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ABSTRACT

The hydraulics of flow contained in a channel and having nonuniform potential vorticity is considered from
a general standpoint. The channel cross section is rectangular and the potential vorticity is assumed to be
prescribed in terms of the streamfunction. We show that the general computational problem can be expressed
in two traditional forms, the first of which consists of an algebraic relation between the channel geometry and
a single dependent flow variable and the second of which consists of a pair of quasi-linear differential equations
relating the geometry to two dependent flow variables. From these forms we derive a general “branch condition”
indicating a merger of different solutions having the same flow rate and energy and show that this condition
implies that the flow is critical with respect to a certain Jong wave. It is shown that critical flow can occur only
at the sill in a channel of constant width (with one exception) at a point of width extremum in a flat bottom
channel. We also discuss the situation in which the fluid becomes detached from one of the sidewalls.

An example is given in which the potential vorticity is a linear function of the streamfunction and the rotation
rate is zero, a case which can be solved analytically. When the potential vorticity gradient points downstream,
allowing propagation of potential vorticity waves against the flow, multiple pairs of steady states are possible,
each having a unique modal structure. Critical control of the higher-mode solutions is primarily over vorticity,
rather than depth. Flow reversals arise in some situations, possibly invalidating the prescription of potential
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vorticity.

1. Introduction

Over the past 15 years there have been a number of
investigations of hydraulically driven flow in rotating
channels emphasizing the pertinence of classical hy-
draulics concepts such as critical control. These studies
have been directed towards reaching a better under-
standing of the dynamics of deep strait and sill flow in
the ocean. Adrian Gill was one of the leaders in this
field and his 1977 paper not only advanced the state
of knowledge (by extending the theory for zero potential
vorticity flow to finite but uniform potential vorticity)
but also presented a unifying approach which illumi-
nated various aspects of hydraulics problems in general.
His work clarified earlier results by Whitehead et al.
(1974) and Sambuco and Whitehead (1976) and laid
much of the groundwork for later advancements (e.g.,
Roed, 1980; Shen, 1981; Pratt, 1983, 1984a; Hogg,
1983, 1985; Borenis and Lundberg, 1986). If one were
forced to choose from among all hydraulics papers ever
written one which most clearly describes the concepts
of hydraulic control, supercritical and subcritical flow,
and solution branch points, one could not go far wrong
choosing Gill’s (1977) work.
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“Hydraulics” and “hydraulic control” have always .
been loosely defined terms and one of the few attempts
at a definition is due to Gill. According to his definition
one must be able to describe the flow in terms of a
single dependent variable [say d(x)] which can be ex-
pressed in terms of the slowly varying geometric pa-
rameters of the channel (the width w(x), the bottom
elevation #(x), etc.) by a relationship of the form

Fld(x); w(x), h(x), + + -] =constant. (1.1)
The relationship must be multivalued in that 4 may
take on several values for given w, A, etc. Under these
circumstances the condition

o4 /8d=0 (1.2)
indicates a merging of the different solution branches
or roots. Since the function & does not depend explic-
itly on position x, the solutions possess a kind of sym-
metry with respect to the channel geometry and the
flow field will be identical at any two sections having
the same w, A, etc. The only exception occurs when
the solution passes through a branch point between the
two sections, in which case symmetry is lost. Since
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the branch or control point must lie at a topographic
extremum, that is where

a6 dw 36 dn
owdx dhdx

in view of (1.2). For the special case of uniform, finite
potential vorticity Gill (1977) constructs the function
& and shows that the condition (1.2) is equivalent to
the condition that long waves (in this case Kelvin
waves) become stationary in the flow. The steady flow
is therefore critical at a branch point and information
which exists downstream is not felt upstream of this
section. Such a flow is said to be hydraulically con-
trolled and can be computed by starting at the control
section and working one’s way upstream and down-
stream.

Another view of “hydraulics type” problems is based
on one’s ability to express the problem in the quasi-
linear form

Cd,=Df,, (1.4)

where d and f are vectors containing the dependent
flow variables and forcing terms (including topographic
forcing) respectively, and the coefficient matrices C and
D depend on the dependent and independent variables,
but not derivatives of the dependent variables. The ei-
genvalue problem for (1.4), Det(C — Al) = 0, gives the
critical condition for long waves when A = 0. The con-
sequential restriction on the forcing term f follows di-
rectly from (1.4). In the study of the hydraulics of mul-
tiple density layer flows (e.g., Armi, 1986) it is common
to use (1.4) as a starting point.

Although (1.4) can often be integrated and the result
manipulated to achieve a relationship of the form (1.1),
this is not always the case. For example, in Pratt’s
(1986) study of hydraulically driven flow with bottom
drag, equations of the form (1.4) are found; however,
when these equations are integrated the function & is
found to contain explicit dependence on x. Also,
weakly dispersive, hydraulically driven flow in rotating
channels exhibits many classical hydraulics features
and yet cannot be described in either form (Pratt,
1984a).

This paper explores the important but mathemati-
cally difficult problem of computing hydraulically
driven channel flows having nonuniform potential
vorticity. To simplify the problem as much as possible,
we consider a channel of rectangular cross section ex-
tending from a reservoir or basin in which the potential
vorticity is known along each streamline. One of the
complications introduced by potential vorticity non-
uniformity is an additional restoring mechanism as-
sociated with the potential vorticity gradient. Thus, we
expect that many long-wave modes of the mixed po-
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tential vorticity—gravity type will arise and that multiple
critical states may exist in the steady solutions. Anal-
ogies exist in stratified fluids, where the flow may be-
come critical with respect to various internal modes
(Farmer and Denton, 1985) and in coastal currents,
where criticalities may exist with respect to Kelvin and
shelf modes (Hughes, 1985, 1987).

There are a number of reasons for considering non-
uniform potential vorticity distributions. The main
one, of course, is that the complicated processes in-

-volved in the formation of overflow water will, in gen-

eral, lead to complicated potential vorticity distribu-
tions. Even if the newly formed overflow water has
uniform potential vorticity, significant nonuniformities
may develop due to friction by the time the fluid
reaches the sill. (Pratt, 1986, has argued that bottom
friction can be particularly significant in the major
deep-sea overflows). Finally, there are other current
systems which may experience upstream effects asso-
ciated with potential vorticity waves: the Gulf Stream,
the Kuroshio, and the Antarctic Circumpolar Current
are three possibilities. Although the boundary condi-
tions of the present model are not particularly relevant
to these currents, common dynamical features may
exist.

