaller than 30mm.
Consequently, the gravity current should have detached from the wall at the corner in some
experiments according to the criterion of Boormans and Garrett (1989). We speculate that
the lack of detachment stems from the small rates of freshwater inflow which have been
considered in our experiments, leading to gravity currents that are dynamically different
from those simulated in previous laboratory studies and envisioned in inviscid theories of
current separation from a curved boundary (e.g., Klinger, 1994). In other words, the lack of
detachment in our experiments might be due to the low Reynolds numbers that characterize
these experiments.
The salinity front along the wall migrates away from the wall with a time scale greatly

exceeding the rotation period. The front reaches a distance of several deformation radii
(2.6 cm ≤ lD ≤ 3.8 cm) over the course of the experiments (from about 5 to 15 minutes).
The migration of the front can be described to a good approximation as a motion with
constant deceleration. The migration speed near the wall and the deceleration rate of the
front both increase with the rate of freshwater inflow.
The migration of the salinity front away from the wall is down the pressure gradient,

indicating that the geostrophic constraint that tends to maintain buoyant water along the
wall is eventually broken. A simple theory of a surface layer containing light fluid spreading
over an infinitely deep layer containing dense fluid is considered to explore the role of
vertical friction in the migration of the front observed in the laboratory. In the upper layer,
horizontal momentum is driven by a balance between Coriolis acceleration, horizontal
pressure gradient, and vertical friction. In the lower layer, the horizontal pressure gradient
is ignored. In both layers vertical friction takes the form ν∂2(u, v)/∂z2.

Analysis of the equations of motion shows that the depth of the buoyant layer (h) satisfies
a diffusion equation,

∂h

∂t
= ∇ · (K(h)∇h).

The diffusion tensor K is the sum of a symmetric part representing the effect of vertical
friction and an antisymmetric part representing the effect of geostrophic motion. Note that
this equation can be transformed to an advection-diffusion equation.
Previous examples of diffusion or advection-diffusion equations for layer thickness can be

found in geophysical fluids dynamics. For instance, the layers of homogeneous temperature
and salinity which are observed at some oceanic locations from microstructure data could
spread under the action of vertical friction at the bottom and top of the layers. The spreading
was described by a diffusion equation, with an effective diffusivity given by g′√ν/f 3

(Stommel and Fedorov, 1967). This is four times greater than κ0, which is the diffusivity
obtained in the limit h/δ � 1 and implicit in (31). The depth average of a scalar property in a
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bounded shear flow is governed by an advection-diffusion equationwhere the components of
the diffusion tensor depend on the departures of the velocity components from their average
values (Fischer, 1978). The surface elevation of a thin layer of homogeneous laminar fluid
subject to rotation and bottom friction obeys to a diffusion equation for horizontal scales
larger than the Rossby radius, where the effective diffusivity is g

√
ν/(2f 3) (Gill, 1982).

The effective diffusivity is reduced to g′√ν/(2f 3) if the layer is sandwiched between
an infinitely thick layer above and the bottom below (Gill et al., 1979). An homogeneous
intrusion in a rotating stratified fluid (Gill, 1981) and a buoyant layer floating above a denser,
rotating layer (e.g. Garrett and Loder, 1981; Wright, 1989) each have a diffusive behavior,
with an effective diffusivity of magnitude ν(N/f )2, where N is the buoyancy frequency. In
the boundary layer along the slope of a rotating and stratified fluid, the velocity component
along the slope ‘diffuses’ away from the slope with an effective diffusivity depending on
ν, N/f , the slope angle, and the Prandtl number (MacCready and Rhines, 1991). Our
simple theory extends all these earlier studies by considering the evolution of a density
front between two layers of different densities in concert with a representation of vertical
friction that is precise for laboratory experiments.
Numerical solutions of the governing equation of h for arbitrary h/δ are compared to

observationsmade in the laboratory. The initial conditions, boundary conditions, and param-
eters of the equation are all constrained from laboratory conditions, providing a stringent
test. Comparison of numerical solutions with observations is generally favourable. The
gradual widening of the gravity current and its uninterrupted contact with the wall (no
separation at corner C1) are reproduced in the solutions.
The movement of the salinity front observed in the laboratory (Figs. 4–6) could be

understood from the following scaling argument. Consider two basic observations (Fig.
10a). First, the front is about parallel to the wall, suggesting that ∂h/∂y 	 ∂h/∂x is a
reasonable approximation, at least at some locations. Second, the buoyant layer is deeper
near the wall than away from the wall as revealed by the gradual color change in the
cross-front direction, suggesting that ∂h/∂x < 0. Both observations suggests that the
evolution of the buoyant layer is approximately governed by ∂h/∂t = (∂/∂x)(κs∂h/∂x) =
(∂κs/∂x)(∂h/∂x) + κs(∂

