
2.14  Comparisons between observed and predicted transports. 
 
 
 We have described a number of deep straits and sills (Figure I4) that act as potential sites of 
hydraulic control and, therefore, as choke points in the lower limbs of the ocean conveyor.  At the 
time of this writing, comparisons between the observed features of these overflows and inviscid 
hydraulic models were based largely on volume transport (or flux).  The lack of measurements with 
sufficient coverage to resolve boundary currents, and other features of the flow upstream of their 
sills, has precluded detailed comparisons with models such as Gill (1977).  We do not, for example, 
have a good understanding of how well the reservoir states postulated by Whitehead, et al (1974, 
hereafter WLK), Gill (1997), Killworth (1992) and Pratt (1997) agree with reality.  Nevertheless, 
comparisons of observed and predicted transport are important, not only as a test of the models but 
also as a step towards the development of strategies for monitoring the ocean thermohaline 
circulation.   
 
 The most common transport (or ‘weir’) formula in current use is that due to WLK.  As shown 
in Section 2.4, the volume flux across the sill is given by 
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       (otherwise).  (2.14.1b) 

 
The symbol Q0 for volume transport is used here as a reminder that the ‘zero potential vorticity’ 
approximation is in effect.   Also, the reduced form of the gravitational acceleration g′=gΔρ/ρ, 
Δρ=ρ-ρ1, is explicitly used to acknowledge application to an overflowing layer of density ρ that 
underlies an inactive layer of density ρ1.  The interface separating the two layers is usually chosen to 
correspond to a particular isopycnal.   The transport then depends on the elevation difference Δz* 
between the sill and the upstream interface.  The geometry of the sill section is assumed to be 
rectangular and the upstream interface is assumed to be horizontal.  In reality, the choices of the 
bounding isopycnal and its upstream level, the layer densities, and the elevation and width wc* at the 
sill section, require a number of ad hoc assumptions. Once Δz* is estimated, a choice is made 
between the first and second formulae corresponding to separated and attached sill flow. We later 
describe a systematic method for estimating the parameters. 
 
 Several features make the WLK model a good starting point for comparison.  First, it is based 
on the simplist of models and therefore requires the fewest parameters.  More sophisticated models 
such as Gill’s (1977) require additional upstream information that may or may not be available.  
Also, as explained in Section 2.6, the formula (2.14.1) is valid for a wide class of flows with 
arbitrary potential vorticity, provided that the flow is separated at the sill and that Δz* is measured 
along the right wall of the upstream basin.  The same formula also gives a bound on flow on 
inviscid, rotating channel flow across a sill of arbitrary topography, provided that g′Δz* is 
interpreted as the maximum value of the Bernoulli function over streamlines in the upstream basin 
that cross the sill.  



 
The WLK model formally depends on an assumption that is difficult to justify. In particular, 

fluid columns must able to make their way from a hypothetical deep and quiescent basin up over a 
shallow sill. It is well know that slow, nearly geostrophic motion on an f-plane resists such changes: 
the fluid columns tend to move along, not across, isobaths.  In the ocean, it is more likely the case 
that fluid passing over a deep sill originates from an upstream layer that lies at an intermediate depth 
and is suspended above the bottom. Fluid below this layer is blocked from passing across the sill.  
The layer thickness over the sill is no longer much greater than the upstream thickness and the zero 
potential vorticity approximation no longer holds.  The Gill (1977) or Killworth (1992) models, in 
which the potential vorticity is finite, are now more appropriate1.   

 
Several attempts have been made to use uniform potential vorticity models such as that of 

Gill (1977) and extensions to non-rectangular sill geometries.  Prediction of the flux requires that the 
a represenative value of the potential vorticity of the overflow must be measured and this is not 
always possible.  In the examples we shall cite, the potential vorticity is often unknown. However, it 
is still possible to estimate the importance of the effect of finite potential vorticity on the transport.  
To this end, consider the case in which the nondimensional potential vorticity q is equal to unity.  
For the theory developed in Section 2.6 this means 
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 where BR* is the value of the Bernoulli function on the right wall and hc* is the elevation of the sill 
above the flat bottom.  The transport for q=1 is then given by (6.2.7) as 
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and the function Q(1,wc*) can be approximated as 
 