Our immediate task is to show that the hydraulics
problem with nonuniform, but prescribed, potential
vorticity can be cast in the two traditional forms (1.1)
and (1.4). The purpose of this is twofold; first, it pro-
vides a framework for the computation of such flows
by presenting equations which could be used as the
basis for a numerical algorithm. More importantly, it
allows us to deduce a number of facts concerning the
symmetry of the flow and the location and physical
nature of points of hydraulic control. In section 2 we
show how the hydraulics problem can be put in the
forms (1.1) and (1.4) and derive a general criterion for
Gill’s branch point condition (1.3). In this somewhat
abstract discussion the flow field is represented at a
given cross section by two independent quantities C;(x)
and C,(x) which the investigator is free to choose in a
variety of ways. The patient reader will find some relief
in the form of physical intuition in sections 3 and 4,
where Cy(x) and C,(x) are chosen to be the average
and difference, respectively, of the fluid depths along
the channel walls. This choice allows the flow at a
branch point to be discussed in clearer physical terms
and we show, in particular, that the sidewall specific
energies are stationary at such a point and that the flow
is critical with respect to a long wave which does not
disturb the basic potential vorticity. Also discussed are
the geometrical restrictions on the channel which must
be met in order for critical flow to occur. Finally, sec-
tion 5 discusses the applicability of these ideas when
the fluid is separated from one of the sidewalls.

The second half of the paper is devoted to examples
which provide additional insight into the physics of
this complex problem. Section 6 contains some short
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examples of uniform potential vorticity flows illus-
trating the computational method, particularly the
choice of C(x) and Cy(x), and showing that the method
reproduces known results. Section 7 describes a much
richer example in which the potential vorticity distri-
bution is chosen so as to allow an analytical solution.
Here we show that many pairs of (supercritical and
subcritical) solutions can be found for the same flow
rate, energy, and potential vorticity distribution. Each
pair has a single branch point where the subcritical and
supercritical solution branches meet and the flow is
critical with respect to a mixed potential vorticity—
gravity wave.

2. The equations for steady flow

Consider the steady shallow flow of homogeneous,
inviscid fluid in the rotating channel of rectangular
cross section shown in Fig. 1. The independent vari-
ables x and y denote distance along and perpendicular
to the channel axis, the channel sidewalls lie at
y = zw(x), and the elevation of the bottom is A(x).
Also d(x, y) and [u(x, y), v(x, y)] denote the fluid depth
and the x- and y-velocity components. If the channel
width and bottom elevation vary on a scale large com-
pared to w, it can be shown (e.g., Gill, 1977) that the
flow is approximately governed by the semigeostrophic
shallow water equations:

ul,+vu,— fo=—gdx— gh, 2.1)
Ju=—gd, (2.2)
(ud)x+ (vd), =0, 2.3)

where f is the Coriolis parameter and g is the gravita-
tional acceleration. From these equations it can be
shown that the semigeostrophic potential vorticity
(f— w,)/d is conserved along streamlines:

(f—w)/d=GW), (2.4)
where the streamfunction y is defined by
¥x=vd- ¢,=—ud. (2.5a, b)

FIG. 1. Definition sketch.
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Furthermore, it can be shown that the semigeostrophic
Bernoulli function

%uz +gd+gh=B) (2.6)
and the potential vorticity are related by
dB/dy = G\). 2.7

The traditional approach to the rotating channel flow
problem is to specify G(¢) at some section far upstream,
usually in a very wide or deep reservoir, and then com-
pute the flow downstream of this section by solving
any three of (2.1)~(2.4) and (2.6) subject to the bound-
ary conditions

v(x,{ w) = u(x, w)dw/dx (2.8a)
v(x, —w) = —u(x, —w)dw/dx. (2.8b)

It is also possible for the fluid to separate from one of
the sidewalls, in which case a new boundary condition
arises. This case will be taken up in section 5; for now
discussion will be confined to the case of finite depth
across the entire channel.

Previous investigations have been confined to the
case G = constant; now consider the computation of
the flow field for more general G(¥). Multiplying (2.2)
by d and substituting (2.5b) for (ud) leads to the fol-
lowing relationship between ¢ and d:

¥ = @2, y)— dx, ),

where the value of Y has arbitrarily been chosen as zero
along the wall at y = w. Substituting (2.9) into (2.4)
and combining the result with (2.2) yields an equation
for the cross-channel depth structure: :

d,,— fg'Gld*— d*(x,w)ld+ f%¢'=0. (2.10)

Since no derivatives with respect to x appear in (2.10),
the variable x may be treated as a parameter. Thus the
solution to the second-order equation will depend on
two integration “constants™: C;(x) and Cy(x). It is pos-
sible to choose one of the “constants” as d(x, w), or to
make other physically convenient choices with no loss
of generality; however, we will leave C(x) and Cy(x)
undefined for the present. In summary

~

2.9)

d= D[y, Cy(x), Cx(x)] (2.11)
and, in view of (2.2):
=—gf7'D,=U[y;C\(x), C2(x)].  (2.12)

At this point there are a number of ways of con-
structing the function & required by Gill. One is to
evaluate the Bernoulli equation (2.6) along each side-
wall and use (2.7) to write the Bernoulli constant at
y = win terms of its value at y = —w, resulting in

o .
E*(W,CI,C2)=—gh+B'—J; GW)ady (2.13a)
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E(—w,C,C)=—gh+B", (2.13b)

where the superscripts “+> and “—" denote values at
y=wand y = —w, Q is the value of y at y = —w (the
flow rate), and

E*= %(U*)2 +gD* (2.142)

E™=2(U")+gD" (2.14b)
are the “specific energies” at y = =w. In principle, either
(2.13a or b) determines C, in terms of C;, w and h,
and this relationship can be substituted into the other
equation to obtain the desired &-function. For example
substitution into (2.13b) leads to

HCi3w, by = E[-w,Cy, CoCy, w, h)] + gh=B",
(2.15)

and this relation establishes the symmetry relation
mentioned earlier; a flow specified by B~, Q and G will
have identical structure (i.e., identical C;, () at any
two sections of identical w and A, unless a branch point
is passed in between.

