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1.3  Nonlinear steepening and rarefacation. 
 
 
  A basic knowledge of the hydraulic properties of a steady flow requires that one 
understand the characteristics of linear disturbances that propagate on that flow.  
However, some grasp of the elements of nonlinear propagation are crucial in 
understanding how hydraulic jumps and other types of shock waves are formed.  This 
subject will also be of assistance when we explore the formation of steady solutions in 
laboratory or numerical experiments.  A feature common to most nonlinear disturbances 
that arise in hydraulic models is that they are governed by hyperbolic partial differential 
equations.  The defining characteristics of quasi-linear hyperbolic systems in 2 
dimensions are described in detail in Appendix B, as are the methods for transforming the 
governing equations into standard forms.  However, a heuristic definition would center 
on the properties that two independent types of disturbances (waves) exist and that these 
waves propagate through the physical domain at finite speeds.  In the example of the 
previous section, the disturbances consisted of two linear gravity waves with speeds 
c
±
= V ± gD( )

1/2 , propagating on a uniform background flow.  As we now show, standard 
methodology also allows one to deal with wave amplitudes sufficiently large to destroy 
the distinction between the wave and the background flow. 
 
  To begin, it is helpful to rewrite the one-dimensional shallow water equations 
(1.2.1) and (1.2.2) in the form  
 
   d

±
R
±

dt
= !g

dh

dy
      (1.3.1) 

where 

   d±

dt
=
!

!t
+ [v ± gd( )

1 / 2
]
!

!y
    (1.3.2) 

 
and  
   R

±
= v ± 2(gd)

1 / 2 .     (1.3.3) 
 
The procedure for obtaining this new form is discussed in Exercise 1 and the reader who 
seeks a more general discussion can consult Appendix B or look at standard texts such as 
Courant and Friedricks (1976) or Whitham (1974).   
 
 To interpret (1.3.1-1.3.3) first note that the operators d±

dt
 are time derivatives seen 

by observers traveling with characteristic speeds 
 
     dy±

dt
= v ± gd( )

1/ 2 .    (1.3.4) 

 
These speeds are nothing more than the linear wave speeds with V and D replaced by the 
local velocity and depth, v and d.  As before, it is helpful to think of the characteristic 
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speeds as defining individual signals that move through the fluid and that compose 
general wave forms. Since the characteristic speeds vary throughout the flow field, 
different parts of a wave form move at different rates, leading to steepening 
(convergence) or rarefacation (spreading) of this form. If the bottom slope is zero (dh/dy 
= 0), an observer moving at one of the characteristic speeds sees a fixed value of the 
corresponding Riemann invariant R+ or R-.  The latter are nonlinear generalizations of the 
functions introduced in the previous section.  Among other things, they serve as 
indicators of the presence of ‘forward’ and ‘backward’ wave forms.  If, for example, R- is 
uniform in y, then the flow field contains no ‘backward’ wave forms (i.e., those 
propagating at speed v-(gd)1/2).  The forward propagating waves in such a field are 
sometime called simple waves.  A simple physical interpretation of Riemann invariants in 
terms of energy or momentum has proved to be elusive, but perhaps the reader has a 
suggestion. 
 
 The characteristic speeds have real and unequal values for all flows in which the 
depth is non-zero, implying that (1.2.1) and (1.2.2) are hyperbolic.  The importance of 
this property is that solutions to the initial-value problems can be constructed using the 
method of characteristics.  Suppose that one is given the initial conditions v(y,0) and 
d(y,0) for all y and asked to compute the evolution of the flow for t > 0. The initial values 
of the Riemann invariants are given by R

+
= v(y,0) + 2[gd(y, 0)]

1/ 2  and 
R

!
= v(y,0) ! 2[gd(y,0)]

1/ 2and, provided that dh/dy = 0, these values are conserved along 
characteristic curves (or ‘characteristics’), paths traced out in the (y,t)-plane by moving 
at the appropriate characteristic  speed . Unlike the case for the linear waves considered 
in the previous section, the slopes of the characteristic curves are generally not constant.  
They depend on the local values of the velocity and depth within an evolving flow field. 
 