   Q 1,w

c( ) = 0.5 ! 0.6331e!1.45wc + 0.1331e!2.9wc   (2.14.2b) 

to within a error less than 1.3%. The dimensionless sill width is defined as wc = fwc * BR *! "g hc( )  
and thus it is necessary to measure the right-wall Bernoulli function to compute the transport.  
Although it is difficult to measure BR* in practice, there is a special case for which it reduces to 
g′Δz*.  Suppose that overflow is fed from an intermediate layer as described above and suppose that 
all fluid below the sill level is blocked.  That is, the isopycnals that bounds the intermediate layer 
below lies right at the sill level.  This situation is equivalent to setting hc* in the above theory to 
zero, so that gD∞= BR*.  It can further be shown that the boundary current that enters the strait from 
the basin does so entirely along the left wall, so that the right wall layer thickness equals the interior 
thickness D∞.  Also, because the sill height is zero, D∞=Δz*, and thus BR*=g′Δz*.  In this case 
                                                
1 A slight adjustment would have to be made in how the upstream conditions are viewed. Inthe Gill 
(1977) model, which assumes flow over a horizontal bottom, the value of g′ would have to be 
changed to that relevant for a suspended layer.  



wc = fwc * !g "z *  and the transport depends only on Δz*.  With these approximations, Q1* may be 
interpreted as a benchmark transport for finite potential vorticity.  It is the transport for q=1 that 
occurs when the sill height it zero. Q1* will be compared with Qo* in order to gain some measure of 
the sensitivity of the flux to the potential vorticity. 
 
 There are many reasons why formule like (2.14.1 or 2.14.2) could fail.  Among the most 
worrisome liabilities are the neglect of friction and time dependence, and the restriction to 
rectangular geometry.  A few recent studies have been able to account for more realistic sill 
geometries and these will be mentioned below.  The effects of friction are much more difficult to 
deal with.  The presence of a bottom Ekman layer and possible frictional layers along a sheared 
interface lead to energy dissipation and, as shown in Section 2.12, secondary circulations transverse 
to the channel axis.  Johnson and Sanford (1992) report on observations suggesting such features in 
the Faroe-Bank Channel.  The secondary circulations are demonstrated by Johnson and Ohlsen 
(1994) in a laboratory experiment.  Development of a hydraulic transport relation that takes account 
of these effects has proved elusive.   
 

The issue of time-dependence is also problematic.  The hope of steady models is that actual 
time variations are slow enough to allow the model to be valid at any given instant.  There are 
examples where this is clearly not the case.  In fact, awareness of rapid fluctuations dates back to an 
early current meter deployment at the Denmark Strait (Worthington 1969).  Despite massive loss of 
instrumentation,  one current meter recorded large bursts of overflow water,  �with velocities up to 
1.4 m/s and with time scales as short as one day.  Other overflows are strongly episodic and can 
switch on and off or meander back and forth across a moored instrument.  McCready et al. (1999) 
report that the deep flow through the Anagada-Jungern passage can behave this way, with about 10 
episodes per year.  Variation over longer time scales is also common. The flow across the Ceara 
Abyssal Plain was found to have a large annual signal and an unresolved interannual component 
(Hall et al 1997).  The latter was later found to be erased after ten years (Limeburner et al. 2005).  
We have already cited the apparent 50-year trend of decreasing transport in the Faroe-Bank Channel 
(Figure 2.11.12).  In general, one can expect to see time dependence on a variety of scales due to 
internal waves, tides, mesoscale eddies, interactions with nearby currents, atmospheric forcing, and 
seasonal and longer scale changes in the surroundings. 

 
 For a model to be considered quasi-static, the time scale of variation must be much longer 

than the time required for a disturbance to propagate the length of the strait. This time is roughly the 
strait length divided by (g′D)1/2. Two-day oscillations in the Denmark Strait do not meet this 
criterion; 1-2 month variability in Anagada-Jungfern passage probably does.  

