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Abstract. Recent fine- and microstructure observations indicate enhanced

finescale shear and strain in conjunction with bottom intensified turbulent

dissipation above regions of rough bathymetry. Such observations implicate

the bottom boundary as an energy source for the finescale internal wavefield.

They also pose a question. Can the vertical profile of turbulent dissipation

be predicted from a model of wave generation which serves as input to a

model describing how internal wave energy is transferred to dissipation scales

as waves propagate away from their source region? This paper attempts to

address that question in the context of quasi-steady lee wave generation and

dissipation.

1 Introduction

The intensity, spatial distribution and causal physical
mechanisms of diapycnal mixing in the deep ocean have
been the subject of much speculation. Advective heat
budgets in semi-enclosed basins (e.g. Hogg et al., 1982)
typically return estimates of K ∼ 1−10×10−4 m2 s−1,
similar to estimates of K ∼ 1 × 10−4 m2 s−1 obtained
from vertical advection/diffusion models (Wyrtki 1962,
Munk 1966). These estimates, however, do not appear
to be appropriate for the stratified upper ocean, for
which a purposeful tracer release experiment (Ledwell
et al. 1993) and microstructure measurements (Gregg
1987) suggest K ∼ 0.1 × 10−4 m2 s−1. Validation
studies (Polzin et al. 1995, Gregg 1989) of internal
wave-wave interaction models indicate that the empir-
ical Garrett and Munk (GM, Garrett and Munk 1975,
as modified by Cairns and Williams 1976) spectral de-
scription of the background internal wave state supports
only weak (K ≤ 0.1×10−4 m2 s−1) mixing which is in-
dependent of the background stratification rate, N2.

In order for internal wave driven mixing to explain
the results of advective heat budgets in abyssal basins,
the abyssal internal wave spectrum needs to depart sub-
stantially from the GM specification. As abyssal inter-
nal wave observations were used to help construct the
GM model, significant spatial variability of the abyssal
wavefield is implied. Neither departures of the abyssal
internal wavefield from GM nor diffusivities in excess of
1 × 10−4 m2 s−1 are apparent above smoothly sloping
abyssal plains and Continental Rise regions (Toole et

al. 1994, Kunze and Sanford 1996, Polzin et al. 1997).
Significant departures are, however, found above rough
bathymetry (Polzin et al. 1997, Polzin and Firing 1997).

What, then, are the mechanisms which support en-
hanced mixing above rough topography? Polzin et

al. (1997) proposed that the enhanced mixing above
rough topography in the Brazil Basin was associated
with a direct conversion of barotropic tidal energy into
baroclinic tidal energy having horizontal scales which
were characteristic of the bottom topographic rough-
ness (λh < 6 − 10 km). Linear internal wave kinemat-
ics (λv ∼ λhN/ω) implies the baroclinic response to
be band-limited to vertical wavelengths (λv < 600 −

1000 m). If so band-limited, an internal wavefield
can exhibit both relatively modest velocities and sig-
nificant shear (S2 > N2, where S2 is the shear vari-
ance and N2 is the buoyancy frequency squared) over
large vertical length scales. Both are essential consid-
erations. Energetic arguments suggest baroclinic tidal
velocities should not exceed barotropic, and barotropic
tidal velocities in the open ocean typically are only
0.02 − 0.03 m s−1. Turbulent production from inter-
nal wave breaking is quadratically dependent upon the
length scale over which S2 > N2 (Polzin, 1996). In
the background wavefield, m2U2 = S2 = N2 for a
vertical scale 2π/λv = 1/m of 1 meter. If a single
vertical scale characterizes both the shear and veloc-
ity fields of the baroclinic response, U/N = 20m for
U = 0.02m s−1 and N = 0.001 s−1. It is entirely
possible to obtain turbulent dissipation rates that are
two orders of magnitude larger than background values
from the breaking of an internal tide having relatively
modest velocities which are characteristic of the open
ocean barotropic tidal velocity field. The trick is that
the baroclinic response needs to have a small vertical
scale. This small scale response is effectively and ef-
ficiently provided by flow over topographic roughness.
Data obtained during an additional cruise to the Brazil
Basin further supports this proposed mechanism (Led-
well et al. submitted). Depth-averaged dissipation data
document a fortnightly modulation in the turbulence
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intensity that lags the amplitude of the barotropic tide
by 1 − 2 days. The fortnightly modulation and small
phase lag imply a spatially local balance between inter-
nal tide generation and dissipation, rather than gener-
ation of low modes at the shelf break of the Brazilian
coast (Baines 1982) and subsequent propagation and
scattering (Müller and Xu 1992) into smaller spatial
scales above rough bathymetry.