We can now lay out a procedure for solving any initial value problem involving 
smooth initial conditions v(y,0) and d(y,0).  As in the previous section, the solution is 
described in the characteristic (y,t) plane (Figure 1.3.1a).   Let y+(yo,t) and y-(y1,t) 
represent the characteristic curves originating from y = yo and y = y1 on the y-axis.  The 
slopes of these curves are given by (1.3.4) and can be calculated at t = 0 from the initial 
conditions.  For t > 0 the slopes depend on the solution itself and remain to be 
determined.  Suppose for the moment that these slopes, and thus the curves y+(yo,t) and y-
(y1,t) themselves are known, and that the curves intersect at point p.  Then the velocity 
and depth at p can be computed from the values of the Riemann invariants that are carried 
along the curves.  The value of R+ is the value carried along the curve y+(yo,t) and is equal 
to its value at y = yo and t = 0.  The value of R- at p is that specified at y = y1 and t = 0.  
Once the two are known, the velocity and depth are computed from  
 
    v =

1
2 (R+

+ R
!
) ,    (1.3.5) 

 
    d = [(R

+
! R

!
) / 4]

2
/ g .   (1.3.6) 

 
 More generally, the shapes of the characteristics are not known in advance and 
there is no immediate way of knowing the origin of the characteristic curves passing 
through p.  In practice, this problem is dealt with by calculation of the initial slopes of the 
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characteristics from the values of c- and c+ all along the y-axis. Straight-line 
approximations of the characteristic curves having these initial slopes are then projected 
forward a time increment Δt.  A provisional solution is then computed at t = Δt by 
carrying the initial values of R+ and R- forward along these curves. The characteristic 
speeds that follow from the provisional solution will generally be different than the initial 
estimates, implying that the characteristic curves are not straight. However, a correction 
can be made and the whole process repeated. Once satisfactory values of v and d have 
been found at t = Δt, the solution may be advanced further in time through reiteration. 
 
 The method will continue to work as long as the ‘+’ curves (or the ‘-‘ curves) do 
not begin to intersect each other.  Should the latter occur, as at q in Figure 1.3.1a, 
multiple values of R+ (or R-) would apply at the same point and the solution would be 
overdetermined. This situation is associated with the formation of shocks, meaning 
discontinuities in v and/or d, a circumstance to be explored later.  Note that when the 
channel bottom contains topography, R± are no longer conserved and must be computed 
by integration of (1.3.1) along characteristic curves.  In either case the curves may be 
interpreted as paths along which information travels.   
 
 Elementary examples of nonlinear evolution can be constructed through the 
consideration of a simple wave, as generated from an initial condition with uniform R- or 
R+.  Consider the initial condition shown at the base of Figure 1.3.1a, with shallow water 
to the right and deeper water to the left.  Suppose further that the shallower region has 
uniform depth do and is motionless (v = 0).  Then choose the initial velocity to the left of 
the shallow region such that R- is uniform. The value of R- can be found by evaluating v-
2(gd)1/2 in the shallow, quiescent region, leading toR

!
= !2(gdo)

1/ 2 .  R- must have this 
value for all y and therefore for all y and t reached by ‘-’ characteristics, provided they do 
not intersect.  An immediate consequence is that v and d become linked by the relation  
 
    v = 2(gd)

1/ 2
! 2(gdo )

1/ 2 , 
 
which follows from the definition of R-.  The definition of R+ then leads to 
 
    R

+
= 4(gd(y,t))

1/2
! 2(gdo )

1/2 , 
 
and thus d(y,t) itself is conserved along each ‘+’ characteristic curve.  Since both R+ and d 
are conserved, v must also be conserved along each such curve and the characteristic 
speed must be constant and equal to its initial speed:  
 

    
c
+
= v(y,t) + (gd(y,t))

1/2

   = 3(gd(y,0))
1/2

! 2(gdo )
1/2

.
   (1.3.7) 

 
 The slope 1/c+ of each ‘+’ curve is therefore constant, though different curves 
have different slopes.  For the disturbance shown in Figure 1.3.1a, characteristics 
emanating from the deeper part of the disturbance are tilted more steeply than those 
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emanating from the shallower portion. The tilt of each curve is an indication of how 
rapidly the signal corresponding to a particular part of the disturbance travels.  The signal 
itself can be identified as a particular value of the depth d.  Here the larger depths on the 
left propagate to the right more rapidly than shallower depths on the right. The slope 
!d / !y  of the free surface will therefore increase in what is called nonlinear steepening. 
We leave it as an exercise for the reader to show that a disturbance of the type shown in 
Figure 1.3.1b would spread or rarefy1 (provided R- remains uniform).  In other words, the 
left-hand (shallower) d-values would propagate more slowly than those to the right.   
 
