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ABSTRACT

Nonlinear meandering and “pinching off* processes are investigated by solving the path equation
alfat ~ 3 ax/dx = 0.

As shown by Pratt and Stern, this dimensionless equation determines the center line latitude { of a slowly-
varying, equivalent barotropic, quasi-geostrophic, f -plane jet with cusped velocity profile and center line curvature
k= Lo/(1 + 1,2, A class of exact solutions consisting of steadily propagating meanders is found having
wavelength 2#/k and amplitude a. The meanders form a wave train which can be single-valued (for ak < 2.61)
or multivalued (for 2.61 < ak < 8.30) with respect to the x (eastward ) coordinate. For ak = 8.30 grazing contact
occurs between neighboring meanders and a type of vortex street is formed. The amplitude-dependent dispersion
relation for the meanders shows that phase propagation is eastward with speed that increases with decreasing
wavelength and/or amplitude, trends observed for Gulf Stream meanders near 72°W by Vazquez and Watts.
Numerical solutions are presented for isolated, single-valued initial disturbances having a characteristic wave-
number ko and amplitude ao. When agkg is less than a critical value between 1.5 and 2.0, the disturbance
disperses. For larger values of agky, the evolution leads to a “pinching off*’ phenomenon in which meanders

begin to detach from the main portion of the jet and form roughly elliptical eddies.

1. Introduction

Pratt and Stern (1986, hereafter referred to as PS)
recently presented a theory describing the nonlinear
evolution of meanders of a quasi-geostrophic jet. As
sketched in Fig. 1a, the jet flows on an f-plane and is
confined to an equivalent-barotropic layer with mean
thickness H floating above an inactive lower layer of
slightly greater density. The central feature of the jet
is that changes in potential vorticity are restricted to a
discontinuity occurring across a front separating a
northern region of uniform potential vorticity g from
a southern region of uniform potential vorticity g
— Ag. The role of the front is to mimic the strong
potential vorticity gradient that can occur in the core
of currents fed by fluid from widely separated latitudes.
In the core of the Gulf Stream for example, the local
potential vorticity gradient can be as much as 60 times
the planetary potential vorticity gradient (Hall 1985).
The simplification to piecewise uniform potential vor-
ticity allows solutions of various initial value problems
to be computed using the method of “contour dynam-
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ics” (Zabusky et al. 1979; Overman and Zabusky 1982)
by which explicit dependence on properties away from
the front can be eliminated from the governing equa-
tions. Furthermore, the evolution of the flow can be
understood in terms of two distinct and often opposing
physical processes (explicit in the contour dynamical
equations): advection and vortex induction. (The
reader is referred to PS as well as Stern and Pratt 1985
and Stern 1985 for more details concerning the use of
this method.)

To understand the conclusions of PS and to motivate
the present topic, it is helpful to consider the dispersion
relation governing infinitesimal disturbances to a basic
zonal state. Denoting the dimensional wavenumber k*,
the eastward phase speed of such disturbances is given
by

c* =uf[l — (1 + Lk**)"1/?] (1.1)

where L, = (g'H)'/?/ f is the Rossby radius of defor-
mation, u§ = LyHAq/2 is the centerline speed of the
jet, and Ag is the potential vorticity difference across
the front [the derivation of (1.1) is given in PS]. The
first term in the brackets is associated with eastward
advection by the jet, while the second term quantifies
the westward propagation tendency relative to the jet.
The latter is due to vortex induction associated with
northward and southward excursions of the front and
is analogous to the restoring mechanism in an ordinary
Rossby wave (Pedlosky 1979, p. 103). For wavelengths
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FIG. 1. (a) Definition sketch. In its undisturbed form the jet has
a cusped velocity profile centered at the potential vorticity front. (b)
Backward wave breaking due to advection by on the cyclonic side
of the jet. (c) Forward and backward wave breaking leading to mean-
der detachment.

much shorter than the Rossby radius of deformation
(k*L; = ), c* = u§ and thus propagation is dom-
inated by advection. Also, PS and Stern (1985) show
that the evolution of disturbances having short wave-
lengths (k*L, < 1) but large [O(L;)] amplitudes is
dominated by the advection of the basic flow resulting
in the formation of backward breaking waves reminis-
cent of Gulif Stream shingles, as shown in Fig. 1b.

When the wavelength is of deformation radius scale,
k*L,; = O(1), vortex induction comes into play. Small
amplitude disturbances continue to propagate eastward
but at a reduced speed. When the disturbance ampli-
tude is as large as L,, meander lobes can pinch off
forming roughly elliptical detached eddies. The de-
tachment is the result of combined forward and back-
ward wave breaking, the latter being associated with
the basic shear and the former with a “wrapping
around” motion occurring in the opposite sense as the
shear. As shown in the third frame of Fig. ¢, forward
wave breaking of the isolated ridge becomes most fully
developed in an area of relatively weak basic shear while
the backward wave breaking develops slightly south-
ward where the basic shear is strongest. As the neck
narrows, it becomes stretched into a thin filament, upon
which small scale (nonquasi-geostrophic ) processes can
act. The eddies formed as a result of this detachment
bear resemblance to Gulf Stream rings in their shape,
isolation, and their ability to transport large volumes
of fluid across the jet. For more detailed descriptions
of these physical processes, comparisons with obser-
vations, and a summary of past numerical work on
related problems, the reader is referred to PS.
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The object of the present study is to explore the long-
wave or “thin jet” limit, in which the radius of cur-
vature of the meanders R is large compared to L,. It
should be noted that the path or surface frontal position
of the Gulf Stream, as documented by satellite imagery
(e.g., Weatherly et al. 1984 ), nearly always contains R
values extending from <L, to > L,. Therefore the
model to be presented cannot hope to forecast the de-
tailed behavior of the Gulf Stream or any other mid-
latitude jet; more sophisticated numerical models de-
signed for that purpose exist (e.g., Robinson et al.
1988). Rather, the object is to set down a result which
can serve as a benchmark or reference for establishing
physical insight and technical guidance into more