Polzin and Firing (1997) infer depth averaged dis-
sipation rates above rough topography on the South-
east Indian Ridge which have a similar enhancement
as the data obtained above the Mid-Atlantic Ridge in
the South Atlantic. They cite deep sub-inertial flows
associated with the Antarctic Circumpolar Current as
being responsible for the generation of small vertical
scale internal lee waves. As with baroclinic tide genera-
tion, the issue is that wave energy resides at sufficiently
small scales that waves dissipate near their source. How
the magnitude and decay scale of turbulent production
via wave breaking relates to the amplitude and spatial
scales of the wavefield is defined by the competing and
coupled effects of propagation in an inhomogeneous en-
vironment and nonlinear transfers. The amplitude and
spatial scale of the wavefield can, in turn, be viewed as
a product of wave generation at the bottom boundary.

The motivation for this study is to better define and
understand those processes which contribute most sig-
nificantly to the closure of the abyssal heat budget. The
predisposition is to view generation of small vertical
wavelength internal waves and their subsequent dissi-
pation as the dominant process. The objective of this
research is to develop quantitative, predictive models for
the spatial evolution of the finescale wavefield and asso-
ciated turbulent mixing. The problem of quasi-steady
lee wave generation and dissipation is formulated in the
following section and addressed below.

2 Problem statement

The turbulent fluxes associated with wave breaking
can be viewed as the end result of a systematic, down-
scale transport of energy by adiabatic mechanisms at
larger spatial scales. The downscale transport can result
from a variety of mechanisms such as buoyancy scaling,
wave-mean flow or wave-wave interactions. Wave-wave
interactions are the most problematic of these. While
the downscale transport of energy associated with either
buoyancy or wave-mean flow interactions can be defined
for a single internal wave, defining a transport model
for fluxes associated with wave-wave interactions ne-
cessitates a statistical, spectral framework if the wave-
field exhibits a broad-banded character in the vertical
wavenumber domain.

A conceptual diagram of the problem appears in Fig-
ure 1. Internal waves are assumed to be generated at the
bottom boundary (z = 0) by sub-inertial flow U(z) im-

pinging upon topographic roughness. In view of the sta-
tistical framework, the bathymetry is described in terms
of a 2-D spectrum H(k, l), where k and l are horizontal
wavenumbers and the flow is assumed to be aligned in
the ’k’ direction. The sub-inertial flow is assumed here
to be steady. A spectral model of wave generation is em-
ployed to specify the distribution of energy flux into the
wavefield as a source function, So(k, l), which can sim-
ply be viewed as a product of the bathymetric spectrum
and a transfer function. A dispersion relation is then
used to transfer the source function into the vertical
wavenumber (m) and intrinsic frequency (ω = σ − kU)
domain, So(m, ω). This source function then serves as
a bottom boundary condition for an interior wavefield
having both upward (E+) and downward (E−) propa-
gating components, Section 8.

Evaluating the vertical evolution of the wavefield re-
quires defining the relative effects of vertical propaga-
tion and transport in a vertical wavenumber (m), in-
trinsic frequency (ω), height above boundary (z) coordi-
nate system. Here, transport is used to denote transfers
of energy (or wave action) in the vertical wavenumber
(F ) and intrinsic frequency (G) domain associated with
buoyancy scaling, wave-wave and wave-mean flow in-
teractions. An equation governing the evolution of the
wave spectrum is derived in Section 3, and transport
models are discussed in Section 4.

Solutions for the internal wave spectrum are deter-
mined by solving the wavefield evolution equation sub-
ject to appropriate boundary conditions on E+ and
E−. In Section 6 a radiation condition is used. Solu-
tions described in Section 7 assume an upward (down-
ward) propagating wavefield reflects from the surface,
z = H (and bottom, z = 0). Surface generation and
scattering from non-uniform bathymetry or reflection
from a sloping boundary are neglected. Complicating
the analysis is the potential need to incorporate the in-
teraction between upward [E+(m, ω, z)] and downward
[E−(m, ω, z)] propagating waves. Direct transfers of en-
ergy between upward and downward propagating waves
are ignored here. The two components of the wave-
field are assumed to be simply coupled by the depen-
dence of downscale transfers F upon the total wavefield,
E+ + E−. Finally, estimates of turbulent fluxes can be
obtained by evaluating the transport F using the solu-
tions to the wavefield evolution equation.

3 Wavefield Evolution Equation

The intent of this section is to derive an equation
from which the relative effects of of propagation and
transport on the amplitude of the wavefield can be as-
sessed. The wavefield evolution equation represents a
wave action conservation statement (e.g. Bretherton
and Garrett 1968) formulated in the frequency, verti-
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reflection:  E+(m,ω,H) = E−(m,ω,H)
generation

H(k,l) ⇒ So(k,l) dkdl = So(m,ω) dmdω : [E+(m,ω,0) − E−(m,ω,0)] = So(m,ω)/Cgz

               wavefield evolution equation

   ∂t (E/ω)  +  ∂z (Cgz E /ω)  +  ∂m (F)  +  ∂ω (G)  =  0
      time          propagation               transport
dependence

E+

E−

U(z)

 z=H

  z=0                  
generation
scattering
reflection

N(z)