 
In cases where the dominant time variability is rapid, the standard practice is to compare the 

hydraulic prediction with some time-mean transport.  The presence of a variety of time scales begs 
the question of how to measure the mean.  We have identified ten locations having current meter 
data of one month or more, which is long enough to average out tides and storms.  The overflows of 
the Faroe Bank Channel and the Denmark Strait, which contribute to the formation of North Atlantic 
Deep Water, are the most thoroughly observed.  Five other lie in the path of the northward moving 
Antarctic Bottom Water in the Atlantic. Starting from the south, they are the Vema Channel, Ceara 
Abyssal Plain, Romanche Fracture Zone, Vema Gap, and Discovery Gap. The remaining straits 
include the Anagada-Jungfern Passage, composed of the Grappler Channel and Anagada Passage, 
which provide the deepest inflows into the Caribbean Basin to supply deep water.  Also included is 



the Samoa Passage in the tropical Pacific, where Antarctic Bottom water moves northward into the 
Pacific.  
 

Flux estimates using (2.14.1) or (2.14.2) require the values Δz*, g′ and wc*, and Whitehead 
(1989) has suggested a systematic method of computing these quantites. The method makes use of 
density profiles taken upstream and downstream of the strait in question.  As an example, we use 
two profiles measured in the upstream and downstream basins of the Samoa Passage (Figure 2.14.1).  
Densities are similar at above 3950 but differ below this depth, ostensibly as a result of the mixing 
and redistribution of density due to the overflow.  Below the ‘bifurcation’ depth, the split extends to 
below the Samoa passage sill at approximately 5000 meters.  The tendency for the upstream and 
downstream profiles to split is observed for the 10 straits under consideration, and is represented in 
Figure 2.14.2  by a generic profile pair.  The ‘interface’ bounding the overflowing layer is selected to 
coincide with isopycnal that lies at the bifurcation depth in the upstream basin. The bottom cross-
section at the sill is plotted next to the profiles.  The deepest point is selected to be the sill depth and 
!z *  is chosen as the difference between the bifurcation depth and the sill depth. The value of 

  

!"  is 
chosen as the difference in density between the two profiles at sill depth.  For the Samoan Passage, 
we estimate values !z* = 1050m and !" = 3#10$5  gm/cm 3.  The channel width w

c
*  is defined as 

the width of the cross-section at the bifurcation depth and is 240km for the Samoan Passage.  
Finally, the local Coriolis parameter is given by 

  

f = 2!sin"  where 

  

!  is the latitude of the sill.  The 
volume flux values based on (2.14.1) and (2.14.2), and using the ‘bifurcation’ method, for all ten 
examples are listed in Table 2.14.1.  All except the Grappler passage correspond to values listed in 
Table 1 of Whitehead (2005).  Original bifurcation figures are in Whitehead (1989) and Whitehead 
(1998) except for the Anagada and Grappler Passages.  

 
 

         Attempts to improve the accuracy of (2.14.1) have concentrated on more realistic topography 
and on the effect of non-zero potential vorticity.   The outcomes (Table 2.14.2) suggest that the later 
is not as important as the former.  Realistic topography often, but not always, leads to a decrease in 
the predicted transport and this decrease can be substantial.  This tendency is suggested in the work 
of Börenas and Lundberg (1986, 1988) for flow in a channel of parabolic section.  As discussed in 
Section 2.8, the predicted transport depends on the parameter r = f

2
/ !g " , where α is the bottom 

curvature. Sections with large curvature act more like rectangles and departures from this shape 
therefore become more pronounced as r increases. For zero potential vorticity, it can be shown 
(equation 2.8.10) that a reduction in transport relative to the rectangular case occurs in proportion to 
r-1/2. The reduction is due largely to the presence of counterflow at the right side of the sill section, 
which occurs for r>2/3.  Among the notable case studies is Killworth (1992), who fit rectangular, V-
shape, and parabolic cross sections to sills in four passages. For the Denmark Strait and Faroe-Bank 
Channel, a reduction by factor 4 or 5 in predicted flux is found for the parabola and V-shape  relative 
to the rectangle.  Finite potential vorticity effects are found to be much weaker.  Börenas and 
Nikolopoulos (2000) investigate the Jungfern Passage using a model that takes into consideration 
various shapes, including a close fit to the real sill topography.  Reductions in flux relative to the 
rectangular case are by a factor or 2 or 3.  A small amount of reverse flow is also predicted at the sill 
for the real topography. The predicted transport is slightly raised when this counterflow is excised.  
Nikolopoulos et al. (2003) apply a similar technique to the Denmark Strait.  For the actual sill 
geometry, a reduction in transport by a factor of 2 relative to a rectangle is found.  However, the 
counterflow is much stronger and a flux value close to the rectangular case is restored when 
thecounterflow is excised.  The effects of finite potential vorticity are again found to be moderate.  



