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1.9   Friction and Bottom Drag. 
 
 Fluid viscosity and frictional drag have been tacitly ignored to this point, an 
omission that speaks more to the difficulty of including such effects than to their lack of 
importance.  For example, the no-slip condition (v=0) at the bottom of the channel ruins 
the possibility that the velocity v can be z-independent, or even x-independent if channel 
sidewalls are considered.  The computation of bottom and sidewall viscous boundary 
layers generally requires numerical methods even when the flow is laminar.  Most 
geophysical and engineering applications involve Reynolds numbers that are much larger 
than the (O(103)) threshold required for turbulence.   These difficulties have led civil 
engineers to parameterize the effects of friction through the use of drag laws that date 
back to the 19th century and were obtained through observations of the Mississippi River 
and various rivers in Europe (Chow, 1959).  We will concentrate less on the empirical 
forms of drag used by engineers and more on the physics of the flow in the presence of 
friction.  The main ideas discussed below are presented in detail by Pratt (1986), Garrett 
and Gerdes (2003), Garrett (2004) and Hogg and Hughes (2006).  
 
 Drag laws introduce a depth-averaged frictional stress into the y-momentum 
equations.  The horizontal velocity v remains z- and x-independent as before. The most 
common drag law employed in oceanography and meteorology involves a body force in a 
direction opposite to the fluid motion and proportional to the square of the fluid velocity.  
The momentum equation (1.3.1) is replaced by 
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where Cd is a dimensionless drag coefficient, nominally of order 10-3 in sea straits.  
  
 If the flow is steady, a solution can be found by integrating  (1.9.1) from an 
upstream point yo of known velocity and depth to the point y where the solution is 
desired.  The result of this integration can be written 
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The continuity relation Q = v(y)d(y)w(y) = v(yo )d(yo )w(yo )has been used to replace v(y) 
on the left hand side.  The presence of the integral means that the flow state at y depends 
on the entire history of the flow between yo and y, and not just the values of the geometric 
variables h and w at y.  The non-local nature of the relationship between the flow and the 
topography means that (1.9.2) is not of the form sought by Gill (1977) in his 
generalization of governing relations. 
 
  In view of the failure of Gill’s formalism, we might ask whether any of the 
concepts we have developed, including subcritical and supercritical flow, hydraulic 
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control and the like, have any meaning or importance when friction is present.  Some 
insight into this question can be gained by writing (1.9.1) and the continuity equation 
(1.3.1) in characteristic form.  Following the method established in Section 1.3, the 
characteristic equations are 
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1/2 as usual.  Solutions to initial value problems can be 
constructed by integrating (1.9.3) along characteristic curves given bydy

±
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±
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as described in Section 1.3.  Although the Riemann functions R± are not conserved, the 
characteristic curves still represent paths along which information travels.  The 
characteristic speeds c± continue to represent speeds at which information travels and it  
therefore remains meaningful to classify the flow as being critical, supercritical, or 
subcritical flow according as v ! (gd)1/2>0, =0, or <0.  This reasoning falls apart if the 
frictional term involves derivatives of the flow variables in the y-direction.  
 
 A geometrical constraint on the location of a critical section in a steady flow can 
be found by dividing the steady form of (1.9.3) for R- by c-, leading to 
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The existence of a well behaved solution at a critical section requires that the 
denominator vanish, and therefore 
 
 
   !(dh / dy)c ! Cd + vc vc (gwc )

!1
(dw / dy)c = 0 ,  (1.9.4) 

   
 
where the subscript  ‘c’ indicates evaluation at the critical section.  If w is constant,  
(1.9.4) reduces to the simple condition that the critical section must lie where the bottom 
slope equals the negative of the drag coefficient.  Friction therefore tends to shift the 
control section from the sill to a point downstream.  If the bottom is horizontal and only 
the width varies, then critical flow must occur where the channel widens (dw/dy>0). 
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 Some indication of the importance of friction can be gained by comparing the 
drag and advective terms in (1.9.1).  For flow with characteristic depth D passing over an 
obstacle or through a contraction with y-length L, 
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and thus friction is significant whenC
d
L / D = O(1) .  Friction is typically ignored in 

simple models of deep ocean overflows and it is an embarrassing fact that estimates 
ofC

d
L / D  for these flows often exceed unity , even when conservative values of Cd are 

used.  The accompanying table contains some examples.   
 
 
 
Table of values of CdL/H for 9 oceanographically important straits.   L is the strait 
length, D is the average thickness of the overflowing layer, and Cd is assigned the 
conservative value 10-3.   
 