The branch point condition d4/dC, = 0 [see Eq.
(1.2)} leads to

EC1_ + Ecz_(aC2/aC1) =0. (2 16a)

If on the other hand, (2.13a) is used to construct the
function &, the branch point condition leads to

Ec*+ Ec,"(8C,/8C)=0. (2.16b)
Fixially, elimination of dC,/dC| between (2.16a, b) gives
EC1+E02— - EC2+EC1— = JC,,CZ(E+, E_) = 0 (2 17)

Equation (2.17) may be viewed as a necessary condition
for a branch point. Derivatives with respect to C; and
C, are taken by varying the differentiated quantity over
diffeaent solutions (i.e., over different values of O, B~
or B™).

It is also possible to express the equations for the x-
structure of the solution in the quasi-linear form (1.4)
by substituting the depth and velocity profiles (2.11)
and (2.12) into the momentum equation (2.1) and ap-
plying the result on both sidewalls along with the
boundary conditions (2.8a, b). [The desired form can
also be obtained by differentiating (2.13a, b) with re-
spect to x]. In either case the result is

Ect ELTC —g —-E,Th
a e M o8 T as)
EC; EC2 (80) x v °4 —-E, |lw .
Solving (2.18) for (dC)/dx) leads to

g(E* — EV)e,dhjdx+ Jc, W(E*, E™)dw/dx
Je,olET,ET) '

dCl/dx=

(2.19)
The branch point condition J¢, c,(E™, E7) = 0 requires
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that the numerator in (2.19) vanish in order for dC,/
dx to remain bounded, and this restricts the values dh/
dx and dw/dx can take at a branch point. By choosing
C, and G, judiciously this restriction can be further
simplified, as shown in the next section.

3. Alternative formulations

It is possible to write down a number of equivalent
forms of the equations for the along-stream structure
which may be computationally advantageous and pro-
vide additional physical intuition. Two such forms re-
sult from consideration of the volume flow rate:

ACi(x), Cox), w(x)) = f_ uddy= %f “lg(D™*~D*).

3.1
(The second step follows from 2.2). Now (3. 1)\may be
used in place of (2.13a or b) and the steps leading to
(2.17) may then be repeated to achieve the required
&-function. The resulting branch point conditions are

Je,c{@ET)=0 (3.2)

Jo,.o(Q,ET)=0. (3.3)

In connection with these forms, it is convenient to
introduce the average wall depth D and differential wall
depth D defined by

D(x)= % [D(—w, Ci(x), Co(x)) + D(w, Cy(x), Co(x))]
(3.4a)
D(x) =3 [D(—w, Ci(x), Cox) — D(w, C:(0), ),

(3.4b)
in terms of which, the flow rate can be written
Q=2f"'gDD. (3.5)

In principle (3.4a, b) determine C; and C; in terms
of D and D, so that the “constants” in the velocity and
depth profiles (2.11) and (2.12) may simply be chosen
as D and D. Thus the branch point conditions (3.2)
and (3.3) may be written

J5,5(Q, ET)=2gfNEs"D—E5D)=0 (3.6)
J55(Q, EV)=2gfNEs*D—Es*D)=0. (3.7)

Also note that by substituting Q/D for D in either (3.6)
or (3.7) one obtains a “weir formula”; i.e., one relating

‘the flow rate to the single variable D measured at a

branch point.

Alternative quasi-linear forms can be written down
using the derivative of (3.5) with respect to x along
with one of the sidewall momentum equations in
(2.18). One such combination is

5 SEG TT o
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and it follows that

D= —Dlgdh/dx + E,,~dw/dx]
~ I (O E™

This expression provides more specific information
concerning the channel geometry at the branch point
than (2.19) does. For example, when dw/dx = 0 the
branch point condition J55(Q, E7) = 0 requires that
the bottom slope vanish (dh/dx = 0) or that D vanish.
The latter would imply that both sidewall depths vanish
and this condition can usually be dismissed as being
unrealistic. If width variations are allowed but the bot-
tom is level then the branch point occurs where dw/
dx = 0 or where E,” and E,* vanish. [The vanishing
of E,* follows from the counterpart to Eq. (3.9) ob-
tained when the momentum balance at y = w is used
instead of the y = —w balance]. In all known cases, the
only situation in which E,,” and E,;* can vanish occurs
when the flow separates from one of the sidewalls, and
this is discussed more fully in section 5.

Finally we mention a generalized branch point con-
dition due to Stern (1974) and show how it can be
derived using Gill’s formalism. If the geostrophic re-
lation (2.2) is integrated across the channel, the result
can be written

D+

_UTldD)+2fg'w=

3.9

(3.10)

Now a function of & can be obtained from the left-
hand side of (3.10) by using (2.6) and (2.9) to express
u and d in terms of ¢ and D*. After the appropriate
substitutions are made and the integration variable is
changed from D to ¥, one obtains

0
505w = [ ety pe

X [2B(Y) — 282 fg~ "y + DY) 212y — 2w=0.

The critical or branch point condition is now ob-
tained by setting 3#/0D" = 0. Doing so and changing
the integration variable of the result from y to y, one
obtains

f (U*D)™'[1 - U?*/gD)dy = 0. (3.11)
This condition implies that at a branch point the local
value of U?/gD must be unity for some value of —w
< y < w. Note that the integral in (3.11) can be eval-
vated in the laboratory if velocity and depth data are
available, whereas it is not clear how one would mea-
sure the Jacobians in (2.15) or its alternate forms. For
computations (such as the examples presented in sec-
tions 6 and 7) however, it is often more convenient to
use (2.17), (3.2), (3.3) or (3.6).

4. Physical interpretation of the branch point condition

Next consider the physical meaning of the branch
pomt condition (3.6) or (3.7). In the (D, D) plane shown
in Fig. 2 we have drawn some Q = constant curves
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along w1th some hypothetical E* = constant curves.
The values of D and D which occur for different values
of x in any given solution must, of course, lie along
one of the Q = constant curves. Suppose one follows
such a curve and notes the values of £ * encountered
along the way. Since dD/dD = —Qfj2gD* = —D/D
along this curve, it follows that

dE* = E5*dD + E5*(dD/dD)dD = D~"J5 5(Q, E*)dD,

and thus E™ is stationary (dE* = 0) if the curve passes
through a branch point J;55(Q, E*) = 0. In Fig. 2 the
branch point occurs where curves of constant Q and
E* become parallel, as at the point marked P. Here
the value of E™ is locally extreme with respect to D
(unless d2E*/D? vanishes, in which case P may be an
inflection point). In the case of uniform potential vor-
ticity it can be shown that E* is a minimum at the
branch point. All of these remarks hold for £~ as well.
It is also easy to show that the branch-point condition
implies that the flow is critical with respect to a long
wave of infinitesimal amplitude. Consider a steady flow
containing stationary disturbances which exist inde-
pendently of any topographic or sidewall forcing. For
simplicity we will assume that the channel contains no
sidewall contractions or topographic variations (or,
equivalently, that the wave length of the wave is much
shorter than the scales of variation of w and /). Since
the flow is steady the depth and velocity profiles given
by (2.11) and (2.12) continue to hold. For stationary
disturbances of small amplitude ¢ the x-dependent
terms of the solution, C\(x) and C(x), can be expressed
as basic parts C; and C, and small departures ¢C(x)
and eC%(x). Thus the depth and velocity can be ex-
panded in a Taylor series in powers in e as follows:

= CONSTANT
CURVES

/o

[wd

FIG. 2. Curves of constant Q and E* in D, D space. Branch points
(critical flow) occur where the two families of curves are parallel, as
atP.
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D(y, Ci(x), Cx(x) = D(y; C1, Cy)
+eChaD/IC, + eCr0D/BC,+ « + -
U(y; Ci(x), Co(x)) = —gf ~'aD/dy = U(y; Cy, C2)
+eC10U/dC, + eCHU/C,+ + + -, (4.1b)

If the x-momentum equation is now evaluated at
each sidewall (where v = 0) and (4.1a, b) are substituted
for u and d, the linearized results are

E¢tdCh/dx + Ec,tdChldx =0
E¢dCh/dx + Ee;dCh/dx =0,

where E* and E~ are the sidewall specific energies of
the basic flow. For a nontrivial x-structure to exist the
determinant of the coefficients in the equations for
C} and C, must vanish, leading to

Je,.c{ET,E7)=0. 4.2)

Associating the mean flow with a steady flow in a grad-
ually varying channel, the branch condition for the
latter is clearly equivalent to the critical condition with
respect to a disturbance which does not alter the pre-
scribed potential vorticity.

(4.1a)

5. Separated flow

When the velocities in a rotating channel flow be-
come sufficiently large, it is well known that the fluid
depth along the wall at y = w can vanish, causing that
edge of the current to separate from the wall. The con-
ditions for separation of uniform potential vorticity

flow have been discussed by a number of authors, most-

notably Shen (1981), and examples of separation in
laboratory flows have been observed by Whitehead et
al. (1974), Shen (1981), and Pratt (1987). We now dis-
cuss some general aspects of the hydraulics problem
for separated flows with general potential vorticity dis-
tributions. To do so, first note that the vanishing of the
depth D" at the free edge of the current along with
conservation of mass [see Eq. (3.1)] require that the
wall depth D~ be independent of x. Hence Gill’s func-
tion & may be constructed directly from the Bernoulli
equation at y = —w [Eq. (2.13b)] in the form

o"(U‘;h)=%U’2+gh=B‘—gD‘. 5.1
Application of (1.2) yields the branch point condition
AU =U"=0, (5.2)

and therefore the branching of the solution requires
that the wall velocity U™ vanish, i.e., a stagnation point
occurs.

Differentiation of (5.1) with respect to x yields

U™0U ™ /dx = —gdh/dx, (5.3)

and this equation is of the required quasi-linear form
(1.4). Note that /4, must be zero when U~ vanishes, so
that a branch point must occur at a sill. Thus, a branch
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point cannot occur at a point of minimum width unless
it also so happens that dh/dx = 0 at that point. In fact
a separated flow is completely insensitive to changes
in w, a statement which can be proved as follows. If
dh/dx = 0, then it follows from (5.3) that U™ is x-
independent. Furthermore D™ is x-independent for all
separated flows, and it follows from the potential vor-
ticity equation (2.4) that U, is also x-independent.
Finally, successive differentiation of (2.4) with respect
to y will show that all higher derivatives of U™, and
hence all coefficients in the Taylor expansion of U
about y = —w, vanish. One consequence of this result
is that the flow may not undergo separation in a con-
tracting dw/dx < 0 section, with no bottom relief, for
its separated width would have to continuously de-
crease in the downstream direction to avoid reattach-
ment.

It can also be shown that U~ = 0 is a critical con-
dition with respect to long waves. To do so, let Cy(x)
represent the y-position of the free edge of the current
and repeat the calculation culminating in Eq. (4.2).
Studies by Stern (1980) and Kubohawa and Hanawa
(1984) verify that U~ = Q is in fact the critical condition
for separated uniform potential vorticity flow.

The vanishing of the wall velocity at the critical sec-
tion implies that a recirculation exists with fluid re-
turning upstream (or downstream) along the y = —w
wall. Since it is characteristic of steady flows to be sub-
critical, and therefore have a decreased mean velocity,
upstream of the critical section, one might expect U~
to become negative there. The implication is that a
return flow exists upstream of the control section with
a dividing streamline separating this recirculation from
the main flow, as shown in Fig. 3. The recirculation
may extend indefinitely far upstream of the critical
section or may consist of a closed eddy of finite extent.
In any case the prespecification of G(y) along recir-
culating streamlines may be invalid; one may be forced
to solve for G(y) in such regions by taking into account
friction or other previously neglected processes.

Having discussed the theory, we must note that no
example of hydraulically critical, separated flow has
been produced in the laboratory. Pratt (1987) induced
flow separation in the supercritical flow downstream
of a sill by rotating his laboratory channel at a suffi-
ciently high rate, however the critical flow at the sill
remained attached for all rotation rates. More revealing
are the results of Shen (1981) who also induced super--
critical separation, this time downstream of a combi-
nation sill and width contraction. As the rotation rate
was increased the separation point moved upstream
(nearer the critical section) and, at a sufficiently high
rotation rate, the separation point reached the critical
section and ceased moving upstream. At this rotation
rate, agreement between experimental findings and
predictions from a zero potential vorticity theory began
to break down, and there is some indication of a re-
circulation region upstream of the control section
(Shen, private communication). These findings suggest
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F1G. 3. Anticipated streamline pattern near a critical section when the flow
- is separated from the wall at y = w.

that the recirculating regions, which can arise when
flow at a critical section nears separation, undergo po-
tential vorticity modifications which invalidate the
theory based on the “original” potential vorticity. This
modification may, in fact, prevent separation from oc-
curring at the critical section.