These are among the studies summarized on Table 2.14.2.  When comparing flux predictions, note 
that different authors may use different values of !z * , !g , and w

c
*  for the same location. 

 
Table 2.14.1.  Observed volume transport vs. predictions based on a rectangular sill section.   
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0.45a 

 
165 
 

0.45 10 
 

1.65 0.136 

 
0.12 0.085b 

 

2 Ceara 
Abyssal Plain 

0.5a 430 -0.1 700 15.0 4.62 4.53 2.1c 

3 Denmark 
Strait 

3.0a 580 
 

1.3 350 
 

34.5 3.88 
 

3.8 
 

2.9d 

 
4 Discovery 

Gap 
0.1a 600 0.87 80 28.4 0.21 0.2 0.21e 

5 Faroe Bank 
Channel 

5.0a 

 
400 
 

1.3 20 
 

1.84 2.82 
 

2.62 
 

1.9f 

 

6 Grappler 
Passage 

0.22b 160 0.45 - 1.2 0.06  0.026 

7 Romanche 
Fracture 
Zone 

0.73a 380 -0.02 20 0.08 2.15 2.09 0.66g 

8 Samoa 
passage 

0.3a 1050 -0.23 240 9.8 7.19 7.05 6.0h 

9 Vema  
Channel 

1.0a 1100 -0.7 446 29.8 8.64 
 

8.62 
 

4.0i 

 
10 Vema Gap 0.5a 1000 0.28 9 0.36 3.35 3.03 2.1j 

Note: citations pertain to all information from that citation to the next.  Also, negative values of f 
imply that f should be used in the transport formula. 
a Whitehead 2005   

b  MacCready et al. (1999) 
c Hall et al(1997) 
d Dickson, Gmitrowicz and Watson (1990) 
e Saunders (1987) 
f Saunders (1990) 

g Mercier and Speer (1998) 
h Rudnick (1997) 
i Hogg, Siedler, and Zenk, (1999) 
j McCartney et al. (1991) 
 



 
 
 

 

 
Table 2.14.2. Observed volume transport vs. predictions based on a non-rectangular sill 
section.  
 
In the following, ‘flat’ refers to a rectangle, and ‘real’ implies a fit to the actual topography. Also 
note that the observed volume flux Qobserved refers to the particular value used for comparison in the 
study cited. This value depends on the definition of the overflowing fluid and on the time and 
manner of measurement.   
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4.3h 

400 
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20 
 

1.84 3.6 
0.5 
0.7 
1.5 
2.5 

 
0.53 
0.86 

1.9 

 
 

1.4 
1.9 

9. Vema 
Channel 

Flat 
Parabola 

1.0e 1540 446 29.8 16.4 
2.9 

 
4.5 

4.1 



 V 3.9 8.8 
Note: citations pertain to all information from that citation to the next. 
a  MacCready et al. (1999) 

b Borenas and Nikolopoulos (2000) 
c  RealX- the abbreviation for real bottom topography with reverse flow excised 
d Stalcup, Metcalf and Johnson (1975) 
e Killworth (1992) 
fNikolopoulos, Borenas, Hietala, and Lundberg (2003) 
g Girton et al (2001) 
h Borenas and Lundberg (1988) 
 

The flux values in both tables span nearly three orders of magnitude and require a log-log 
plot to show the entire range (Figure 2.14.3).  The volume flux values from Table 2.14.1 for zero 
potential vorticity and rectangular sill geometry are shown by X-symbols.  As expected, the 
corresponding values lie above the perfect fit diagonal.  The values for the finite potential vorticity 
benchmark (Equation 2.14.2, open circles) lie slightly below the zero potential vorticity values.  The 
greatest difference is approximately 10%, indicating that the value of upstream potential vorticity is 
not the greatest factor needed to bring the theory into agreement with measurements.  In some cases 
with non-rectangular topography, the finite potential vorticity prediction exceeds that of the zero 
potential vorticity. The flux values over various bottom shapes (Table 2.14.2) are shown by assorted 
symbols.  For a given strait, variations in the observed flux are indicated by horizontal scatter of like 
symbols. Variations in predicted fluxes for different geometric fits to the sill topography are 
indicated by the vertical scatter of different symbols with the same Qobs.  The latter is generally 
larger than the former.  Values lying below the diagonal may contain reverse flow, while those lying 
above have none, or have had the reverse flow excised.  Overall, the steady component of flow is 
bounded by the predictions for flow over a flat bottom, and the influence of bottom shape introduces 
a wide range of variability in predictions.   