Sea Strait                                               D(m)           L(m)          CdL/H 
 
Strait of Gibraltar Outflow*               2×102         (2-5)×104      0.1-0.3 
 
Vema Channel                                    3×102           2×105             0.7                       
 
Bornholm Strait               30              2.5×105           0.8 
 
Bab al Mandab Outflow                      102            1.5×105            4.5        
 
Denmark Strait   5×102           5×105           1.0 
 
Ecuador Trench   3×102           3×105           1.0 
 
Faroe Bank Channel                            3×102           6×105           2.0 
 
Bosphorus     20                 2×104          1.0 
 
*Depends on how the strait proper is defined. 
 
 
 Bottom drag can lead to some interesting departures from the steady behavior we 
have previously discussed.  Some of these changes are evident in Figures 1.9.1a,b, which 
give a comparison between two sets of steady solutions, the first with Cd=0 and the 
second with Cd >0.  Each solution has the same volume flux and the channel width is 
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constant.  Solutions are obtained by choosing yo as the upstream edge of the obstacle, 
specifying the value B of the Bernoulli function there, and solving (1.9.1) for the fluid 
depth at successively larger values of y.  Each curve is labeled with the nondimensional 
upstream value of B.  The family of solutions with finite drag has a subcritical-to-
supercritical and a supercritical-to-subcritical flow.  The flow is critical where the two 
curves cross each other and, as suggested above, this point lies downstream of the sill.  
Purely subcritical and supercritical solutions also exist, but these no longer have the 
upstream/downstream symmetry of their inviscid counterparts.  Note that the subcritical 
solution suffers a reduction in depth as it passes the obstacle, creating the impression of 
fluid spilling over the sill. The reduction in depth is a consequence of the loss of energy 
that the fluid experiences as it crosses the topography.  Under subcritical conditions the 
Bernoulli function is dominated by the potential energy g(d+h) and thus a significant 
depletion of energy must come at the cost of potential energy.  The spilling character that 
a subcritical flow can take on when bottom drag is significant can lead one to mistake the 
solution for a hydraulically controlled flow.    
 
 Some channels contain flow that remains subcritical throughout and evolves 
mainly due to frictional processes.  In fact, a large drag coefficient or sufficiently weak 
variation in channel geometry may preclude (1.9.4) from ever being satisfied.  A simple 
example would be a constant-width channel in which the maximum negative value of the 
bottom slope is less than Cd.  Such cases are sometimes referred to as being frictionally 
controlled, though the term ‘control’ in this context is ambiguous.   Simple models of 
such flows assume that the channel cross-section and elevation are uniform, in which 
case analytical solutions may be found.  An example is presented in Exercise 1.  
 
 Another case that can be analyzed simply is that of flow down a uniform slope 
dh/dy=-S in a channel of constant width.  A useful relation governing the Froude number 
of such a flow is  
  

   !Fd
2

!y
= "

3F
2
(SCd

"1
" Fd

2
)

(Fd
2
"1)d

,    (1.9.5) 

 
which can be derived from (1.9.1) and the continuity equation.  It can be seen that any 
positive S will support a uniform (! / !y = 0) flow, and that the Froude number of this 
flow is given by Fd

2=S/Cd.  The uniform flow is critical when S=Cd, in agreement with 
(1.9.4).  
 
 
 Suppose that the S<Cd, so that the uniform flow is subcritical (Figure 1.9.2a).  
Then suppose that the flow at some y is perturbed by causing Fd

2 to decrease slightly 
below the value Fd

2=S/Cd.  The right hand side of (1.9.6) now becomes negative, 
requiring that Fd

2 further diminish in the downstream direction.  It is easily shown, in 
fact, that Fd

2 decreases to zero as y→∞, so that the fluid becomes infinitely deep and 
stagnant.  If the perturbation instead consists of an increase in Fd

2, then the right hand 
side of (1.9.6) becomes positive and the Fd

2 increases in the downstream direction.  At the 
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point where Fd
2 reaches unity, Fd

2→∞ and the solution cannot be continued further.  The 
key feature in either case is that uniform subcritical solution is unstable.  It is left as 
exercise for the reader to argue that a supercritical uniform flow (S<Cd) is stable in the 
sense that a steady perturbations will diminish in amplitude in the downstream direction 
(Figure 1.9.2b).  Note, however, that the supercritical solution can be unstable to time-
dependent perturbations, resulting in a phenomena known as roll waves.  Baines (1995) 
reviews this topic.  
   