6. Zero potential vorticity example

In this and the following section we present some
examples showing the construction of the function &
and the isolation of the critical condition. In the present
section we consider several examples of zero potential
vorticity flow in order to show that the theory of earlier
sections produces the results established by earlier au-
thors.

a GW)=0,f=0

When both the potential vorticity and the rotation
rate are zero, the depth and velocity become y-inde-
pendent. This case is the classical hydraulics problem
discussed in the textbook of Chow (1959). The Ber-
noulli and continuity equations (2.6) and (3.1) reduce
to

%u2+gd+gh=B (6.1)

2udw = Q. (6.2)

Eliminating # between (6.1) and (6.2) leads to the
function & in the form

&d: h, w) = Q*/8d*w? + gd + gh, 6.3)

and the critical condition u? = gd results from setting
8d/9d = 0.

An alternative way of computing the critical con-
dition is to use Eq. (3.3) with C; = dand C, = u, so
that

U =u, D=d, E‘=%u2+gd.

Equation (3.3) is thus
Jpu(E™,Q)=2w(gd—u*)=0

giving u? = gd, as before.

6.4)

b. GY) = 0, f+# 0, nonseparated

If rotation is now allowed, then solving (2.10) with
G=0

dy+ 1871 =0 (6.5)
yields the depth profile
d=2f%"'w*=y)~Dyw+D  (66)
and velocity profile
u=—gf "'d,= fy+gD/fw, 6.7)

where D(x) and D(x) are defined by (3.4).
Using (6.6) and (6.7) to evaluate £~ in (2.13b) yields
the Bernoulli equation

S@D/fw—fwi+gD+D)+gh=B". (6:8)

The function & can be constructed by combining (6.8)
with the continuity equation (3.5), yielding

F(D;h,w) = %(gﬁ/fw — fwy+ f0/2D + gD+ gh. (6.9)

The critical condition may be found most easily by
applying (3.6), with the result

J5.5(Q, E7) = (g*D*f*w?—gD)2g/f=0. (6.10)

This is the critical condition found by Whitehead et
al. (1974) in their study of zero potential vorticity flow
through a contraction. The result may also be obtained
by setting d#/dD = 0. Further, if one defines

0= 1ulw, x)+ u(—w, x)] = gD/fw,

the critical condition (6.10) may be rewritten as
U*=gD. (6.11)

Hence, the critical condition for the rotating problem
may be formed from the nonrotating critical condition
u? = gd by replacing u and d by their average wall
values U and D.

Finally, it can be shown that

E, =—E, =(f*w - g’ D*/f*w?)/w.
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Recall that the vanishing of E,;* and E,,” is a necessary
condition for flow criticality when dh/dx = 0 but aw/
dx # 0 [see Eq. (3.9)]. Setting y = w, gD = f*w? and
using (6.10) in (6.6) shows that these conditions are
also equivalent to the vanishing of the depth at y = w.
Hence, when dh/dx = 0 the flow can become critical
at a place other than the narrowest section only by
separating from the sidewall, and experimental evi-
dence suggests that this cannot occur.

7. Flow with potential vorticity proportional to the
streamfunction

In this section we present an example of a flow with
a nonuniform potential vorticity distribution. In order
to simplify the problem we only deal here with the case
of no background rotation. Despite the fact that
f = 0, most of the essential physical features of the
more general problem are retained, including gravity
and potential vorticity waves and vortex stretching by
the topography. The only departure from the formalism
developed earlier is that here the velocity, rather than
depth, serves as the primary dependent variable, a
choice necessitated by the fact that d, = 0 when f= 0.
Finally, the potential vorticity is chosen as

G(Y) = Go—ay, (7.1)

where Gj is the “background” potential vorticity and
a is the potential vorticity gradient.

To obtain an equation for the y-structure of u, we
combine the f'= 0 potential vorticity equation, i.e.,

—u,/d=GW), (7.2)

with (7.1) and differentiate the result with respect to y,
yielding
Uy, +ad*(x)u=0. (7.3)

This equation is used in place of (2.10) to determine
the cross-stream structure of the flow.

We will consider the two cases (a > 0) and (a < 0)
separately since they have distinctively different prop-
erties. When a < 0 the potential vorticity gradient
points in the —y direction, as shown in Fig, 4a. Potential
vorticity waves presumably propagate to the left of this
gradient (i.e., with the flow) so that flow can become
critical only with respect to a gravity wave or something
akin. In this case one expects the flow to exhibit classical
hydraulic behavior. We also note that the Fjortoft suf-
ficient condition for shear flow stability, (Drazin and
Ried, 1981), which in the present case is

—uty, = ad’(X? <0, all—w<y<w,

is satisfied when a < 0. When a > 0, potential vorticity
waves propagate against the flow (Fig. 4b) and the pos-
sibility exists for multiple criticalities. In addition, the
Rayleigh and Fjortoft necessary conditions for insta-
bility can sometimes be satisfied in this case, a feature
discussed later in more detail.

Case 1: (a < 0) The solution to (7.3) with @ < 0 can
be written
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a<o0 ‘l’ =Q
I
y 7
L; —» 9G/9y AN
IR—— POTENTIAL VORTICITY
WAVES
y=Q
(a)
a>0 ¥=0
LD AN WAVES
ANV
> 9G/3y
. OR
D MWW
y=Q
(b) :

FIG. 4. The direction of the potential vorticity gradient and the
anticipated direction of potential vorticity wave propagation when
(a)a<0;(b)a>0.

_  sinh(ay) + u cosh(ay)
sinh(aw)  cosh(aw) ’
|a|'2d(x)

u(x) = % [1(x, w) + u(x,

(7.4)

where
a(x)=

—w)]

1(00) = 2 [u(x, W) — u(x,

-w)l.

The velocity thus has a boundary layer structure with
layers of width a™! along each wall. Since a is propor-
tional to d, the boundary layer width varies in pro-
portion to d~'. In rotating hydraulics with uniform
potential vorticity the flow also has a boundary layer
structure, however the boundary layer width is fixed
by the potential vorticity and therefore cannot vary
from section to section (Gill, 1977).

With the definition of the flow rate (3.1), 7 and @
can be evaluated Equation (3.1) then becomes

Q=— tanh(aw) il /2 tanh(aw), (7.5)
so that X
v
u= %——Q coth(aw).