2h/∂x2) where ∂κs/∂x is negative since ∂h/∂x is negative (in
our experiments h is of the order of δ or less, so κs generally increases with h; Fig. 9). At
the front, κs vanishes since h is zero, so the rate of change of h at the front is governed
by ∂h/∂t + (−∂κs/∂x)(∂h/∂x) = 0, where the effective velocity (−∂κs/∂x) arises from
vertical friction at the interface between the two layers. As the front is near the wall, the
depth of the buoyant layer changes from itsmaximumvalue at thewall (hw, which is fixed by
experimental conditions) to zero at the front over a relatively small distance. Accordingly,
the scale for (−∂κs/∂x) is large near the wall and the front moves quickly. In contrast,
away from the wall, the change in layer depth is less over the same distance, the scale for
(−∂κs/∂x) is small, and the frontmoves slowly. Thus, the front decelerates as it moves away
from the wall (Fig. 4). This argument would also explain why the speed of the front near the
wall increases with the rate of freshwater inflow (Fig. 5), since hw and hence the scale for
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(−∂κs/∂x) near the wall increase with q. It would also account for the front deceleration
increasing in amplitude with q (Fig. 6), since the change in the effective velocity (−∂κs/∂x)

between a location near the wall and a location away from the wall is characterized by a
larger value as hw is larger.
On the other hand, differences between numerical solutions and observations exist that

are not fully understood. A gradient in surface tension across the salinity front, the formation
of an inertial bulge near the freshwater inlet, and horizontal friction may each contribute to
the differences.
To directly apply our results to the real ocean requires a leap that we are not prepared

to attempt given the idealized character of the laboratory experiments and the simplicity of
the theory. Spreading of density fronts in the ocean is likely to be dominated by processes,
such as frontal instabilities and mixing by eddies, which are not considered in this paper.
Turbulent mixing appears as an important process for the dynamics of buoyant coastal
plumes, as indicated by field observations (e.g., Münchow and Garvine, 1993; Sanders and
Garvine, 2001; MacDonald and Geyer, 2004; Pritchard and Huntley, 2006; Horner-Devine
et al., 2009) and numerical simulationswith circulationmodels (e.g., Fong andGeyer, 2001;
Hetland, 2005; Pimenta et al., 2011). Nonetheless, the notion that interfacial friction leads
to seaward spreading of density fronts bounding buoyant water introduced along oceanic
boundaries (e.g., Wright, 1989) finds here apparent support.
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APPENDIX A

Details about laboratory experiments

Set-up

The rotating table contains several elements enabling the release of freshwater into the
basin during rotation (Fig. 1). A pail filled with fresh (tap) water is fixed outside the sectorial
basin. A red dye (food color) is added in constant proportion to the freshwater, so the
evolution of freshwater in the basin could be observed. The freshwater is pumped from the
pail into the basin using a pump that is fastened on a shelf outside the basin. The freshwater
from the pail flows through a tube (via the pump) toward the wall. The tube is connected to
a block of PVC that is attached to the outer side of the wall. The block has a large threaded
entry hole and five exit holes. A PVC fitting that fits the tube is fixed in the threading. The
exit holes are facing a sponge that is embedded in a square opening made in the wall. The
sponge is intended to distribute the freshwater over the area of the opening before freshwater
flows into the basin. The sponge is inserted into the opening in such a way that it protrudes
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from the wall by only a small distance. The sides of the opening have a length of 5 cm. The
opening is straight with vertical sides located at a distance of 10 cm and 15 cm from the
apex of the basin. Its lower side is at a height of slightly less than 18 cm above the bottom
of the basin.
Both the sectorial basin and the other, passive basin are filled with seawater to reduce the

pressure difference on each side of the basin walls. The level of seawater above the bottom
in these basins is typically 0.23 ± 0.01m. The sectorial basin is entirely covered by a lid
in order to reduce the action of a wind stress on the water surface during rotation (Fig. 2).
The lid is transparent, made of polycarbonate, and has a thickness of about 2mm (light
refraction at the lower and upper surfaces of the lid is negligible). It lies on the vertical
walls of the basin and is clamped at two places along the periphery of the table. The space
between the lower edge of the lid and the wall that is visible in some places is obstructed
with plastic bands adhering electrostatically and glued with gummed paper along the basin
to prevent air exchange.