ω = σ − kUs     m2 = Kh
2 N2 / (ω2 − f2)    Cgz = −(ω2 − f2)/ωm

Figure 1. A conceptual process diagram. The shape of the solution in the vertical wavenumber domain is
depicted at the center of the figure. Propagation of this spectrum into a region of increasing N(z) or decreasing
U(z) implies a transport of energy to smaller scales depicted by the notation ’WKB’. Transport associated with
wave-wave interactions simply results in a decrease of the amplitude of the spectrum with height. The evolution
of the spectrum in this case is denoted by ’w-w’. See text for description of the other variables.

cal wavenumber domain. 1 It is the wave stress, rather
than energy, which is conserved by waves propagating in
a spatially varying background flow (Bretherton 1966,
Jones 1967). The interaction of the wave stress with the
background shear implies a transfer of energy between
the two (Garrett 1968). The stress is then expressed as
wave action. The hydrostatic approximation is assumed
throughout as the transport models for buoyancy scal-
ing and wave-mean flow interactions are based upon the
WKB approximation.

Consider a point (m2, ω2, z2) in vertical wavenum-
ber (m), frequency (ω), and vertical coordinate (z)
space, Figure 2. The action density in the volume de-
fined by the line segments ∆m = m3 − m1, ∆ω =
ω3 −ω1, ∆z = z3 − z1 is ∆m∆ω∆z E(m2, ω2, z2, t)/ω2,
where E±(m, ω, z, t) is the vertical wavenumber-
frequency energy density of either the upward (+)
or downward (−) propagating wavefield, and ∆m,
∆ω and ∆z are assumed to be small. The

1E±(m, ω, z) is the vertical wavenumber-frequency energy
density with direction of energy propagation denoted by either
+ or −. The notation E±(m, z) [or F±(m, z)] denotes integra-

tion over the frequency domain, E±(m, z) =
∫

E±(m, ω, z)dω.
For narrow frequency band solutions discussed below, this dis-
tinction is superfluous and the notation is simplified by dropping
the explicit ω dependence. Likewise, the absence of the (±) su-
perscript denotes summation over both upward and downward
propagating wavefields.

time rate of change of action density in the area,
∆m∆ω∆z∂[E±(m2, ω2, z2, t)/ω2]∂t, is balanced by ver-
tical fluxes of action through the surfaces defined by
z = z1 and z = z3, [Cgz(m, ω)E±(m, ω, z, t)/ω]∆m∆ω,
where Cgz = ∓(ω2−f2)/ωm is the vertical group veloc-
ity]; down-scale spectral transfers F±(m, ω, z, t)∆z∆ω
of action through the surfaces at m = m1 and m = m3;
and spectral transfers in the frequency domain across
ω = ω1 and ω = ω3, G±(m, ω, z, t)∆m∆z:

∆m∆ω∆z
∂[E±(m2, ω2, z2, t)/ω2]

∂t

+∆m∆ωCgz(m2, ω2, z1) E±(m2, ω2, z1, t)/ω2

−∆m∆ωCgz(m2, ω2, z3)E
±(m2, ω2, z3, t)/ω2

+∆ω∆zF±(m1, ω2, z2, t) − ∆ω∆zF±(m3, ω2, z2, t)

+∆m∆zG±(m2, ω1, z2, t)−∆m∆zG±(m2, ω3, z2, t) = 0 .
(1)

Dividing by ∆m∆ω∆z and taking the limit as ∆m, ∆ω
and ∆z approach zero results in:

∂[E±/ω]

∂t
±

∂[CgzE
±/ω]

∂z
+

∂F±

∂m
+

∂G±

∂ω
= 0, (2)

where Cgz has been assumed to be positive definite.

This equation defines the evolution of the vertical
wavenumber-frequency action (and energy) density as
a function of vertical coordinate and time. It has been
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Figure 2. The energy balance for the verti-
cal wavenumber-frequency energy density spectrum,
E(m, ω, z), at vertical wavenumber m2, frequency ω2

and vertical coordinate z2. The vertical flux of energy
is CgzE. Transports of energy to small scales are rep-
resented by F . Transports of energy in the frequency
domain, G, are not depicted.

assumed that there is no local production or dissipa-
tion of action in the volume ∆m∆z∆ω. This effectively
eliminates the direct exchange of energy between up-
ward E+ and downward E− propagating waves. The
vertical wavenumber spectrum would seem to be ill-
defined because of vertical inhomogeneity implied by
the z-dependence, but it is a well defined construct if
one can invoke horizontal homogeneity and a dispersion
relation. The need for a plane of statistical homogene-
ity currently appears to be one of the limitations of the
theory. The theory, however, does not demand that the
plane of homogeneity be vertical, and in that vein the
description of wavefield evolution away from a planar
slope is possible. But the description of the evolution
of a wavefield from a point source, such as the offshore
evolution of a baroclinic tide from the shelf break, is
problematic.

4 Transport Models

The flux F (m, ω) represents the transfer of wave
action in vertical wavenumber space associated with
a variety of physical mechanisms: wave-wave interac-
tions, buoyancy scaling and wave-mean flow interac-
tions. These mechanisms are dealt with successively
in the following three subsections.

a. Wave-Wave Interactions

This sub-section is dedicated to defining an analytical
representation for F±(m, ω) based upon the ray-tracing
model of Henyey et al. 1986 (hereafter HWF). In the
context of that model, the flux may be represented as:

F±(m, ω) =< E±(m,ω)
ω

d(m)
dt > (3)

with
dm
dt = −(kUz + lVz) .