 The steepening wave form in the above example formally leads to a singularity 
corresponding to the intersection point q in Figure 1.3.1a.  As more rapid signals overtake 
slower ones, the free surface slope increases without bound and eventually multiple 
values of d occupy the same y. The formation of a singularity is not proof of a real world 
catastrophe but rather an indication of breakdown in the shallow water approximation. 
This breakdown occurs when the horizontal length of the steepening wave becomes as 
small as the fluid depth.  Beyond this point the steepening may or may not be arrested 
due to the intervention of non-hydrostatic effects or possibly other processes not captured 
in inviscid shallow water theory.  If the length of the ultimate wave form or shock 
remains comparable to the depth, it is possible to represent it as a discontinuity in depth 
within a shallow water model and to approximate its amplitude and propagation speed.  
The ideas involved, collectively known as shock joining theory will be discussed in later 
sections. 
 
 A further illustration of the power of the method of characteristics is provided by 
a nonlinear version of the dam break problem explored in the previous section.  We now 
consider the motion resulting from the destruction of a barrier separating a resting fluid of 
depth D from a region with no fluid (Figure 1.3.2). The initial conditions are 
 

   d(y, 0) =
D (y > 0)

0 (y < 0)

! 
" 
# 

     (1.3.8) 

and 
   v(y, 0) = 0 .      (1.3.9) 
 
The solution to this problem, as posed, is non-unique.  Different results are obtained 
depending upon how one deals with the discontinuity in initial depth at y = 0.  A 
reasonable way to resolve this difficulty is to replace this discontinuity with a smooth, but 
abrupt, transition over 0 < y < yT, as shown in the figure. One must specify the initial 
values of d and v within this short region and the corresponding characteristic speeds and 
Riemann invariants can be used to compute the evolution.  Different specifications lead 
to different outcomes and this is the source of the non-uniqueness.  The calculation of the 
evolution becomes quite simple if d and v are chosen such that either R+ or R- is uniform 
in the abrupt region and has the same value (either 2(gD)1/ 2  or !2(gD)1/ 2 ) as in the 
region y < 0.  Then one of the Riemann invariants will be initially uniform throughout the 
                                                
1 The term originates from gas dynamics and refers to the decreasing gas density that occurs when the wave 
form spreads. 
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fluid, allowing application of the simplifications described above for ‘simple’ waves. The 
limit yT→0 may be taken later in order to approach the original step geometry. 
 
 Following this idea further, suppose that R- is initially uniform in the transitional 
interval 0 < y < yT.  Its value must therefore be !2(gD)1/ 2 in order to match that in y < 0.  
It follows from the definition of R- in the transition region that  
 
  v(y, 0) ! 2(gd(y, 0))

1/ 2
= !2(gD)

1/ 2  (0<y<yT). 
 
However, d < D in 0 < y < yT, implying that v(y,0) < 0. In other words, the fluid in the 
vicinity of the barrier will initially move to the left after the barrier is removed.  
Obviously, the assumption of uniform R- is not one that leads to a physically realistic 
evolution. On the other hand, the choice R+ = uniform leads to  
  
  v(y, 0) + 2(gd(y, 0))

1/ 2
= 2(gD)

1/ 2  (0 < y < yT)  (1.3.10) 
 
so that v(y,0) > 0 in the vicinity of y = 0, as expected.   
 
 It is now easy to make a sketch of the characteristic curves for all y and t, as is 
done at the top of Figure 1.3.2. Since R+ is uniform, all of the ‘-’ characteristics are 
straight.  Their slope is determined by the initial value of the characteristic speed: 
 

 

  

c!(y,0) =
!(gD)

1/2
                                                         (y < 0)

v(y,0) ! (gd(y,0))
1/ 2

= 2(gD)
1/ 2 ! 3(gd(y,0))

1/2
    (0 < y < yT )

" 

# 

$ 

. 