 It is possible to move beyond the ‘slab’, in which the bottom drag is distributed 
equally over the otherwise inviscid water column, to a more realistic setting with vertical 
shear. The assumption of gradual variations in y is maintained and thus the pressure 
remains hydrostatic, but now vertical shear is allowed.  The horizontal momentum 
equation becomes 
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 where ! is the horizontal shear stress per unit mass.  The local condition of 
incompressibility  
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implies the existence of a streamfunction ψ such that !" / !y = #w [not to be confused 
with width]and!" / !z = v .  
 
  It is possible to express (1.9.6) in the form 
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as described in Exercise 3. The Bernoulli function B(! , y) = 1

2
v
2
+ gd + gh now varies 

throughout the fluid, though it is conserved along streamlines if the frictional term on the 
right-hand side is absent.  Following Garrett (2004) we may attempt to formulate a Gill 
type functional for the flow beginning with the trivial relation 
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where we have assumed the boundary conditions ! = (0,Q)  at z=(h,d+h). Use of the 
definition of the Bernoulli function to substitute for v allows this relation to be expressed 
as 
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 If the fluid is inviscid, B is a function of ψ alone and may be considered 
prescribed by the upstream conditions.  Under this condition the only remaining 
dependent variable in is the depth d and the right hand side is of the desired form.  Setting 
its derivative with respect to d to zero leads to 
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and thus the average over the water column of the square of the inverse Froude number 
must be unity for the flow to be hydraulically critical 
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 A remarkable aspect of this condition is that it apparently applies to any stationary 
wave, including waves that propagate on the vertical vorticity gradients in the flow. 
However, the coordinate transformation that makes the derivation possible assumes a 
one-to-one relationship between ψ and z, and this holds only when v does not change 
sign.   It is possible that critical conditions with respect to certain wave modes require 
reversals in the background flow. 
 
 The introduction of frictional dissipation means that B varies along streamlines 
and can no longer be prescribed by conditions far upstream.  Because of the unknown y-
dependence in B(ψ,y), the left side of (1.9.8) no longer fits Gill’s definition of a hydraulic 
function.  However we may still use this relation to formulate a critical condition, 
provided that the dissipation takes a particular form.  Consider a hypothetical flow over 
varying topography that becomes critical at a particular section y=yc.  Criticality 
specifically means that the flow at y=yc can support a stationary, infinitesimal disturbance 
and that this disturbance can exist only at y=yc.  This definition is consistent with the 
inviscid examples considered elsewhere in this chapter, but it has yet to be shown that the 
postulated state is dynamically consistent in the presence of dissipation.  In order for it to 
be so, the disturbance at y=yc must clearly be isolated and cannot contaminate the flow 
upstream.  This assumption can be supported if the dissipation depends on the local 
properties of the flow at yc and not, say, on the derivatives of the flow fields with respect 
to y.  Thus if !" / !z  in (1.9.6) takes the form!"

2
v / "z

2 , where ν is a molecular viscosity, 
the assumption is justified.  In this case the disturbed flow at y=yc has the same B(ψ,yc) as 
the undisturbed flow, the latter being set by conditions occurring in y<yc where the 
disturbance is not present.  The stationary wave at yc then involves a perturbation in d that 
satisfies (1.9.6) for a fixed B(ψ,yc).  The critical condition in this case is therefore 
identical to the inviscid condition (1.9.9).   On the other hand, a dissipation form that 
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contains derivatives in y or otherwise gives rise to non-local influences may invalidate 
the assumptions.  We will proceed on the assumption that this is not the case. 
 
  A compatibility condition for critical flow may be derived by 
differentiating (1.9.8) with respect to y and applying the result at a critical section.  The 
result can be written  

    !"

!zh

h+d

# v
$2
dz $

dh

dy
= 0 . 

 
after application of  (1.9.7) and (1.9.9).  Integration by parts of the first term leads to 
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If the stress at the free surface is zero, the first term on the right-hand side vanishes.  The 
bottom stress term is simply what is parameterized by the drag coefficient Cd in slab 
models.  The expression !"v / "zmay be regarded as the internal rate of energy 
dissipation and is denoted by ε.  With these substitutions  
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It follows that the action of bottom drag alone causes the control section to lie where the 
bottom slope is the negative of the drag coefficient, as in a slab model.  However, internal 
dissipation gives rise to the opposite tendency.   
 