The factors k and l represent horizontal wavenumbers
of a test wave packet with vertical wavenumber m prop-
agating in a time dependent background having larger
vertical scales and with vertical shear (Uz, Vz). The
background in HWF was a stochastic representation of
the GM model. HWF assume no correlation between
the energy density and time rate of change of vertical
wavenumber in (3), so that

F±(m, ω) =
E±(m, ω)

2ω
< kh > S(m)C(m), (4)

where kh = (k2 + l2)1/2 and S(m) is the rms shear;
S(m)2 = 2

∫ m

0 m′2Ek(m′)dm′ with Ek(m) the vertical
wavenumber kinetic energy density spectrum. The fac-
tor C(m) is expressed in HWF as (1− r)/(1+ r), where
r is the ratio of energy flux to higher and lower verti-
cal wavenumber. HWF use Monte-Carlo simulations to
estimate r(mu), where mu is a high wavenumber limit,
beyond which internal waves are considered to break.
In extrapolating their numerical results to higher val-
ues of E(mu), HWF suggest that C(m) is a function
only of S(m). Polzin et al. (1995) point out that if
an inertial subrange exists, implying no convergence of
energy flux in vertical wavenumber space,

∫
F (m, ω)dω

is independent of m and one can solve (4) for C(m)
by integrating over ω and specifying E(m) as the iner-
tial subrange solution. Both HWF and McComas and
Müller (1981b) ascribe inertial subrange behavior to the
GM spectrum, so that with an m−2 dependence for
E(m), C(m) ∼ m1/2 ∼ S(m), and (4) may be rewritten
as

F±(m, ω) = AmN−2φ(ω)E±(m, ω)

∫ m

0

m′2E(m′)dm′

(5)
with A = 0.10 and

φ(ω) = (ω2 + f2)(ω2 − f2)1/2/ω3 .

In (5), φ(ω) accounts for the conversion from horizon-
tal to vertical wavenumber and conversion from shear
spectral density to energy density by invoking a linear
dispersion relation. The specification of A = 0.10 ren-
ders (5) to be consistent with Polzin et al. (1995).

The expression (5) was utilized by Polzin et al.

(1995) in a model/data validation study. When evalu-
ated at m = mc, where mc is the wavenumber at which

S2(mc) = 2

∫ mc

0

m′2Ek(m′)dm′ = 0.7N2 (6)
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and with factors involving wave frequency estimated
from the shear-strain ratio, (5) accurately predicts the
rate of dissipation of turbulent kinetic energy ǫ to within
a factor of ±2, the approximate statistical uncertainty
of the measurements.

The transport of wave action through the frequency
domain associated with wave-wave interactions is as-
sumed to be zero,

G±(m, ω) = 0. (7)

b. Buoyancy Scaling

Variable stratification adds an additional complica-
tion. WKB scaling gives the change with N of vertical
wavenumber for a single internal wave as (e.g. Leaman
and Sanford, 1975):

m ∼= m̂N(z)/N̂, (8)

where m̂ and N̂ are reference values of m and N .
The change of vertical wavenumber implies a transport
through the vertical wavenumber spectrum which needs
to be accounted for in (2). The appropriate flux law is:

F±(m, ω) =
E±(m, ω)

ω

∂m

∂z

∂z

∂t

=
ω2 − f2

ω2
E±(m, ω)

∂N

∂z
N−1. (9)

c. Wave-Mean Flow interactions

As with buoyancy scaling, internal wave propaga-
tion in a vertically inhomogeneous sub-inertial flow im-
plies a transport. For internal waves propagating in
a geostrophic background flow, invoking the WKB ap-
proximation returns the dispersion relation:

m ∼= N(z)kh/(ω2(z) − f2)1/2, (10)

with
ω(z) = σ − kU(z).

The derivation of (10) assumes the hydrostatic approx-
imation, ζ/f << Uz/N << khN/mf ∼ O(1), where ζ
is the relative vorticity (Polzin et al. 1996). The trans-
port in the wavenumber domain is given by the product
of the action and the time rate of change of vertical
wavenumber for a single wave group:

F±(m, ω) =
E±(m, ω)

ω

∂m

∂ω

∂ω

∂U

∂U

∂z

∂z

∂t

=
E±(m, ω)

ω

∂ω

∂U

∂U

∂z
(11)

The transport in the frequency domain is similarly:

G±(m, ω) =
∂ω

∂U

∂U

∂z

∂z

∂t

E±(m, ω)

ω
. (12)

5 Approximations

It is a rather simple affair to solve the system de-
fined by (2), (5), (7), (9), (11) and (12) numerically,
at least for a steady, unidirectional wavefield. If a nu-
merical solution was one’s intent, it is possible to define
a more sophisticated and potentially realistic system of
equations governing the spatial evolution of the internal
wavefield.