Spin-up

The time required to spin up afluidof uniformdensity by rotation communicated through a
bottomEkman layer isH/

√
2νf , whereH is the depth of the fluid, ν the kinematic viscosity,

and f the Coriolis parameter (e.g., Pedlosky, 1987). For H = 0.23m, ν = 10−6 m2 s−1,
and f = 1 s−1, the spin-up time amounts to 163 s. For all our experiments, a time of at least
30 minutes, which corresponds to more than ten spin-up times, elapses between the start
of rotation and the start of freshwater discharge. Accordingly, the salt water in the basin
should always be close to a state of solid body rotation when the discharge is initiated.
Note that, owing to rotation, the free surface in the basin becomes parabolic. Let r be

an arbitrary radial distance from the apex and R the basin radius. Under the effect of
rotation, the level of salt water in our experiments drops where r < R/

√
2 and rises where

r > R/
√
2, with R/

√
2 = 71 cm. At radial distances 10 cm < r < 15 cm, where the

sponge is positioned, the level is depressed by 6mm. These considerations dictate that the
sectorial basin be filled with salt water to a level equal to the height of the upper side of the
sponge above the bottom plus at least 6mm in order for the sponge to remain submerged
during rotation. For all our experiments, the upper side of the sponge is below the water
surface by a few millimeters prior to rotation and most of the sponge remains submerged
during rotation. Thus, freshwater is always introduced near the water surface during the
experiments.

Movement of salinity front

For each experiment, the movement of the salinity front is determined by measuring the
time it takes for the front to reach ten different apparent distances from the wall (from
lo = 2 cm to lo = 38 cm, with a spacing of 4 cm). Each distance is identified on the
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digitized sequence by a straight line which is parallel to the wall and which passes through
the appropriate marking on top of the adjacent wall. For each distance two values are
determined from the sequence: the time when the front is last seen on the wall side of the
line and the time when the front is first seen on the other side of the line. The mean of the
two values is taken as an approximate estimate of the time it takes for the front to reach a
particular distance from the wall, and the range of the two values is taken as a conservative
estimate of the uncertainty in this time.

APPENDIX B

Derivation of the equation for h

The depth integral of the velocity component u1,
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is evaluated by integration by parts, which gives
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Equivalently,
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Inserting (B4a–B4b) into (B3) yields
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Expressing the hyperbolic functions in terms of exponentials and using formulas for circular
functions, this integral becomes
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e−2h/δ

−
(
1 − cos

2h

δ

)
(1 + e−2h/δ)

}

+ δ

8
vg

{(
1 + cos

2h

δ

)
(e−2h/δ − 1) + 2 sin

2h

δ
e−2h/δ

−
(
1 − cos

2h

δ

)
(1 + e−2h/δ)

}
+ hug. (B6)

Distributing the terms between parentheses and since (ug, vg) = (g′/f )(−∂h/∂y, ∂h/∂x),
the integral can finally be written as

0∫
−h

u1 dz = −g′δ
4f

{
1 − e−2h/δ

(
sin

2h

δ
+ cos

2h

δ

)}
∂h

∂x

+ g′δ
4f

{
1 + e−2h/δ

(
sin

2h

δ
− cos

2h

δ

)
− 4

h

δ

}
∂h

∂y
, (B7)

where the quantities multiplying ∂h/∂x, ∂h/∂y are minus the effective diffusivities κs , κa

(23a–23b). The depth integral of the velocity component v1 is calculated similarly. Inserting
the depth integrals of u1, v1 into the statement of volume conservation (13c) leads to the
governing equation (22).
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APPENDIX C

Numerical method of solution

The equation for the layer depth h (34) is discretized on a regular grid with spacing
Δx = Δy = 1 cm between grid points. The layer depth h is defined at grid points, and
the effective velocities ū and v̄ are defined midway between grid points in the directions x

and y, respectively. Grid points adjacent to a boundary are at a distance Δx/2 and/or Δy/2
from the boundary. Below, the indexes i and j refer to discrete values of the horizontal
coordinates x and y, respectively, and the index n refers to discrete values of time. The
overbar for the effectives velocities is omitted for clarity.
The method of solution is a finite-difference algorithm called MPDATA (see