* structured and realistic models. The attractive feature

of the present model is that it is based on a simple
physical balance in which a single restoring mechanism
(vortex induction) acts, yet the solutions possess a rich
behavior bearing qualitative similarity with observed
phenomena such as Gulf Stream ring formation. Fur-
thermore, the governing nonlinear equation admits an
integral constraint and an exact analytic solution, both
of which provide previously unattained predictability
and insight into the processes leading to eddy detach-
ment.

Some preliminary insight into the long-wave limit
is provided by expanding (1.1) in powers of k*L,; < 1,
with the result that ¢* ~ (u}/2)(k*L,)% Using
values u§ = 1 ms™! and L, = 50 km, which are more
or less typical of the Gulf Stream, the phase speed for
k* = 1072km ™ is ¢* = 10.8 km day . This value is
surprisingly close to the propagation speed ¢, =~ 11 km
day~! observed by Tracey and Watts (1986) in con-
nection with growing Gulf Stream meanders of small
(<10 km) amplitude and the same wavelength (also
the longest wavelength reported ). The close agreement
between the observed and predicted values is, of course,
fortuitous; however, the agreement does indicate that
(1.1) gives reasonable values. The dispersion relation
for long waves also shows that the time scale of motion
increases in proportion to the cube of the wavelength.
More generally, PS show that finite amplitude config-
urations of the front having a typical radius of curvature
R evolve on a time scale proportional to R3. By using
asymptotic approximations to simplify the contour
dynamical equations in the limit ¢ = L;/R < 1, they
show that the front evolves according to

1

1'_5K"=0 (1.2)
where I(x, t) is the latitude of the front,
k= Lo/(1 + 1,2)3? (1.3)

is the frontal curvature, x is longitude, and ¢ is time.
All variables have been nondimensionalized using
¢ 'L, as a length scale and ¢ 3L, /u¥ as a time scale.
Equation (1.2) is valid for € < 1 and there is no restric-
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tion on wave amplitude or slope. In fact / is allowed
to be a multivalued function of x so long as neighboring
portions of the front do not come into contact.

The case ¢ < 1 can be described as the “thin jet”
limit since the distance L, of lateral velocity decay is
small compared to the meander length scale R. This
limit has been studied in a variety of contexts, originally
by Warren (1963) and most recently by Robinson et
al. (1975) and Flierl and Robinson (1984, also see ref-
erences contained therein ). Highly relevant to the case
at hand is Robinson et al.’s (1975) study of time-de-
pendent meandering of a thin, quasi-geostrophic jet.
Using the vorticity equation as a starting point, they
derive an equation for the centerline position of such
a jet for general topography and continuous stratifi-
cation. Although it is possible, in principle, to deduce
(1.2) as a special case of their Eq. (3.23) by specializing
the coefficients for the present piecewise continuous
model, it is much easier to do so by starting with the
vorticity equation and reapplying their methods. This
derivation is simpler and more intuitive than the der-
ivation of PS and is presented in appendix A.

Although considerable effort has been spent on de-
veloping general path equations for thin jets, very little
is understood about their nonlinear properties. Most
solutions, numerical or otherwise, have been restricted
to linearized cases. Equation (1.2) is arguably one of
the simplest, fully nonlinear forms that such an equa-
tion can take since the physics has been reduced to a
“bare bones” level. Despite this, Eq. (1.2) has appar-
ently not been considered previously.

The next section contains several alternative versions
of (1.2) which can be used for numerical purposes or
which offer additional physical insight. It is shown that
one version can be obtained within a constant coeffi-
cient using an argument based on the vortex induction
effect and symmetry. Also I establish an important in-
tegral constraint on /2 which is used to motivate a finite
amplitude instability later observed in the numerical
solutions. This instability arises when meanders be-
come multivalued with respect to x and always leads
to eddy detachment. Section 3 discusses an exact so-
lution consisting of a periodic meander train propa-
gating with fixed form. If the amplitude g and wave-
number k of the meanders is such that ak = const, the
meanders have identical form and differ only in phase
speed. For ak > 2.61 the form is multivalued with re-
spect to x. This self similarity is used in section 4, where
numerical solutions to the initial value problem for an
isolated disturbance are discussed. The single valued
disturbance has a characteristic amplitude @, and
wavenumber ko, and initial values are varied according
to their apky value. For all cases in which agky > 2.61
(i.e., the corresponding periodic solution is multival-
ued), the evolution leads to formation of a detaching
eddy. For all but one case in which agky, < 2.61 no
detachment occurs. Finally section 5 contains a sum-
mary and a statement of implications for future work.
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Before proceeding to the analysis, it is worth dis-
cussing the philosophy behind the study of large dis-
turbances of linearly stable flows—an approach used
in recent studies by Pullin (1981), Stern and Pratt
(1985), Stern (1985), Pratt and Stern (1986) and oth-
ers. To begin with, the introduction of large amplitude
disturbances is not in itself unrealistic. East of Cape
Hatteras the Gulf Stream is constantly being subjected
to large perturbations in the form of variations in the
“inlet” condition (i.e., the flow rate and angle near
Cape Hatteras). Vazquez and Watts (1985) report
events during the angle of the Stream path (here the
position of 15°C at 200 m depth) varies continuously
by as much as 50° over the dominant 33-50 day
meander periods. More pertinent to the “large distur-
bance™ approach is the need to identify and quantify
strongly nonlinear processes which dominate once an
infinitesimal instability saturates. The expectation is
that the strongly nonlinear processes occurring in the
simpler, linearly stable models will arise to some extent
in linearly unstable models.