Aty = w, ¥ = 0 and the potential vorticity equation
(7.2) gives

—uy/d=Go (y=w),
or

—a[ii/tanh(aw) + # tanh(aw)] = dG,.
We can now solve (7.6) with (7.5) for # giving

(7.6)

0= —tanh(aw)(Golal"’2 +% Ial”zQ) . (17

Finally, to obtain Gill’s function & we substitute (7.4)
into the Bernoulli equation (2.13b) using the specific
energies defined by (2.14b) giving
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FIG. 5. Plot of & vs d for the case a < O with § = 3, ¥ = J = 1 and % = 0. The inset shows a similar plot
with v = 0.1. Dashed lines indicate that the solution has a velocity reversal.

S(@— @) +gd+gh=B",

or
1 lal'’2Q -12 1 1/2 2
5 [ > tanh(aw) + tanh(aw)(Golal™"/*+ 5 lal Q}

+gd+gh=B",

in view of (7.5) and (7.7). This equation is of the form
required by Gill and by nondimensionalizing using
8hm,. where hy, is the scale height of the topography,
one obtains

% o
HMa:h)= 5 [1/tanh(yd) + 8 tanh(yd)]* + d+ &,
' ' (1.8)
where
o Q0

= 2wg 2h, 372
is the dimensionless flow rate,
B=(2Go+1alQ)/lalQ

is the sum of the sidewall potential vorticities divided
by the potential vorticity difference,

v = la|'?wh,,

is the channel half width divided by the boundary layer
thickness 1/|al|'/?h,, based on #,y,, o

B~ =B /ghy,
and all are nonnegative.

The critical condition can be obtained by setting
d4/0d = 0, leading to

v*Q%[coth*(vd,) — 8% sinh(vd,) sech®(vd,) = 1, (7.9)

where d, denotes the critical value of d. The left-hand
side of this expression decreases monotonically as d
increases from zero and hence can have only one ex-
tremum or branch point. Figure 5 contains a plot of
#vsdforhn=0,8=3,and vy = Q = | showing a
minimum value at d ~ 0.60. In dimensional terms
(7.9) can be expressed as )

2 =142+ gh,y ! sinh(yd,) cosh(yd,), (7.10)

and this reduces to 2 = w2Gy’d,? + gd, as the potential
vorticity gradient vanishes (y — 0). (The classical result
#? = gd, is then obtained by setting Gp = 0). If 4 is
substituted for d,, it can be shown that the left-hand
side of (7.10) is larger than the right-hand side on the
left branch of the solution curve in Fig. 5. We therefore
interpret the solutions corresponding to this left branch
as being supercritical, meaning that long waves prop-
agate downstream. The reverse is true of the right-hand
branch and we therefore call the corresponding solu-
tions subcritical. Some caution must be exercised in
making this interpretation, however, since we do not
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know the actual phase speed of the appropriate long
wave away from the control section.

The behavior of the function & is qualitatively the
same as the corresponding functions found in classical
or uniform potential vorticity hydraulics. To construct
a hydraulically controlled solution for a given topog-
raphy, h(x), and the parameter settings for the main
solution curve in Fig. 5 proceed as follows. First replace
the ordinate & in Fig. 5 by B~ - h(x), giving a plot of

— R(x) vs d. (This replacement is allowed by the
fact that & was plotted with & = 0). Next identify A,,,
the elevation of highest sill in the prespecified topog-
raphy. A hydraulically controlled solution will be crit-
ical at this sill and the value of B~ for this solution is
obtained by equating B~ — h,, with the value of the
curye at d =d.(ie., the minimum value of 4). Values
of d for other values of A(x) can be found by locatlng
the point on the curve whose ordinate is B~ - h(x)
and choosing the subcritical/supercritical branch up-
stream/downstream of the sill.

In dimensionless form, the velocity (7.4) can be
written

sinh(ydy) = cosh(vydy)
cosh(yd) = sinh(yd)

where y = y/w. Figure 6a shows the velocity profiles
of the flow at the points marked a, b and ¢ in Fig. 5.
These profiles are representative of the subcritical, crit-
ical, and supercritical flow that exist upstream of, at,
and downstream of the sill. The profiles have been ar-
ranged as they might appear in a channel with constant
w and prespecified bottom topography, and a quali-
tative representation of the depth variation along the
channel has been drawn. The most important feature
1o note is that reverse flow exists along the left-hand
(y = w) wall beginning slightly upstream of the critical
section. At the critical section the flow is unidirectional,

a=u/(ghn)""*vQ0=—-8 , (7.11)
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To further investigate the conditions under which
reverse flow can exist we now search for locations where
interior streamlines contact one of the sidewalls. Since

_the latter can occur only at a stagnation point we set
u = 0and y = win (7.11) resulting in the condition

B8 = coth¥(yd,), (7.12)

where d; is the depth at the point of separation. The
corresponding condition at y = —w is obtained by re-
versing the sign of the right-hand term in (7.12). Since
8 is nonnegative this last condition cannot be satisfied
and thus streamlines may separate ony from the left
wall. “Stagnation” separation should be distinguished
from the rotation induced separation discussed earlier
in which the wall depth vanishes but u remains finite.

1£(7.12) is used to substitute for 8 in (7.9) the critical
condition becomes

v3@P[coth*(vd,) — coth*(vd,)]
X sinh(yd,) sech¥(yd,)=1. (7.13)

From this it is clear that d, must be <d,, and thus
streamline separation can occur only in the subcritical
flow. In Fig. 5 we have indicated that portion of the
subcritical solution branch for which reverse flow oc-
curs by a dashed line. By Taylor expanding d about
d, in (7.13) and using (7.12) it can be shown that

d;— d. ~ cosh*(yd,)/4v*Q*B". (7.14)
For the solution curve in Fig. 5, (y = =1, d,
~ 0.6)d, — d,is only about 0.05 and thus the separation
point lies only slightly upstream of the critical section.
The inset in Fig. 5 shows a solution curve for which v
has been reduced by a factor of 10, and here the sep-
aration point has been moved well upstream of the
critical section.