Smolarkiewicz and Margolin (1998); and references therein). This method is iterative. The
first pass is a simple donor cell approximation,

h∗
i,j = hn

i,j − [(uh)i+1/2,j − (uh)i−1/2,j ] Δt

Δx
− [(vh)i,j+1/2 − (vh)i,j−1/2] Δt

Δy
, (C1)

where Δt is the time step. The flux (uh)i+1/2,j , for example, is computed from

(uh)i+1/2,j = 0.5
[
(ui+1/2,j + |ui+1/2,j |)hn

i,j + (ui+1/2,j − |ui+1/2,j |)hn
i+1,j

]
. (C2)

Here ui+1/2,j is a time-intermediate value evaluated with second-order accuracy
(Smolarkiewicz and Clark, 1986),

ui+1/2,j = 0.5
(
3un

i+1/2,j − un−1
i+1/2,j

)
. (C3)

The velocity component un
i+1/2,j is given by un

i+1/2,j = u
n,d
i+1/2,j + u

n,a
i+1/2,j , where

u
n,d
i+1/2,j = −1

(
∑

h)d

[
κs

(
hn

i,j

)hn
i+1,j − hn

i,j

Δx
+ κs

(
hn

i+1,j

)hn
i+1,j − hn

i,j

Δx

]
, (C4a)

u
n,a
i+1/2,j = −1

(
∑

h)a

[
κa

(
hn

i,j

)hn
i,j+1 − hn

i,j−1

2Δy
+ κa

(
hn

i+1,j

)hn
i+1,j+1 − hn

i+1,j−1

2Δy

]
(C4b)

with (∑
h
)

d
= hn

i+1,j + hn
i,j + ε, (C5a)(∑

h
)

a
= 0.5

(
hn

i,j+1 + hn
i,j−1 + hn

i+1,j+1 + hn
i+1,j−1

) + ε. (C5b)

The quantity ε is a small value (10−15) to ensure u
n,d
i+1/2,j = 0 when hn

i+1,j = hn
i,j = 0 and

u
n,a
i+1/2,j = 0 when hn

i,j+1 = hn
i,j−1 = hn

i+1,j+1 = hn
i+1,j−1 = 0. The effective diffusivities

κs and κa are computed from layer depth h using equations (23a) and (23b), respectively.
Note that the evaluation of u

n,a
i+1/2,j relies on the value of h at the four neighboring points

(i, j − 1), (i + 1, j − 1), (i, j + 1), and (i + 1, j + 1). If one or several of these points
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is outside the domain, then u
n,a
i+1/2,j is evaluated from one-sided difference schemes with

second-order accuracy. Expressions similar to (C2–C5a) are used to evalue the three other
fluxes in the donor cell approximation (C1).
The second pass of MPDATA increases the accuracy by estimating and compensating

the (second-order) truncation error of the first pass,

hn+1
i,j = h∗

i,j − [(ũh)i+1/2,j − (ũh)i−1/2,j ] Δt

Δx
− [(ṽh)i,j+1/2 − (ṽh)i,j−1/2] Δt

Δy
. (C6)

The flux (ũh)i+1/2,j , for example, is calculated as

(ũh)i+1/2,j = 0.5
[
(ũi+1/2,j + |ũi+1/2,j |)hn

i,j + (ũi+1/2,j − |ũi+1/2,j |)hn
i+1,j

]
, (C7)

where ũi+1/2,j is an ‘antidiffusive’ velocity. The antidiffusive velocity ũi+1/2,j is given by
ũi+1/2,j = ũ

(1)
i+1/2,j + ũ

(2)
i+1/2,j . where

ũ
(1)
i+1/2,j = (|ui+1/2,j |Δx − u2

i+1/2,jΔt
) h∗

i+1,j − h∗
i,j(

h∗
i+1,j + h∗

i,j + ε
)
Δx

, (C8a)

ũ
(2)
i+1/2,j = −0.125Δtui+1/2,j 〈vi+1/2,j 〉

h∗
i,j+1 − h∗

i,j−1 + h∗
i+1,j+1 − h∗

i+1,j−1(∑
h
)
Δy

, (C8b)

with

〈vi+1/2,j 〉 = 0.25(vi,j−1/2 + vi+1,j−1/2 + vi+1,j+1/2 + vi,j+1/2), (C9a)∑
h = 0.25

(
h∗

i,j+1 + h∗
i,j−1 + h∗

i+1,j+1 + h∗
i+1,j−1

) + ε. (C9b)

The second contribution ũ
(2)
i+1/2,j corrects for the presence of a cross derivative that appears

for advection problems with more than one spatial dimension. It also relies on the value
of layer depth h at the four neighboring points (i, j − 1), (i + 1, j − 1), (i, j + 1), and
(i + 1, j + 1). If one or several of these points is outside the domain, then ũ

(2)
i+1/2,j is also

evaluated from one-sided difference schemes with second-order accuracy.