2. Alternative forms and physical interpretations of the
path equation

It is possible to derive a number of alternative forms
of (1.2) which aid the physical intuition and can be
useful numerically. Let s denote arclength along the
front, measured so that s increases with high potential
vorticity to the left, and let © denote the angle between
the tangent to the front and the x-axis, as shown in
Fig. 2. The curvature x of the front is given by 80/ds
and the differential arclength ds along the front is given
by dx/cos®. Finally, denoting the differential displace-
ment 8/ cos® of the front normal to itself (and to the
left of positive ds) by d/’, Eq. (1.2) can be rewritten

al'/3t =3 ax/9s = 0 @.1)
low potential
high potential vorticity vorticity

=
-

Front

FIG. 2. The vortex induction effect acting within a circle of radius
L, about a point at which the curvature increases with arclength s.
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or alternatively

al')ot — % 3%0/3s% = 0. 2.2)
Despite their simple form, these equations are not par-
ticularly well suited to analysis analytically due to the
complexity of the relationship between /’ and « and
between /' and ©. However Eq. (2.1) does form the
basis for the algorithm used to calculate the numerical
solutions presented later, and the reader is referred to
appendix B for details.

In physical terms Eqgs. (2.1) and (2.2) can be mo-
tivated using an argument based on the vortex induc-
tion effect. It will be convenient to temporarily relax
the restriction to small curvature, so that the variables
s, «, etc. need no longer reflect slow variations with
respect to L, (i.e., the scaling factor € < 1 is temporarily
absent). Consider a point P on the front as shown in
Fig. 2. The rate of displacement d/’/dt of the front
normal to itself at P is equal to the normal velocity,
and the latter is induced by the point vortices lying
within a deformation radius or so of P. If a circle of
radius L, is drawn about P, the quadrants labeled 2
and 4, whose vorticity tends to move the front north-
west, have greater total area than quadrants 1 and 3,
whose vorticity tends to move the front southeast. The

_area mismatch implies that the front will move in the
northwest direction (i.e., d/'/d¢ > 0). This tendency
can be quantified by noting that 8/'/d¢ depends at most
upon the configuration of the front relative to P, a fact
which can be established using the method of contour
dynamics [see PS, Eq. (3.3)]. That is, d/’/3t depends
at most upon the derivatives of ® with respect to s at
P, since these determine the coefficients in the Taylor
series expansion of ©(s) about P. Furthermore, no de-
pendence upon @ itself should exist, since O is defined
with respect to an arbitrary reference, hence

al'jdt = F(@;, O, O, etc.). (2.3)

No restriction to small curvature has been made; how-
ever, if we now let @ = O(es)(e <€ 1), substitute into F
and replace es by s, the result can be written

F(e0;, X0y, * + +) = eF\0, + 2 F,0,, + O(¢?).

The constants F,, F,, etc. determine the coefficients
in the asymptotic expansion of F in powers of €. Re-
turning to Fig. 2, it is clear that F, must vanish since
any circular arc (@, = const) intersecting the circle re-
sults in equal areas between quadrants (2 plus 4) and
(1 plus 3) and thus no restoring tendency. Within an
O( ¢) error the rate of lateral displacement of the front
is proportional to O,, and Eq. (2.2) is recovered in form.
In Fig. 2, it can be seen that greater area of quadrants
1 and 3 is due to the increasing curvature (0, > 0) of
the gradually varying front.

- Alternative physical interpretations can be made by
considering the mass and vorticity budgets for a fixed
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box through which the jet passes. These budgets are
discussed in detail in the alternate derivation of (2.1)
(appendix A). In terms of mass conservation, it is
shown that 3/’/ 3t measures the change in fluid volume
in the box associated with lateral motions of the front.
These motions cause relatively deep, low potential
vorticity fluid or relatively shallow, high potential vor-
ticity to move in and out of the box. The term 1 d«/ds
measures the divergence in the ageostrophic velocity
field which must balance the volume change. In terms
of the vorticity budget, the volume change associated
with 9/'/9t implies a net vortex stretching or squeezing
which must be balanced by a net export or import of
vorticity. The latter is measured by advection of the
curvature term in the expression for vorticity in an
intrinsic coordinate system and leads to the term
10x/0s.

It is possible to derive a single equation for / by sub-
stituting the cartesian expression for curvature (1.3)
into (1.2), giving

L= g o 10 4 1277)

+3(B1) [la+ 121 =0. @9

[Although this equation has some cosmetic similarity
to the KdV equation and other well-known nonlinear
dispersive equations (Whitham 1974), the solutions
to (2.3) are quite unlike those of the others, as will be
shown presently.]

For disturbances which are isolated in x (so that H
vanishes as x => +o0) there are several important in-
tegral constraints which should be pointed out. Inte-
gration of (2.1) over the entire arclength of the curve
yields

f " (o/onyds = f " cos®(dl/at)ds = 0.