For example, the spatial evolution of a wavefield may
be influenced by the potential transfer of energy from
waves propagating away from a source into those prop-
agating towards the source. A representation of such
transfers is given by the elastic scattering mechanism in
the formalism of McComas and Müller (1981a):

∂E±(m, ω1)

∂t
= −

πω1m
3

N2

×[E±(m, ω1)−E∓(m, ω1)][E
±(2m, ω2) + E∓(2m, ω2)],

in which the hydrostatic, non-rotating limit has been in-
voked and ω1 > ω2. Representation of such phenomena
within the eikonal framework is unclear: The transport
associated with individual waves is a random variable
and (5) is merely an expression for the mean transport
in an isotropic wavefield. There is no gaurantee that (5)
is an adequate representation for evaluating the spatial
evolution of an anisotropic wavefield.

The transport (5) does not appear to be a complete
representation of transports even within the eikonal
model. Sun and Kunze (1999, accepted) suggest the
need to incorporate a term proportional to the verti-
cal divergence in the evolution of the test wave vertical
wavenumber (3). They also indicate a need for rela-
tively sophisticated filtering in the wavenumber domain
in order to ensure validity of the methodology. If the
intent was to determine numerical solutions to (2), such
additional details could be incorporated into the trans-
port terms.

The frequency domain transports associated with
wave-wave interactions has been neglected (7). This
is certainly an idealization. The transports associated
with the GM spectrum are to lower frequency in the
weak interaction approximation and to higher frequency
in the eikonal model. Not much can be done about this
issue unless the equilibrium frequency spectrum is de-
fined and a rule is developed for how quickly perturbed
spectra will relax. Implementing such a scheme begs
the question of which, if either, of the two models is an
accurate representation of wave-wave interactions.

Rather than add such complexity, the intent here is
to simplify the transport terms such that (2) can be
solved analytically. At this point in time, this implies:

∂E

∂t
= 0, (13)
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∫ m

0

m′2E (m′) dm′ ∼ m3 E(m) and (14)

ω = ω̂U(z)/Û, (15)

where ω̂ and Û are reference values of ω and U .

The approximation (14) states that the shear vari-
ance in the wavenumber band 0 < m′ < m is domi-
nated by contributions at m′ ∼ m. The relation (14)
is exact if m2E(m) is independent of m, which is ap-
proximately true at high wavenumbers for the Garret
and Munk spectrum. While this represents an approx-
imation of the transport in (5), the reader should note
that the author does not attach inordinate significance
to the specific functional dependence of F upon m in
(5), despite apparent agreement between (5) and dis-
sipation data in the validation study of Polzin et al.

(1995). Roughly the same degree of agreement was
found between (5) and an equivalent representation of
the transport under the weak interaction approxima-
tion, with the exception that the triad based transport
estimate tended to overestimate the observed dissipa-
tion rates by a factor of 2-3. That estimate was based
upon a scale argument. No numerical results exist to
provide a more definitive result. It is an open question
which, if either, of these two theories represents a better
description of the transport.

With this question in mind, it is worth noting that
the two theories share important similarities. The
transport F depends upon buoyancy frequency as N2

and is quadratically nonlinear in amplitude, F ∼ E2.
Both theories predict faster interaction rates for higher
frequency waves. Both theories suggest the GM spec-
trum is in equilibrium with respect to the nonlinear
interactions at high wavenumber, with the implication
that spectra which are perturbed from the GM specifi-
cation of E(m) ∼ m−2 are relaxed back to that power
law. The approximation of the shear variance in (14)
retains these features common to both models and the
estimate of transport at high wavenumber is not quan-
titatively altered if mc >> mo.

The specification of the depth dependence of the in-
trinsic frequency in (15) is clearly an idealization. In the
context of steady flow over topography, it describes the
linear propagation of the largest scales in the problem.
This approximation can not be construed to imply lin-
ear propagation of a steady wavefield at all scales, how-
ever. Physically, (15) states that the intrinsic frequency
is independent of vertical scale, which would be true if
the energy appearing at small scales obtained its char-
acteristic frequency by transport from larger scales at
that depth and the transport in the frequency domain
associated with wave-wave interactions was negligible.
Mathematically, the approximation (15) eliminates ω as
an independent variable. The parametric specification
of ω in terms of U(z) is accounted for by taking ’z’
derivatives in the spatial flux divergence term.

Finally, (15) represents the wavefield as a narrow
frequency band process. The existence of a broad-
frequency band wavefield is fundamental to the triad de-
scription of wave-wave interactions and the importance
of such a frequency spectrum has not been addressed
within the eikonal framework. In terms of the dynamics
of wave-wave interactions, it could matter greatly if the
wavefield was narrow- or broad-banded. However, the
problem of wave generation at the bottom boundary,
be it either tidal or lee wave, characteristically involves
a response at more than a single frequency (e.g. Bell
1975a,b). The idealization of narrow frequency band
solutions is an ad hoc characterization of the genera-
tion process rather than an extrapolation of theoreti-
cal results for the flux representation which were based
upon a broad-frequency band wavefield. The derivation
above does not exclude the possibility of a broad-band
frequency wavefield.