 
Since d(y,0) decreases  monotonically from D to 0 as y increases from 0 to yT, c- increases 
from -(gD)1/2 to 2(gD)1/2 over the transitional interval.  The ‘-’ characteristic curves 
originating from this interval therefore fan out as shown in Figure 1.3.2.  Since d and v 
are constant along these curves, the developing flow consists of a rarefaction wave.  The 
leading edge (d = 0) of this wave moves to the right at speed 2(gD)1/2 whereas the rear 
edge moves to the left at speed (gD)1/2.  The leading edge speed is also the fluid velocity 
at the leading edge. One of the fanning characteristic curves has c- = 0 and therefore 
points directly upwards.  In the limit yT→0 this curve lies at the position (y = 0) of the 
barrier.  Thus, the flow at y = 0 immediately becomes steady and critical after the barrier 
is removed.  The flow at all other y approaches this same critical state as t→∞. The depth 
d
!

 and velocity v
!

 of this final state are determined by the condition of criticality 
[v

!
= (gd

!
)
1/ 2 ] and by the uniformity of R+= v

!
+ 2(gd

!
)
1/ 2

= 2(gD)
1/ 2 , leading to 

v
!
=
2
3 (gD)

1/ 2and d
!
= (23 )

2
D .  The volume transport per unit width of channel is 

therefore given by 
 

   v!d! =
2

3

" 

# 
$ 

% 

& 
' 

3

g
1 / 2
D
3/ 2      (1.3.11) 
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 If the initial depth in y > 0 is finite then the advancing edge of the wave forms a 
shock. Calculation of the solution for this case requires knowledge of shock joining 
theory. A reader interested in the solution can consult Stoker (1957) for the full solution. 
 
   
 
Exercises 
 
 
1) Derivation of Riemann Invariants.   Obtain the homogeneous form of (1.3.1) from the 
shallow water equations (1.2.1) and (1.2.2) by the following procedure: 
 
 a) Try to write the homogeneous versions of (1.2.1) and (1.2.2) in the 
characteristic form 
 

  !
!t

+ c
±

!
!y

" 

# 
$ 

% 

& 
' v+ (

±
(v,d)

!
!t

+ c
±

!
!y

" 

# 
$ 

% 

& 
' d = 0  

 
by multiplying (1.2.2) by a factor α±(v,d) , adding the result to (1.2.1), and calculating  
α±(v,d) and c±(v,d) such that the above form is achieved. 
 

 b) Use this result to find the functions R±(v,d) satisfying !
!t

+ c
±

!
!y

" 

# 
$ 

% 

& 
' R±

= 0 . 

2)  Linearize the Riemann invariants R± about a uniform background flow v = V and d = 
D.  How do the resulting expressions relate to the traveling wave functions f+(y-c+t) and f-
(y-c-t) defined in Section 1.2? 
 
3)  Consider the initial condition v = 0 and  
 

  d(y,0) =
do                     ( y > L)

do + a(1!
y

L )    ( y " L)
. 

 
Although this initial condition does not formally give a ‘simple wave’ solution, a simple-
wave character emerges in parts of the domain after a finite time has elapsed.  Use this 
behavior to discuss the qualitative features of the nonlinear evolution of this disturbance 
and compare it with the linear result (Exercise 2 of Section 1.2).  
 
4)  For the example shown in Figure 1.3.1a, at what time does wave breaking (shock 
formation) first occur?  [Hint: do not necessarily be satisfied with the obvious answer.] 
 
5)  Consider the following twist on the classical dam break problem with initial 
conditions (1.3.8) and (1.3.9).  Suppose that at t = 0 the barrier is not destroyed but 
instead is made to recede from the reservoir at a constant speed co < 2(gD)1/2.  Use the 
method of characteristics to sketch the solution. 
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Figure Captions 
 
1.3.1  Characteristic curves for two initial value problems, one with deeper water to the 
left (a) and the second with deeper water to the right (b). The solid and dashed curves 
represent ‘plus’ and ‘minus’ characteristic curves corresponding to dy

±
/ dt = c

±
 

 
 
1.3.2  The full dam break problem as visualized with a gradual initial change in depth, 
rather than a discontinuity, near x = 0.  The characteristic curves are shown in the upper 
frame and the rarefying surface disturbance and intrusion are shown in the lower frame. 
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