 Hogg and Hughes (2006) have calculated numerical solutions for free surface 
flows with constant molecular viscosity and an example is shown in Figure 1.9.3.  The 
usual no-slip boundary condition at the bottom is replaced by specification of the bottom 
stress in the form 
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The fluid is therefore free to slip over the bottom with horizontal velocity vz=h and the 
drag coefficient and molecular viscosity are specified independently.  This artificial 
setting is concession to more realistic applications in which the viscosity is a 
parameterization of turbulence and where the exact form of the bottom boundary 
condition is unknown.  The numerical solution shown has uniform velocity upstream of 
the obstacle and has the appearance of an inviscid, hydraulically controlled flow (panel a 
of Figure 1.9.3).  The flow passes through a critical section at a point slightly downstream 
of the sill where the left-hand side of (1.9.9), which can be interpreted as a generalized 
Froude number, passes though unity (solid curve in b). The velocity field and the velocity 
profile at the control section (c) shows the development of vertical shear as the fluid 
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spills over the sill.  The development of shear leads to higher rates of depth-averaged 
internal dissipation (dashed line in b). 
 
 An illuminating exercise in assessing the validity of slab models is to fix the drag 
coefficient, vary the viscosity, and note the behavior of the resulting velocity profiles.  If 
the upstream conditions are fixed as in the previous experiment, Cd is held fixed at value 
10-2, and ν is varied over 6 decades, a set of differing critical-section velocity profiles is 
obtained (Figure 1.9.4).  For small viscosity, the shear is concentrated in a thin bottom 
boundary layer (a).  As ν is increased the boundary layer grows (b) and the shear 
becomes distributed over the whole depth (c and d).  Even larger values of v smooth the 
velocity over the whole water column leading to a depth-independent profile (e).   The 
flow is therefore slab-like in the limit of low and high viscosity.  Hogg and Hughes also 
find that the position of the control is generally dominated by the bottom drag term in 
(1.9.10).   
 
 
 
 
Exercises 
 
1)     For steady flow in a channel with constant h and w, show that bottom friction causes 
the flow to evolve in the downstream direction towards criticality.  
 
2)     Consider a strait with constant w and h connecting two infinitely wide reservoirs.  
The flow in the strait is subcritical and subject to quadratic bottom drag but no 
entrainment.  
 
(a)  Assuming that the strait extends from y=0 to y=L, find a general algebraic expression 
relating the depth d to the position y.  Calculate the drop in the level of the surface (or 
interface) between the ends of the strait as a function of d(0) and the transport Q>0. 
 
(b)  Show that the only possible location for critical flow must be at the right end (y=L) of 
the strait, where w changes from a finite value to infinity.  
 
(c)   Find the solution that is critical at y=L and sketch the profile of the interface through 
the strait. (Note that the surface slope becomes infinite as y approaches L.) 
 
(Further discussion and an application of this procedure to two-layer flow can found in 
Assaf and Hecht, 1974.) 
 
3)   For the vertically sheared flow described by equation (1.9.6) suppose that the 
variables v and w are expressed in terms of the coordinates ψ and y (rather than z and y). 
By transforming the right hand side to the new variables, show that (1.9.7) holds.  
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Figure Captions 
 
1.9.1   Steady solutions for flow over an obstacle with height hm* with constant volume 
flux (Q/ghm

3/2w*=1) and various values of the Bernoulli function B*/ghm.  The solutions 
in (a) have no bottom drag whereas those in (b) have a drag equivalent to CdL/hm=0.5. 
(From Pratt, 1986). 
 
1.9.2  The stability of uniform flow down a constant slope.  In (a),  S<Cd and so the 
uniform flow is subcritical.  The critical depth for a flow with the same volume flux is 
indicated by the dashed line. If the solution is perturbed at some upstream point, the flow 
will depart from the uniform state and tend towards a deep quiescent state or towards the 
critical depth (thinner curves).  The free surface slope becomes infinite when the critical 
depth is reached.  In (b), S>Cd and the uniform flow is therefore supercritical. Steady 
perturbations decay in the downstream direction, thought the flow may still be unstable to 
roll waves. 
 
1.9.3   Numerical solution for a viscous free surface flow over an isolated obstacle with 
ν=10-2m2/s, Cd=10-2 and uniform upstream velocity.  Streamlines are shown in (a) while 
the Froude number (right-hand term in 1.9.9, solid line) and depth average internal 
dissipation ε are shown in (b). The inset shows the Froude number in the vicinity of the 
critical section.  Panel (c) shows the velocity v and, in the inset, the velocity profile at the 
critical section. (from Hogg and Hughes, 2006) 
  
1.9.4   A sequence of velocity profiles measured at the critical section and obtained from 
numerical experiments of the type shown in Figure 1.9.3. The upstream conditions and 
the constant drag coefficient Cd=10-2 are fixed.  The viscosity is varied as indicated in 
each frame.  (from Hogg and Hughes, 2006) 
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