6 A Uni-directional Solution

With the approximations given in Section (5), the
wavefield evolution equation for a uni-directional (up-
ward propagating) wavefield becomes:

∂

∂z
[[

ω2 − f2

ω2m
]E+(m, z)]+

∂

∂m
[[[

ω2 − f2

ω2

Nz

N
−

Uz

U
]E+(m, z)]+

a(ω2 + f2)(ω2 − f2)1/2

N2ω3
m4E+2(m, z)] = 0. (16)

A solution to (16) is:

E+(m, z) = b+A+(z)
ω2

ω2 − f2
α(m, z)[1 −

α(m, z)

2
]

(17)
with

α(m, z) =
m2

oN2(ω2
o−f2)

m2N2
o (ω2−f2) ,

A+(z) = 1

1 + b+
∫ z

0
β(z′)dz′

, and

β(z) = 2aN2 ω(ω2+f2)

(ω2−f2)3/2

(ω2
o−f2)2

(ω2−f2)2
m4

o

N4
o
.

The solution is characterized by an energy containing
wavenumber of m = moN(ω2

o − f2)1/2/No(ω
2 − f2)1/2,

which varies with height in accordance with WKB scal-
ing. The constants No and Uo represent the N(0) and
U(0), respectively. The action flux associated with this
solution,

∫ ∞
0

CgzE
+(m, z)ω−1 dm, is independent of

height in the absence of wave-wave interactions [i.e.
a = 0]. The basic character of this solution in the
absence of wave-mean flow interactions is described in
Polzin (1999).

7 A Bi-directional Solution

The addition of an upper boundary results in sep-
arate equations for the upward and downward propa-
gating wavefields. These are coupled through the wave-
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wave interaction transports:

∂

∂z
[[

ω2 − f2

ω2m
]E+(m, z)] +

∂

∂m
[[[

ω2 − f2

ω2

Nz

N
−

Uz

U
]E+(m, z)]+

a(ω2 + f2)(ω2 − f2)1/2

N2ω3
m4E+(m, z)[E+(m, z)+E−(m, z)]] = 0.

and

∂

∂z
[[

ω2 − f2

ω2m
]E−(m, z)] +

∂

∂m
[[[

ω2 − f2

ω2

Nz

N
−

Uz

U
]E−(m, z)]+

a(ω2 + f2)(ω2 − f2)1/2

N2ω3
m4E−(m, z)[E+(m, z)+E−(m, z)]] = 0.

(18)
A solution can be found by specifying

E+(m, z) = b+A+(z) ω2

ω2−f2 α(m, z)[1 −
α(m,z)

2 ] and

E−(m, z) = b−A−(z) ω2

ω2−f2 α(m, z)[1− α(m,z)
2 ], which

reduces (18) to a system of ordinary differential equa-
tions,

b+A+
z + β(z)A+b+(A+b+ + A−b−) = 0 and

b−A−
z − β(z)A−b−(A+b+ + A−b−) = 0. (19)

The boundary conditions are applied to the differ-
ence between the upward and downward propagating
spectra. Application of the boundary conditions is sim-
plified by expressing (19) in terms of the sum (S =
A+b+ +A−b−) and difference (D = A+b+−A−b−) am-
plitude functions. The corresponding coupled equations
are:

Sz + β(z)SD = 0 and

Dz + β(z)S2 = 0. (20)

The non-constant coefficient β(z) can be eliminated by
defining a stretched coordinate q(z) =

∫ z

0 β(z′)dz′. The
resulting sum and difference equations can be combined
to obtain a second order nonlinear equation for D:

Dqq + 2DDq = 0. (21)

This equation can be solved by noting that (i) it is ”ex-
act”, and integration returns a Ricatti equation, (ii) the
Ricatti equation can be transformed into a Bernoulli
equation with the substitution D(q) = D2(q)+γ1, where
γ1 is a constant, and (iii) transforming the Bernoulli
equation for D2(q) into a first order, linear equation
(e.g. Bender and Orzag 1978). After application
of the upper boundary condition that D(q = qH =∫ H

0
β(z′)dz′) = 0 [i.e. perfect reflection at the upper

boundary],

D(q) = −γtan[γ(q − qH)], and

S(q) = γ/cos[γ(q − qH)]. (22)

The coefficient γ is then determined by equating the dif-
ference spectrum with a source spectrum at the bottom
boundary.

8 Bottom Boundary Condition

The bottom boundary condition is viewed here to
be set by the process of quasi-steady lee-wave gener-
ation. The scales of interest are typically small. A
vertically propagating response is obtained only for in-
trinsic frequencies f < kU < N , implying horizontal
wavelengths 2πU/N < λh < 2πU/f , or 600−6000m for
U = 0.1ms−1, f = 1×10−4 s−1, and N = 1×10−3 s−1.
Faulting and vulcanism at mid-ocean ridge crests are
the dominant sources of seafloor roughness having these
scales. This roughness has been characterized in terms
of a 2-D, anisotropic spectral representation, H(k,l)
(Goff and Jordon 1988). Extant models of quasi-steady
lee-wave generation (e.g. Bretherton 1969) can then
be used with such 2-D representations of seafloor to-
pography to define the vertical wavenumber, intrinsic
frequency domain wave response, which can then be
mapped onto the interior solution. This mapping pro-
cess is not straightforward, as the solutions to the wave
generation problem may not be expressible in terms of
the solution to the nonlinear wave evolution equation.
This relationship will be described in detail at a later
time.