Using dx = cos@ds, this result can be written

8/t f_ ¥ ldx =0 @.5)

where the x-integration is understood to cover all values
of s in multivalued cases. Equation (2.5) states that
the total area under an isolated disturbance remains
constant and increases in the area of wave crests must
be compensated for by increases in trough area. The
same result applies if / is periodic with respect to x and
the integration is made over one wavelength.

A similar result can be obtained with respect to en-
ergy by multiplying (1.2) by / and performing several
integrations by parts. The result

B (P _ af[d+(+1H?
-az(z) 6x[ 2

] =0 (2.6)

has the form of a finite amplitude conservation law for



NOVEMBER 1988

wave action (Andrews and Mclntyre 1978). Integration
over the entire arclength of the curve in the manner
just described yields

a/dt f Pdx=0 2.7
-0

for isolated disturbances. For single-valued /, (2.7) se-
verely restricts any disturbance growth that might occur
as the result of a finite-amplitude instability; increases
in |/| in one region must be compensated for by de-
creases elsewhere. For multivalued disturbances, how-
ever, |/| can grow without compensation due to the
fact that negative values of dx arise in (2.7).

The steady solution to (1.2) is obtained most easily
from the alternate form (2.2). Setting 3/t = 0 leads
to © as as + B, which describes a circle of radius o',
‘When a = 0 the solution reduces to a straight line of
angle 8 measured counterclockwise from the x-axis.

Finally, for the benefit of future investigators, I note
that (1.2) admits the similarity solution / = (¢ — £)'/3
F(%), where £ = x/(t — t,)"/® and

(F_ EFI) — % [F”(l + F12)3/2]I = Q.

However, numerical integrations of this equation failed
to produce any physically meaningful solutions.

3. Large amplitude meanders of permanent form

It is possible to find an exact solution to (2.4) by
looking for values of / (or ®), which are stationary in
a moving frame of reference. Writing / = /(x — ct) and
substituting this functional form into (2.4) leads to

d(x +2cl)/d(x — ct) = 0. 3.1

The intrinsic coordinates ® and s are now used, with
s representing an arclength coordinate fixed in a frame
of reference moving eastward at speed ¢, so that

xX—ct=x9—cly + j; cosO($)ds 3.2)

(H=lh+ fo sin®($)ds. (3.3)
Thus « may be replaced by d0/ds, d/d(x — ct) by
(cos®)'d/d§ and (3.1) is transformed into the pen-
dulum equation:

d*®/ds? + 2¢sin® = 0. (3.4)

Equation (3.4) arises in the theory for the buckling
of columns ( Timoshenko and Gere 1961) and was also
used as a model equation by Masuda (1982) to study
the path of the Kuroshio. Periodic solutions may be
written in terms of elliptic functions and the reader
will find an expose in either of these references. The
solutions form a curve known as an elastica, and two
examples are shown in the upper right of Fig. 3. Note
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Or

F1G. 3. Nonlinear dispersion diagram for steadily propagating
meanders. The solid curves are curves of constant phase speed. Above
the lower dashed line (ka = 2.61) the meanders are multivalued.
Above the upper dashed line (ka = 8.30) the meanders intersect each
other and are disallowed. The curve ¢ = 1 also gives values of
Hc'/? when the ordinate is replaced by k/c'/2. The numbered dots
indicate values of k = k and a = a, used in initial value problems
for isolated disturbances.

that the meanders may be multivalued with respect to
X — ct, as in the case of the upper curve. When the
folding of the curve becomes so severe that neighboring
meanders touch, the geometric assumptions upon
which the theory is based are violated. For meanders
of small slope the elastica reduces to the sinusoidal
meanders discussed in the last section.

Although the dispersion relation for the meandering
solutions may be plotted using the elliptic function so-
lutions, it is just as easy to do so by solving (3.4) nu-
merically. Here an Adams method (Gear 1971) was
used to integrate (3.4) and the solution was trans-
formed back to (x — ct, /) coordinates using numerical
approximations to (3.2) and (3.3). By varying 6(0)
and @'(0) a variety of periodic solutions is produced
having amplitude a and wavelength A, as defined in
Fig. 3. Figure 3 shows the curves of constant wave speed
c as a function of amplitude and wavenumber & = 27/
A. In the region bounded by the horizontal and vertical
axes and the lower dashed line (region I) the meanders
are single valued. Between the two dashed lines (region
IT) the meanders are multivalued. Above the upper
dashed line (region III) the meanders intersect. Note
that the wave speed is positive (the meanders move
eastward ) for all wavelengths, as hinted at by the weakly
nonlinear expression for phase speed (3.6). Increasing
amplitude and/or wavelength tend to decrease the
wave speed, trends observed by Vazquez and Watts
(1985) to be features of growing Gulf Stream meanders
near 72°W (slightly east of Hatteras). Finally, note
that the multivalued meanders tend to be weakly dis-
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persive with respect to k (dc/dk is small) and strongly
dispersive with respect to a. The opposite is true of the
smgle valued meanders.

It is natural to ask whether (2.4) admxts a solitary
wave solution (i.e., a wave of permanent form and
infinite wavelength). Inspection of Fig. 3 reveals that
¢ - 0 as k = O for any fixed amplitude. Thus, any
solitary wave solution would necessarily be a steady (¢
= () solution. It has already been shown that the only
possible steady solutions are the line and the circle.
The circle is similar to a solitary wave solution in that
it is a finite-amplitude, isolated disturbance with per-

manent form. However, no propagating; solitary wave

of permanent form exists.