 
Numerical models of overflow regions have received considerable development since about 

1990.  The numerical schemes attempt to resolve topographic features and eddies on a horizontal 
scale that is a fraction of the Rossby radius of deformation based on the local depth.  Sigma2 
coordinate are often used because of their ability to handle regions with large topographic variations.  
The models resolve 60 or more levels and are based on primitive equation dynamics.  The 
formulation typically includes parameterizations for both internal mixing and bottom drag. 

 
The earliest studies focus on the dense overflow plume downstream of the sill (Jungclaus and 

Backhaus 1994, Kraus and Käse 1998, Shi, et al 2001). The lateral scale is smaller than 10 km, 
allowing partial resolution of fronts and eddies.  A second generaltion of models resolves the entire 
region around the Denmark Strait. In a fully three-dimensional computation by Käse and Oschlies 
(2000), the computed volume flux agrees within a few tens of percent with (2.14.1).  (The value of 
Δz* is an depth above the sill of an isopycnal surface, averaged over a region approximately 85km 
upstream of the sill.) Kosters (2004) compares a number of simple hydraulic estimates to the output 
                                                
2 ‘Sigma’ is defined as (zT*- z*)/(zT*- h*), where zT* is the elevation of the sea surface.  Thus the 
bottom corresponds to sigma=1. 



of a slightly more elaborate numerical model.  The model, driven by regional buoyancy forcing, has 
a lateral grid of 5 km and both idealized and real topography.  The hydraulic criticality of the flow is 
evaluated using several forms of the Froude number, including (2.5.7) for the Gill model. The flow 
is judged to be critical approximately 80km downstream of the sill. His volume flux comparisons 
with hydraulic predictions are very similar to those in Table 2.14.2.  For example, the zero potential 
vorticity prediction over a flat bottom is about double the numerical flux.  Also, the method from 
Nikolopoulos and Borenas (2003), using a realistic bottom profile, yields predictions much smaller 
than the numerical model due to the presence (in the theory) of a return flow. The numerical models 
generally produce unidirectional flow at the critical section. If the reverse flow predicted by the 
theory is excised, the prediction comes within 30% of the numerical value.  Consistent with the 
arguments of the previous section, upstream height values progressively closer to the sill produce 
better predictions.  
  
 We have seen that all predictions of the crudest zero potential vorticity theory tend to exceed 
ocean measurements for volume flux with ratios between one and three. Predictions for parabolic 
and realistic bottoms can extend below the observed values of flux. A rounded bottom profile 
sometimes leads to a prediction of return flow at the sill that produces a smaller flux, but excising 
the return flow increases flux toward flat-bottom values. Overall, it is clear that theory has produced 
a reasonable bound to observation, but that there is scope for much improvement. A number of 
aspects could be developed that might lead to improved agreement with observations.  These include 
reconciliation of the issue of counterflow at the sill, and inclusion of time dependence, friction, and 
continuous stratification.  
 
 
Figure Captions 
 
Figure 2.14.1.  Density (gm/cm 3) corrected to 4000 m depth versus ocean depth at both ends of the 
Samoa Passage (From Whitehead 1998). 
 
Figure 2.13.2  Ocean data needed to produce values of density, depth and width of a passage. 
 
Figure 2.14.3.  Comparison of predicted volume flux to observed volume flux based on values listed 
in Tables 2.14.1 and 2.14.2.  The X-symbols are based on the WLK model (Equations 2.14.1). The 
large open circles are based on a uniform potential vorticity theory that assumes a sill height of zero 
and an approach flow entirely along the right wall of the channel (see Equation 2.14.2). The smaller 
symbols are based on theories that use a non-zero potential vorticity distribution and/or non-
rectangular cross sections.  Different symbols correspond to different geometries as follows: 
rectangular cross-section (squares), parabola (small circle), V-shaped bottom (triangle), real 
bathymetry (plus), and real bathymetry with reversed flow excised (star). 
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