For now, however, it suffices to note the following:
First, the internal wave dispersion relation is m =
kh(N2 − ω2)1/2/(ω2 − f2)1/2. In the case of steady
flow normally incident upon bathymetry, ω = −kU ,
kh = k, and the dispersion relation in the hydrostatic,
non-rotating limit reduces to m = N/U . The inter-
nal wave response will exhibit a well defined peak at
m = N/U under these conditions. An increased re-
sponse at slightly higher vertical wavenumber is antic-
ipated with the addition of rotation and non-normal
incidence. Second, for flow normally incident upon 1-D
topography, the vertical flux of energy associated with
the internal wavefield is

Eflux =
2U(0)

π

∫ N(0)/U(0)

f/U(0)

[N(0)2−k2U(0)2]1/2[k2U(0)2−f2]1/2H(k)dk

(23)
(e.g. Bell 1975a). The amplitude of the solution to
the wavefield evolution equation can then be defined
by equating Eflux with the vertical energy flux of the
wavefield at the bottom boundary,

∫ ∞

mo/
√

2

Cgz [E
+(m, 0)−E−(m, z)]dm = D(0)

ωo

2
= Eflux

(24)

9 Comparison

Numerous full water depth lowered ADCP (LADCP)
profiles of relative velocity have been collected coin-
cident with CTD profiles along WOCE hydrographic
lines. The velocity profiles, in principle, resolve oceanic
currents having vertical wavelengths from full water
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Figure 3. Bathymetry and depth-averaged current
vectors along the I8S section line. The analysis focuses
upon a group of 12 profiles centered about 55◦ S. These
stations are denoted with bold current vectors. The
bathymetric contour interval is 1000 m, with thick con-
tours every 2000 m.

depth down to about 50 m (Kunze et al. in prepara-
tion), and the barotropic component can be estimated
by a method similar to utilized with shipboard Dopplers
(Fischer and Visbeck, 1993). These data afford the op-
portunity to investigate the spatial characteristics of the
finescale internal wavefield and groundtruth the theo-
retical development presented in the previous sections.
Application of finescale parameterizations permit corre-
sponding estimates of the turbulent dissipation rate (ǫ)
and diapycnal eddy diffusivity (Kρ).

Finestructure estimates were made with data from
the I8S hydrographic section, Figure 3. The section ex-
tends from 30◦ S, 90◦ E on the Broken Plateau, across
the SE Indian Ridge to 64◦ S, 82◦ E, south of the Ker-
guelen Plateau. This section cuts across the Antarctic
Circumpolar Current (ACC) in region of particularly
strong eddy energy and topographic influence. A group
of 12 stations centered about 55◦ S is examined. Fur-
ther discussion of the data appears in Polzin and Firing
(1997).

Shear spectra from 55◦ S differ markedly from the
background GM internal wavefield, Figure 4. Mid-
depth shear spectra reveal (i) significantly larger high
wavenumber spectral levels, (ii) excess clockwise (CW)
versus counter-clockwise (CCW) phase rotation with
depth and (iii) a low wavenumber roll-off at smaller
vertical wavelengths than the GM model. Mid-depth

Figure 4. Buoyancy frequency normalized shear spec-
tra. The thin solid line represents the observed LADCP
spectrum from depths of 1000−3560m. The thin, short-
dashed lines are the rotary (CW and CCW ) compo-
nents. The thick solid line depicts the LADCP shear
spectrum after correction for the effects of spatial av-
eraging. The GM spectrum is represented by the thin,
long-dashed line. The thick, long-dashed lined is the
analytical solution.

(1000–3500 m) spectral levels are 7–8 times larger than
GM for vertical wavelengths 1000 < λv < 100 m. The
GM model is vertically isotropic, implying no net ver-
tical energy flux. The observed enhancement of CW
phase rotation with depth implies an excess of upward
energy propagation in the southern hemisphere for near-
inertial internal waves (Leaman and Sanford, 1975).
The GM shear spectrum is characterized by an increas-
ing spectral level for vertical wavelengths larger than
mode 3 and is independent of vertical wavelength at
smaller scales. Buoyancy scaling and the observed N2

profile imply mode 3 is equivalent to a vertical wave-
length of 4000 m over the depth range in question. In
contrast, the observed spectrum is bandwidth limited
to vertical wavelengths smaller than 1000 m.