Although Fig. 3 displays propagation information
in a convenient and readily available manner, the in-
formation contained therein is redundant in the sense
that the solutions possess a degree of self-similarity. In
fact it can be shown that along any curve ka = const
the meanders are differently magnified versions of a
fixed shape. To do so, introduce theé stretched variable
§=§c'?into (3.4), thereby eliminating the coefficient
¢ from the equation. The procedure for calculating the
solutions can then be repeated yielding a curve of k/

c'/? versus ¢'/2a values. This curve is identical to the
¢ = 1 curve in Fig. 3 when the ordinate and abscissa
are replaced by k/c'/? and 2¢'/%a, respectively. Direct
numerical calculation of this curve shows that the
boundary separating single valued from multivalued
meanders lies at k/c'/? = 2.61 and ¢'/?a ~ 1.00, or
ka =~ 2.61. The boundary separating multivalued from
intersecting solutions lies at ka ~ 8.30.

The similarity property has the following meaning
‘for the periodic solutions. Suppose one chooses such
a solution having wavenumber, amplitude and speed
ko, ao and ¢y. Then any other solution having k and a
such that ka = koap possesses identical form, and its
propagation speed is inversely proportional to the
square of the magnifying factor. Thus the self similar
meander having amplitude 2a, has speed cy/4. One
importance of this finding is that it restricts the range
of initial conditions which must be explored in the
numerical experiments (section 4).

The limiting case of ka slightly less than 8.30 de-
scribes a type of vortex-street solution for which the
meander lobes (which nearly experience grazing con-
tact with each other) form two rows of staggered eddies.
The aspect ratio a'/b’ of this solution (a’ and b’ are
the y- and x-separation between vortex centers of op-
posite sign) is ak/27 = 1.32. Now Flierl et al. (1987)
have found stable vortex-streets with @’/ b’ ranging from
0.24 to 0.50 in numerical calculations of finite ampli-
tude motions resulting from barotropic jet instability
with 8 = 0. There are many differences between the
model used by Flierl et al. and the one considered here
(in their calculation the deformation radius is essen-
tially infinite and the vortex-streets do not have a long-
wave character), however, the suggestion is that the
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meander solutions with kg values near 8.30 are unsta-
ble. Note also that the lowest value of ak/2x that a
multivalued meander can have (corresponding to the
ka = 2.61 solution) is 0.42, which corresponds to a
stable vortex street. Together with the integral con-
straint (2.7), this result leads to the conjecture that
some or all of the multivalued solutions may be un-
stable, a hypothesis supported by numerical simula-
tions presented next.

4. Time-dependent numerical solutions for isolated
disturbances

I now discuss the results of a set of initial value prob-
lems in which solutions to (1.2) are obtained numer-
ically. The general philosophy in these problems is to
choose an isolated initial disturbance having a domi-
nant wavenumber and amplitude, allowing Fig. 3 to
be used as an aid in interpreting results. To this end,
the single-valued initial condition

I(x, 0) = age™ " cos(kox)
is chosen. The Fourier transform of /(x, 0) is.
(wap/21/?)e~ W k-ko)?/4

indicating that ko is the dominant wavenumber. The
length scale w determines the extent to which wave-
lengths neighboring k, are present. The procedure is
to vary ao and ko between initial value experiments,
while w is kept constant for the most part. Table 1 lists
the parameter settings for each numerical run and the
values of &k and aq for each run are also indicated in
the nonlinear dispersion diagram for periodic meanders
(Fig. 3). In accordance with the similarity property
mentioned in the last section, g and k variations along
curves aoko = const were avoided in favor of variations
normalto agky = const curves, This selection was made
with the anticipation that the former would lead to
solutions whose qualitative behavior would differ
mainly in time scale.

None of the standard numerical procedures for in-
tegrating the Korteweg-de Vries equation or related
evolution equations are well suited to the present
problem. The term (1 + /,2)!/? makes the spectral ap-
proach (Fornberg and Whitham 1978) awkward, and
both forward and centered time stepping in connection
with spatial finite differencing ( Vliegenthart 1971) were
found to be numerically unstable. A scheme which
avoids these problems is the leapfrog trapezoidal
method (Haltiner and Williams 1980). As described
in appendix B, this method contains elements of both
forward and centered time differencing and has been
modified to be compatible with an intrinsic coordinate
system. The method is conditionally stable, although
the time step required for stability of calculations in-
volving highly curved initial conditions can be exceed-
ingly small. In fact, some of the calculations required
1 cpu hour or more on a Cray X-MP supercomputer.

4.1
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TABLE 1. List of parameters for numerical experiments. The initial condition is given by Eq. (5.1).

Run ap ko w Description of initial condition Results
i 0.05 0 1 isolated disturbance with small disturbance completely disperses
amplitude and wave number = 0
2 0.5 0 1 same as Run | but larger amplitude disturbance completely disperses
3 1.0 0 1 same as Run 2 but larger amplitude disturbance completely disperses
4 1.0 1.0 1 same as Run 3 but finite wavenumber disturbance completely disperses
5 1.0 1.5 1 same as Run 4 but larger disturbance completely disperses
wavenumber
6 1.0 2.0 1 same as Run 5 but larger eddy pinches off at ¢ = 16.66
wavenumber
7 1.0 3.0 1 ao and kg now in region of multiply eddy pinches off at £ = 13.96
valued meanders of Fig. 3
8 1.0 3.0 2 same as Run § but more oscillations eddy pinches off at ¢ ~ 6.45
9 2.0 3.0 1 same as Run 5 but larger amplitude eddy pinches off at ¢ ~ 4.18
10 2.0 6.0 1 same as Run 7 but larger eddy pinches off at ¢ ~ 0.072

wavenumber

Table 2 gives the maximum stable time step found for
various degrees of resolution.