APPENDIX D

Effect of surface tension

Generally, a variation in surface tension along the surface of separation between a liquid
and a gas gives rise to a tangential stress on this surface (e.g., Landau and Lifshitz, 1959;
Levich and Krylov, 1969). This stress induces convective motion in at least one of the fluids
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on each side of the surface – the Marangoni effect. In order to incorporate this stress in our
theory, the surface conditions (14) is replaced by (e.g., Levich and Krylov, 1969)

ρ1ν

(
∂w1

∂x
+ ∂u1

∂z

)
= ∂γ

∂x
, (D1a)

ρ1ν

(
∂w1

∂y
+ ∂v1

∂z

)
= ∂γ

∂y
, (D1b)

where the relative motion of the air above the water has been neglected compared to that of
the water. If the free surface is flat (w1 = 0), these conditions reduce to

ρ1ν
∂u1

∂z
= ∂γ

∂x
and ρ1ν

∂v1
∂z

= ∂γ

∂y
. (D2)

Several consequences of the altered conditions (D2) are worth noting. First, the compo-
nents of horizontal velocity in the upper layer (15a) and (15b) are augmented to include a
contribution equal to, respectively,

uγ = e−z/δ

{
uγ∗

(
cos

h

δ
+ sin

h

δ

)
+ vγ∗

(
cos

h

δ
− sin

h

δ

)}
, (D3a)

vγ = e−z/δ

{
uγ∗

(
sin

h

δ
− cos

h

δ

)
+ vγ∗

(
sin

h

δ
+ cos

h

δ

)}
, (D3b)

whereuγ∗, vγ∗ = (δ/2ρ1ν)(∂γ/∂x, ∂γ/∂y). The constantsA1,B1 (20a–20b) are unchanged.
In contrast, the constants A2 and B2, which are given by (21a) and (21b), are augmented to
include, respectively, the sum uγ∗ + vγ∗ and the difference vγ∗ − uγ∗.

Accordingly, a gradient in surface tension produces a different effect in the two layers.
In the upper layer, an Ekman spiral (defined by D3a–D3b) is produced near the surface in
addition to the spiral caused by vertical friction at the layer interface. The spiral caused
by vertical friction at the layer interface is not modified by ∇γ. In contrast, in the deep
layer, no new spiral is produced but the spiral due to vertical friction at the layer interface is
modified by ∇γ. Note that, in both layers, the contribution of the surface tension gradient
to the horizontal velocities decays with depth with the Ekman layer scale δ.
A second consequence of the altered conditions (D2) is the addition of a term in the

governing equation for the depth of the buoyant layer,

∂h

∂t
+ ∇ · (uγ∗δ) = ∇ · (K(h)∇h), (D4)

where the components of the effective velocity uγ∗ are

x̂ · uγ∗ = uγ∗e−h/δ sin
h

δ
+ vγ∗

(
1 − e−h/δ cos

h

δ

)
, (D5a)

ŷ · uγ∗ = vγ∗e−h/δ sin
h

δ
− uγ∗

(
1 − e−h/δ cos

h

δ

)
. (D5b)



2011] Marchal et al.: Penetration of salinity front into rotating basin 643

The diffusion tensor K is not modified by ∇γ and is still given by (25). Hence, the surface
tension gradient leads to the divergence (or convergence) of an additional flux of volume
in the upper layer. A divergence of volume flux, for example, tends to decrease the layer
depth. This effect is analogous to theEkman suction caused by the divergence ofwind-driven
currents near the ocean surface.
At the front (where h = 0), the additional flux divergence due to the surface tension

gradient reduces to

∇ · (uγ∗δ) = (uγ∗ + vγ∗)
∂h

∂x
+ (vγ∗ − uγ∗)

∂h

∂y
. (D6)

If the y axis, for example, is aligned with the front, so that both ∂h/∂y and ∂γ/∂y vanish,
this term becomes

∇ · (uγ∗δ) = uγ∗
∂h

∂x
. (D7)

In this case, the front tends to be advected perpendicularly to the front line, in the direction
of increasing surface tension, and at the speed uγ∗ = (δ/2ρ1ν)∂γ/∂x. A similar result is
obtained if the x axis is aligned with the front.
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