Estimates of turbulent dissipation and diffusivity
were made with the finestructure data using (5) fol-
lowing the method outlined in Polzin et al., 1995. In
this observational approach, turbulent production is
equated with the spectral energy transport at high ver-
tical wavenumber,

ǫ = (1 − Rf )F (mc) and Kρ = RfF (mc)/N
2, (25)

where Rf ∼ 0.2 is the flux Richardson number which
expresses the partitioning of turbulent production into
potential energy fluxes and dissipation. Below 1000-
m depth, the average diapycnal eddy diffusivity is
2×10−4 m2 s−1, 20 times larger than that for a GM
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Figure 5. Vertical profiles of finestructure derived
(thick) and theoretical (thin) diffusivity. The dashed
line represents a region where no data are available and
the diffusivity estimate has been interpolated. The thin
horizontal line at the bottom of the finestructure profile
represents the average bottom depth. No data are avail-
able in the bottom most 130m of each profile. Fines-
turcture based diffusivity estimates were calculated in a
height above bottom coordinate system in the deepest
1400m.

wavefield, Figure 5. Shear spectral levels and diffusiv-
ity estimates decay towards GM levels above 1000 m.
The heightened diffusivity corresponds to shear spectral
levels a factor of 5–8 above GM. The enhanced spectral
levels, excess of CW variance and heightened levels of
turbulent mixing inferred from (25) are interpreted as
the product of quasi-steady internal lee wave generation
associated with the flow of large depth-averaged veloci-
ties over rough bathymetry and the consequent breaking
of the waves as they propagate away from the bottom
boundary.

Vertical variability in turbulent production associ-
ated with wave breaking is defined by the competing
and coupled effects of propagation in an inhomoge-
neous environment and nonlinear transports. Solutions
to the wavefield evolution equation detailed above sug-
gest that profiles of turbulent quantities can be esti-
mated once a bouyancy profile N(z), a velocity pro-
file U(z) and bottom boundary conditions on the en-
ergy containing scale mo, intrinsic frequency ωo, and
vertical flux of energy associated with the generation
process, Eflux, are specified. The velocity and buoy-

Figure 6. Vertical profile of N2 defined as an average
over the group of twelve stations. The thin line rep-
resents a polynomial fit and is used in the theoretical
analysis.

ancy profiles are obtained by averaging the station data
and fitting with low order polynomials, Figure 6 and
7. The latter three constants represent the output of
a generation model. These constants depend quanti-
tatively upon issues such as whether the bathymetry
is characterized as either 1- or 2-D and the direction
of the background current relative to the orientation
of the bathymetry. Defining an adequate generation
model to deal with such complexities and producing an
entirely theoretical estimate for the diffusivity profile
will be addressed at a later date. Here it is simply
noted that a qualitatively robust feature of wave gen-
eration by steady flow over bathymetry represented by
a red spectrum is a dominant response at a vertical
scale slightly smaller than U/N. Given the smoothed
velocity and buoyancy profiles, the model parameter
mo is identified as mo = N

U (ω2 − f2)1/2 = 0.0011cpm,
with ωo = 1.5f , from a fit to the observed mid-depth
shear spectrum, Figure 4. The amplitude is set here
by specifying the net vertical flux of energy at the
bottom boundary as being proportional to the depth
integrated dissipation rate inferred from the observed
finestructure, Eflux = (3mW/m2)/ρ. This value for
the energy flux is somewhat smaller than would be an-
ticipated on the basis of flow normally incident upon
1-D topography (23), where the the bathymetric spec-
trum is prescribed in terms of a 1-D representation of
the 2-D model spectrum proposed by Goff and Jordan
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Figure 7. Vertical profile of horizontal velocity U av-
eraged over the group of twelve stations. The thin line
represents a polynomial fit and is used in the theoretical
analysis. The velocity data were analyzed in a depth co-
ordinate system. The bottom (z = 0) is defined as the
greatest depth for which data are available for eleven of
the twelve stations.

(1988): H(k) ∝ 1/(k2
0 + k2)−ν . Appropriate values

for the South East Indian Ridge crest at 100◦ E are
k0 = 0.002 m−1 and rms height of 60 m (Goff et al.
1997) with ν = 1.45 (John Goff, personal communi-
cation 1999). With a value of ν = 1.5, (23) returns an
estimate of Eflux = (11mW/m2)/ρ. While there maybe
some spatial variability in the spectral parameters and
uncertainty in the adequacy of the generation model,
it is reassuring that the theoretical estimate of Eflux

is much larger than that identified from the finescale
observations.

After applying the bottom boundary condition to de-
termine the constant γ, the theoretical estimate of the
diffusivity profile is simply,

K(z) = lim
m→∞

RfωF (m, z)

N2
(26)

The degree of agreement with the diffusivity profile in-
ferred from the finestructure estimates is amazing, Fig-
ure 5.

10 Summary

The ultimate goal of this research is the specifica-
tion of turbulent flux profiles in terms of limited inputs:
a background velocity profile, a buoyancy profile and a
spectrum of bottom topography. This problem has been

reduced here to the specification of three constants: an
energy containing scale, a frequency, and an energy flux.
Future work will focus on an entirely theoretical pre-
scription for these constants.
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