As a test of the numerical code, a comparison was
made between the computed solution for the small
amplitude case o = 0.05, w = 1, ko = 0 and the exact
solution of the linearized version of (1.2):

al/at - % 3%/3x* =0 4.2)
for the same initial condition. This solution can be
obtained by elementary methods and is given by

I(x,7)=0.5(m)7"/2 f e~ thvr2)?
(1]
X cos(kx -3 k3t)dk. 4.3)
Figure 4 shows the numerical solution at times ¢ = 0,
1.2 and 2.0 computed using spatial resolution As

= 0.1 and time step At at 0.0008. Some sample values
of the exact linear solution at ¢ = 2 have been indicated

TABLE 2. Maximum stable time steps found (by trial and error) for
various degrees of resolution in numerical method.

As At
0.008 (1.0 £0.3) X 1077
0.014 (5.0x1)x 1077
0.023 2.8 +0.2) X 10°¢
0.040 (4.0 £ 0.04) X 1073
0.052 8.0Xx 1073
0.072 20x10™*
0.080 23 x 10
0.100 6.0+ 1) X 10™*

using crosses. Using the previously mentioned k*
=10"2km™!, ¢* = 10.8 km day ' wave as a basis for
scaling, the dimensionless time ¢ = 1 corresponds to
62.5 days or about 2 months. The difference in / be-
tween the linear and numerical solutions at ¢ = 2 is
typically 0.0001 and this difference may largely be due
to weak nonlinear effects. In addition two numerical
runs at different resolutions were carried out over a
portion of the worst (i.e., highest required resolution
and least stable) case—the ¢ = 0 to ¢ = 0.007 segment
of Run 8 (see Fig. 6). This test compared results with
average resolutions of As = 0.023 and As = 0.015 and

05+

1=2.0
OF

‘

05}

£ t=12
O
osf

120
o -
1 1 1 1 1 1 1 J
o -5 ) 5 10 15 20 25
X

FIG. 4. Numerical solution to “linear” initial condition a, = 0.05,
ko =0, w = 1. (Run 1). The crosses indicate the exact linear solution
at ¢ = 2. For Gulf Stream scaling ¢ = 1 corresponds to roughly 2
months. .
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found positional discrepancies of less than 0.3% of a,.
(Although the time interval 0.007 appears short, the
front evolves rapidly due to the large initial values of
dx/ds. The time step needed for computational stability
in the high resolution case is as low as 10 %, requiring
over 1 Cray cpu hour to run).

Runs 2, 3, 4 and 5 have ap and k, settings lying
within region I of Fig. 3 and all exhibit the same dis-
persive behavior as the linear case (Run 1). Figure 5
shows the evolution of the front for Run 3, in which
ko is the same as run 1 but ap has been increased to
unity. (In Fig. 5 the horizontal axis has been com-
pressed making the disturbances appear much more
“spiked” than is actually the case.) As shown, the initial
lump disperses in the east (downstream ) direction with
the smaller amplitudes and wavelengths outrunning
the larger amplitudes and wavelengths. At ¢ = 9.7 the
maximum values of |/| and | 3//dx| have decayed by
factors of 2 to 3 over their initial values indicating that
no wave breaking will occur in the foreseeable future.

Runs 7, 8 and 9 have (ao, ko) values lying in region
I of Fig. 3 (2.61 < koao < 8.3). That is, if the initial
condition was a member of the group of previously-
described elastica with amplitude a; and wavenumber
ko, then the elastica would be multiply valued with
respect to x. Of course, the actual initial condition (5.1)
is always single-valued. Run 10 has (ay, ko) values lying
in region III of Fig. 3 (ka > 8.3), i.e. the corresponding
elastica would intersect itself. All four of these runs
exhibit behavior dramatically different from Runs 1-
4. Perhaps the easiest to understand is Run 10, which
will be discussed first.

Figure 6 shows the results for Run 10 (g, = 2, ko
=6). Att = 0.001 in Fig. 6, trains of short waves have
appeared in the lees of the meander tips of the initial
profile. Despite appearances, these waves are not nu-
merical instabilities; each wavelength is well resolved
in the numerics with the profile at ¢ = 0.001, for ex-

o2}
10|
1297
o8}
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FIG. 5. Numerical solutiop, Run3;ia=1k=0,w=1.
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HG. 6. Numerical solution, Run 10; @y = 2, kg = 6, w = 1. For
Gulf Stream scaling ¢ = 0.072 corresponds roughly to 5 days.

ample, having roughly 18 points per small wavelength
in the original run and roughly 30 points per wave-
length in the repeat run. The short waves will be re-
ferred to as “secondary” while the larger meanders
present in the initial data will be called “primary.” The
secondary waves move much more rapidly than the
primary waves and therefore propagate on the initial
profile as if it was a steady basic state. At = 0.007 and
t = 0.043 we see slower, longer secondary waves in the
lees of the meander tips. The amplitudes of the sec-
ondary waves are larger than earlier, giving the front
a more contorted shape overall. The arrows drawn on
the ¢ = 0.043 profile indicate two secondary wave crests,
one moving southward and the other northward. At ¢
= (0.072 the tips of the crests have collided, causing the
front to intersect itself.