Case 2: (a > 0) The solution to (7.3) for this case is

so that all of the reverse flow can be traced back along . sin(ay) | _ cos(ay) (7.15)
streamlines originating upstream. sin{(aw) cos(aw)’ ’
i=2
a STAGNATION POINT, | b _ ¢
\ N\ )
o (R R
LD ‘
—— W W
<—SUBCRITICAL | SUPERCRITICAL—»
d=2.0 d4.=08
- &'
] I\l\ 403

FIG. 6. Qualitative representation of controlled solution based on velocity profiles
and depths taken from solution points marked a, b and ¢ in Fig. 5.
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where #, # and « are defined as before. The coefficients
# and 1 can be evaluated using mass flux considera-
tions, as before, resulting in

i =a'?Q/2 tan(aw) (7.16)

= —tan(aew)[Goa“’2 —%a "ZQ] , (717

and from these we can form the following dimension-
less velocity representation

= sin(ydy) cos(ydy)
cos(yd)  sin(yd)’

where d, v, Q and j are defined as before and are non-
negative. Also 8 = 1 — 2Gy/aQ now ranges from —oo
(no potential vorticity gradient) to 1 (infinite potential
vorticity gradient). The value 8 = 0 occurs when the
average potential vorticity

e ]
[ 6wt =1 pag?
0

vanishes. For —oo < 3 < 0 the average potential vor-
ticity is positive; For 0 < 8 < 1 it is negative.

The necessary conditions for streamline separation
(fi=0aty= *x1)are now

B=—cot¥(yd,) (aty=w) (7.19a)
8= cot¥(vd,) (7.19b)

Flow with positive average potential vorticity (8 < 0)
can stagnate at the y = w wall only, while negative
average potential vorticity flow can stagnate at the

(7.18)

(at y=—w).
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¥ = —w wall only. When @ = 0 stagnation cannot
occur for finite vd.

Gill’s function may be constructed as before through
substitution of (7.18) into the sidewall Bernoulli equa-

tion (2.13b), resulting in
#(d ) =2y Pleot(yd) — B tan(yd)P + d+ h= B~.
(7.20)

Note that & — oo as ~d = 0, /2, , etc., so that the
curve of & vs d will consist of an infinite number of
lobes, each occupying a depth range of w/27. Figure 7 .
shows #(d, 0) with the parameter settings O = 1, 8
= —1 and v = 2x. The lobes are numbered 1-co from
left to right. Solutions containing reverse flow are in-
dicated by dashed lines as before.
The critical condition d4/dd = 0 can be written

v*QP*lcot*(vd.) — cot*(vd,)] sin(yd,) sec’(vd,) = 1,
(7.21a)

and this equation has infinitely many roots for positive
v and Q, one in each interval 0 < yd < =/2, 7/2
< vd < =, and so on. Figure 7 shows that the mini-
mum values of & tend to increase with increasing d
and this is due to the potential energy term (= =d) i in
(7.20). The asymptotic value of d; — d. (for small d,
- d) can be obtained by replacing cosh(yd,) by
cos(yd;) in (7.14) and from this it follows that d,
— d_ is nonnegative. Thus stagnation will always occur
at a greater depth than the critical depth.

The critical condition may also be expressed in the
dimensional form

1200
gd,0) 800
400
OOI II.IO l 2%0l 3.0
d
¢ . re e s
O O O L
g b oo L T O
T O T L L I I
I} :: |'I I} |'| =I |= I‘ h I| Iy II !
I A |I | || !
! |2I|3,|4, s||sll7| 89 ||o|||| ||z|||3
oL o :“\/" 1
¢ "
k’u:’d\/’ ‘\I \J \J \, \/\
o | | | | i | 1
(o) 05 1.0 |.5~ 20 2.5 3.0
d
FIG. 7. Plot of & vs d. For case a > 0 with 0 = 1, 8 = —1, ¥ = 2= and % = 0. The inset shows the case

0=18=

—400, v = 1. Dashed lines indicate that reverse flow exists somewhere over the cross section.
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FIG. 8. Qualitative representation of controlled solution frdm lob #1 of Fig. 7. The velocity
profiles and depths are from the points labeled a, b and c in Fig. 7.

22 =042+ ghy,y~ ' sin(yd,) cos(yd,). (7.21b)
Consider the relative size of the left and right sides of
this expression when d is substituted for Jc.~For odd-
numbered lobes (i.e., 0 < yd < 7/2, * < vd < 3w/2,
etc.) it can be shown that the left side is larger than the
right side on the left-hand solution branches, and we
therefore interpret these as representing supercritical
solutions. The right-side of (7.21b) dominates on the
right-hand branches of odd numbered lobes, and the
corresponding solutions are apparently subcritical. On
even numbered lobes the reverse is true and the temp-
tation is to label the right-hand branches supercritical.
However, Eq. (7.16) indicates that # is negative for all
even lobe solutions, a result that seems to suggest that
the flow advects long waves upstream (i.e., opposite to
the direction of total mass flux). If this interpretation
is true, then the right-hand branch solutions would
permit wave propagation in the upstream direction

only, while left-hand branch solutions would allow
propagation in both directions. Due to the apparently
unique features of the even lobe solutions, we will not
attempt to label the corresponding branches subcritical
or supercritical.

Since vyd varies over an amount /2 within each
solution lobe, the velocity profiles have a modal struc-
ture particular to each lobe. The higher the lobe number
the greater are the number of zero crossings. Figures 8
and 9 contain velocity profiles corresponding to solu-

“tions at three points on each of the first two lobes.

These points are labeled (a)-(f) in Fig. 7. As before we
have arranged the profiles as they might appear in a
given physical setting. The lobe 1 profiles (Fig. 8) have
been drawn with the subcritical solution (labeled “a”
in Fig. 7) followed downstream by the critical solution
(labeled “b”) followed by the downstream supercritical
solution (labeled “c”’). Flow at the critical and super-
critical sections is unidirectional but a recirculation

us= STAGNATION POINT
d = e f
F——
— = . )
N | y
4| <
< A sl

d.=038
d=0.32

X

FIG. 9. Lobe 2 solution based upon profiles and depths taken from points d, e and fin Fig. 7.
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exists upstream of the critical section. As indicated by
Egs. (7.19) and (7.21) the stagnation point lies on the
y = w wall upstream of the critical section. This flow
closely resembles the Case 1 solution.