When grazing contact occurs between separate seg-
ments of the front, the assumptions forming the basis
of Eq. (1.2) are violated and the integration should be
stopped. In Fig. 6 the numerical integration has been
stepped slightly past the point of grazing contact. The
time scale for pinching off can be estimated by com-
puting the level time ¢p required by a secondary wave
to propagate over half the arclength As of the primary
meander lobe. For the lower left lobe of the ¢ = 0 profile
in Fig. 6, As ~ 1. Using a secondary wavelength As/
2, for which the linear group speed is C =~ 14.8, one
obtains

tp =~ As/(2C) ~ 0.034

as compared with the observed ¢, = 0.072 (or about 5
days). This estimate can be refined using Fig. 3 to ac-
count for amplitude effects.

Runs 7, 8 and 9 (which have initial conditions lying
in region II of Fig. 3) also exhibit eddy detachment,
but the time scale required is much longer and the
physics more subtle. Runs 7 and 8 are made using the
same values gy = 1 and ky = 3, but different values of



NOVEMBER 1988

w(w =1 for Run 7 and w = 2 for Run 8). Note that
(ao, ko) lies near the boundary between regions I and
II in Fig. 3. Both runs behave similarly and I discuss
only Run 8 in detail (see Fig. 7). Although short sec-
ondary waves appear shortly after £ = 0 (not visible in
Fig. 7), these waves do not lead to immediate eddy
detachment. By time ¢ = 0.04 the wavelengths of the
secondary waves are as large as those of the primary
waves and it becomes futile to distinguish between the
two. As time increases, some of the energy in the initial
disturbance escapes to the east in the form of packets
of relatively small amplitude waves. One such packet
is particularly visible between x = 20 and x = 30 at ¢
= 3.72. At the same time a coherent region of larger
amplitude motion remains near x = 0, drifting slowly
eastward. This positioning is consistent with the non-
linear dispersion relation which indicates the retarding
effect of wave amplitude on speed. Multivalued shapes
appear in the large amplitude region after about ¢
= (.35 and are particularly noticeable in the ¢ = 0.59,
t =12 and ¢ = 2.71 profiles. As more energy is lost to
the east, the large amplitude region reduces to a single
lobe which grows in amplitude and fluctuates in north-
south polarity (compare the ¢ = 0.86, 1.79, 3.72, and
6.45 profiles). At t = 6.45 this lobe begins to pinch off
and the integration is halted.

One of the remarkable features of Run 8 is the am-
plitude growth experienced by the main lobe. Figure
8 gives the maximum value of |/| as a function of ¢
and shows a nearly three fold increase in . mplitude by
the time grazing contact occurs. Thus the flow expe-
riences a finite amplitude instability, which is evidently
instrumental in inducing meander detachment. No sign
of such an instability was seen in the region I numerical
runs nor in the analysis of weakly nonlinear effects
(section 3). The tendency for growth of multivalued,
rather than single-valued, disturbances is suggested by
the integral constraint (2.7), as discussed earlier.

i ] 6.45

‘_4/\/\/\’“’“’” 0.59
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FI1G. 7. Numerical solution, Run 8;ay = 1, ko = 3, w = 2.
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FIG. 8. Max| L| and max|«| vs time for Run 8.

Also plotted in Fig. 8 is the maximum value of |«|
versus time. Shortly after ¢ = 0, || decreases from a
value of 10 to about 4. This rapid decrease is due to
the secondary waves, which disperse concentrations of
high curvature. After the sudden initial decrease, |« | max
experiences more gradual decreases as the curvature is
dispersed by longer wave lengths and larger amplitudes.
The occurrence of wave breaking and the formation
of closed eddies is consistent with the dispersion of
curvature in the sense that curves with evenly distrib-
uted curvature with respect to s tend to be multivalued
with respect to x. The simplest example is the circle,
which contains uniformly distributed curvature with
respect to s. As noted earlier, the circle is the only exact
steady solution to (1.2) (aside from the straight line).

Figure 9 shows the results for Run 9 (ay, = 2, ko
= 3, w = 1). Here (ay, ko) lies near the boundary be-
tween regions II and III in Fig. 3. The evolution for
this case is similar to that of Run 8 except that two
isolated regions having relatively large amplitudes de-
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FI1G. 9. Numerical solution, Run 9; ao = 2, ko = 3, w = 1.
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velop, one near the origin and the other farther down-
stream. Both regions experience amplitude growth and
both evolve to the point where a single, large lobe is
left. The eastern lobe begins to pinch off first, as seen
att=4.18.

Run 6 (4o = 1, kg = 2) is the only case exhibiting
eddy detachment with an initial condition lying in re-
gion I for Fig. 3. Figure 10 shows the maximum values
of |1]| and | 8//dx| as functions of time. During the
initial phase of evolution (0 < ¢ < 3) the maximum
slope experiences a sharp increase followed by a decay
to approximately one-fourth its initial value. The max-
imum displacement also decays over this time period.
However at ¢ ~ 3.0 the maximum slope experiences
a sudden increase and multivaluedness (| 3//dx| = o)
occurs at 7 =~ 4.0. Shortly after / becomes multivalued,
the maximum displacement begins to increase and
eddy detachment eventually occurs. This example
nicely illustrates the coincidence of multivaluedness
with the onset of finite amplitude instability. Also, since
Run 5 (4 = 1.0, ko = 1.5) does not produce a detaching
eddy, the critical value of apky for eddy detachment
lies between 1.5 and 2.0.

One can define an aspect ratio for the pinching off
meander by using the distance between the tip and the
point of grazing contact as the long dimension. The
aspect ratios for the detaching meanders in Runs 6, 7,
8 and 9; 0.49, 0.47, 0.47 and 0.45 respectively, are
quite close.