Figure 9 shows the velocity profiles corresponding
to points d-f on lobe 2 of Fig. 7. Solution “d” which
is hypothesized to support upstream propagation of
the controlling wave is placed upstream of the critical
solution “e”; solution *“f” which apparently supports
downstream propagation of the controlling wave, ap-
pears downstream. Although the opposite arrangement
(solution “d” downstream and solution “f”” upstream
of the critical section) is dynamically possible, it would
support propagation of the controlling wave towards
the critical section and thus be unstable (Pratt, 1984b).
Hence the correct choice of upstream and downstream
solution branches can be made on the basis of stability
considerations. The velocity profiles in Fig. 9 contain
at most two zero crossings and a recirculation exists
upstream of the critical section along the wall at y
= w, as in the previous case. However, reverse flow
now. exists along the wall at y = —w and extends
over all x. Also note that the relative change in depth
across the obstacle is small compared to the previ-
ous case.

As the lobe number increases, the effect of topog-
raphy is reflected more in the vorticity and less in the
depth structure of the flow. As a measure of vorticity,
consider the cross sectional enstrophy

1
E=% f (911/97)*d.
—1

Using (7.18) to substitute for # and performing the
integration leads to

E = ~*d*(8* tan¥(yd) + 1)/2 sin*(vd)
+~d(8? tan’(vd) — 1)/2 tan(yd). (7.22)

Now consider the change in enstrophy at the critical
section (0E/dd.)Ad, produced by a small change Ad,
in the critical depth. Such changes might be produced
by increasing the topographic height a small amount.
Their ratio dE/dd. measures the strength of vorticity
control relative to depth control. For large d. we have

0E/od, ~ d2/vQ* (as d,—> o),

in view of (7.22) and (7.2Fa). Thus, critical control of
depth diminishes relative to enstrophy (or vorticity)
control in proportion d,? for large d..

When the potential vorticity gradient (=a) is de-
- creased, causing vy and 87! to vanish, the solution lobes
begin to separate and eventually all finite values of d
are occupied by the first lobe. The inset in Fig. 7 shows
the result of decreasing v to unity and 8 to —400. The
shape of the first lobe is similar to that exhibited by
the #(d, 0) curve of classical hydraulics and the flow
is unidirectional over most of the curve. Positive values
of B lead to solutions whose general properties resemble
those of Fig. 7 except that the stagnation points occur
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at the opposite sidewall. When 8 = 0 no recirculations
exist and reverse flows extend over all values of x.

Because multiple solution lobes exist, it is not pos-
sible to construct a hydraulically controlled solution
in the manner described for the case a < 0. Even if the
parameters 3, O, v and bottom topography / are pres-
pecified, B~ cannot be determined uniquely; a dif-
ferent value exists for each critical value of d. Obviously
more information is needed to determine the solution
lobe that obtains in a given physical circumstance and
one may have to solve a carefully chosen initial value
problem to make the correct selection. However, there
are a number of features suggesting that the first lobe
solution may be preferred in laboratory or geophysical
settings. First of all, the lowest-mode solutions are the
only ones which do not permit fluid from far down-
stream to penetrate the control section and are therefore
the least objectionable insofar as potential vorticity
prespecification is concerned. Furthermore, the critical
solution for this lobe has the smallest value of & and
therefore the least energy of all other critical points of
all lobes. It follows that a first-lobe solution which is
controlled (i.e., has a critical section) possesses the least
energy of all other solutions, controlled or otherwise.
Should the selection process which establishes steady
solutions do so on the basis of minimal energy, the
first lobe will be realized. Finally, note that when ve-
locity reversals occur the case g > 0 satisfies the Fjortoft
and Rayleigh necessary conditions for instability. (The
latter requires that u,, change sign). Although the first-
mode solution may be stable, the higher modes are
almost certainly barotropically unstable and this again
suggests that the first mode may be preferred in natural
settings.

8. Discussion

We have established that free flow with nonuniform
potential vorticity in a channel of rectangular cross
section retains a number of standard hydraulics prop-
erties, provided that the potential vorticity is prescribed
and that fluid depth remains finite over the entire
channel width. Among these are the following:

(1) The flow is symmetric with respect to the channel
width and bottom elevation unless the solution passes
through a branch point.

(ii) Branch points occur only at topographic “ex-
trema” corresponding to the vanishing of the bracketed
terms in Eq. (3.9). For example if the channel width
is uniform, branch points can only occur when dh/dx
= 0, as at a sill. If the bottom elevation is uniform,
branch points occur where dw/dx = 0, as at a point of
minimum width, or where the derivatives of the side-
wall specific energies with respect to w vanish. The only
known cases in which the latter is satisfied occurs when
the fluid separates from one of the channel walls (see
example b of section 6).
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(iii) At a branch point the flow is critical with respect
to a long wave which does not disturb the prescribed
potential vorticity.

(iv) At a branch point the sidewall specific energies
are stationary with respect to changing topography or
width. (In all known cases, including the example of
section 7, the specific energies achieve extrema at
branch points).

Some caution must be exercised in applying these
principles, since it may not always be possible to pre-
scribe the potential vorticity on streamlines. One in-
stance where potential vorticity prescription appears
to fail occurs when critical flow forms near a point of
separation. As discussed in section 5 this type of flow
would have a stagnation point at the wetted wall im-
plying a recirculation of fluid upstream or downstream.
Recirculations are by no means restricted to flow which
experience wall separation due to rotation, as shown
by the example of section 7 (in which there is no ro-
tation). In any case one may have to solve for (rather
than prespecify) the .potential vorticity along recircu-
lating stream lines. How to perform this calculation
remains an unsolved and important problem. Evidence
from recent laboratory experiments suggests that flow
at a critical section cannot separate, and this may be
a result of potential vorticity modification with recir-
culations which appear at high rotation rates.

Because a potential vorticity gradient gives rise to
many long-wave modes, it is generally possible for flow
with given Q, G(¥) and B~ (or B*) to have many crit-
ical states. In the example of section 7 we showed that
an infinite number of critical states were in fact possible.
Interestingly enough, each critical state was found to
belong to one branching solution pair occupying an
exclusive depth range, no two pairs connecting with
each other. This isolation may be contrasted with the
situation which occurs in sill flow with multiple density
layers, where a given solution curve may possess several
relative extremums indicating the ability to become
critical at different sections (e.g., Farmer and Denton,
1986). Here a solution with predetermined Q, G(¥),
B~, and “reservoir” depth may become critical only
once, unless some sort of hydraulic jump occurs.

Another matter which deserves further attention is
the selection of mode number in cases where the &-
function has multiple lobes. In the example of section
7, we expressed preference for the lowest mode based
on arguments involving potential vorticity prespecifi-
cation, energy minimization, and stability. However,
some consideration of time dependence may be nec-
essary before this question can be resolved.
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