-

5. Discussion

Many of the salient properties of the path equation
3l/at = 3 ak/9x = 0 (5.1)

can be illustrated by comparison with the well-known
kinematic wave equation

| multivalued
!
5114

0 T T T T
0 2 4 6 8

T
10 12

F1G. 10. History of the maximum values of |/| and
| 81/dx| for Run 6.
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Y/t — U(Y)dY/dx =0 (5.2)
(Whitham 1974). The latter describes the propagation
of long waves in a variety of fluid systems. If dU/dY
> 0, disturbances characterized by large values of Y
will “catch up” with those having smaller values of Y
due to the mismatch in propagation speed U. This
“nonlinear steepening” creates large curvatures and
may eventually give rise to irreversible wave breaking
phenomena. In some sense the behavior of (5.1) is di-
rectly the opposite, as the tendency is for large values
of curvature to be dispersed. However, this dispersion
results in a more even distribution of curvature d0/3ds
over progressively longer segments of arclength, giving
rise to more extreme values of ©, as documented in
Section 4. As the front meanders through wider ex-
tremes in O, different segments come into close prox-
imity and short cross-stream scales arise. In summary
both (5.1) and (5.2) have solutions exhibiting singu-
larities associated with short length scales, but the
mechanisms by which short lengths are generated are
opposite.

It aids the intuition to remember that the only plane
curves having uniformly distributed curvature are the
line and circle. These curves also happen to be the only
steady solutions to (5.1). In the numerical experiments
the asymptotic state as ¢ = oo for Runs 1-5 is a line.
For Runs 6-10 the asymptotic states are akin to com-
binations of a line and circles (although the detaching
blobs are more elliptical than circular). It would be
instructive to follow up on this idea further by allowing
the blobs to pinch-off and evolve as detached eddies,
a calculation which would require extension of the sin-
gle-contour theory to two contours.

The importance of complicating factors such as the
B-effect, short wavelengths, varicose motions, baro-
clinicity, etc. in most cases of geophysical interest
makes it abundantly clear that Eq. (5.1) is not a forecast
tool. Rather (5.1) determines how flows like the Gulf
Stream would evolve in a certain limit and may predict
nonlinear tendencies in isolated locations over limited
time scales. The fact that (5.1) admits an exact solution
whose propagation characteristics reflect measured
tendencies for Gulf Stream meanders gives one reason
to believe that some of the fundamental physics is cap-
tured. However the most important and exciting fea-
ture of the calculation is not the reproduction of ob-
served tendencies, but rather the information given re-
garding the propagation and detachment of more
general meanders. In particular, it has been shown that
if the characteristic amplitude g and wavenumber ky
of the isolated initial disturbance (4.3) is such that (ak),
< agky < 8.30 (where ak). is a value between 1.5 and
2.0), wave breaking occurs followed by amplitude
growth of the multivalued meander lobe or lobes. This
finite amplitude instability is suggested by the integral
constraint (2.7). Eventually one or more roughly el-
liptical eddies begins to pinch off. For 8.30 < apky (i.€.,
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the corresponding periodic solution intersects itself)
wave breaking and the pinching effect occur more rap-
idly with little amplitude growth. The detachment pro-
cess is initiated when relatively short dispersive waves,
emanating from the high-curvature regions near the
primary crests and troughs, collide with each other.
For agk, ~ 8.3 there undoubtedly exists some inter-
mediate regime for which the secondary waves and
finite amplitude instability both play roles.

Some of the numerical integrations presented de-
scribe events occurring over such long time periods
that other processes would likely intervene in a typical
geophysical setting like the Gulf Stream. I particularly
refer to the oscillation of the main meander lobes that
occurs between ¢ = 1.79 and ¢ = 6.45 in Fig. 7 and
between ¢t = 2.17 and ¢ = 4.18 in Fig. 9. These times
reflect dimensional time scales of several months to a
year, and one must worry about the intervention of
the B-effect, whose associated time scale (1/8L,) is on
the order of several weeks. In numerical studies carried
out by Ikeda (1981) and Ikeda and Apel (1981) (sum-
marized in PS) the B-effect is observed to cause a west-
ward movement of the extremities of the meander lobes
which enhances detachment. In the flows depicted in
Figs. 7 and 9 it is possible that the B-effect could lead
to detachment of the oscillating, thin-neck lobes at a
much earlier time. Of course, the S-effect also has a
stabilizing influence which could suppress the finite
amplitude instability. In any case, it would be inter-
esting to investigate the role of the S-effect by perform-
ing a calculation similar to that presented herein. Using
the formalism of Robinson et al. (1975) it should be
possible to derive a long-wave equation governing the
motion of a potential vorticity front in a field with
nonzero (. Exact solutions and integral constraints
analogous to the ones found here could be searched
for and, if found, could be used to forecast more general
behavior.

Now that the existence of an exact solution at long
wavelengths has been established, one can attempt to
extend this solution to moderate and small wavelengths
using the general equations of contour dynamics (see
PS). Should such a solution be found, its stability
characteristics might provide criteria for eddy detach-
ment in terms of the wavelength and amplitude of ini-
tial disturbances. The ultimate goal is to apply the cri-
teria to intermediate, finite amplitude states observed
in other numerical studies of barotropic instability with
B8 =0 (e.g., Ikeda 1981; Ikeda and Apel 1981; Flier] et
al. 1987), most of which describe evolution in mod-
erate wavelength regimes.
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~ APPENDIX A
Derivation of (1.2)

Consider an intrinsic (s*, n*) coordinate system in
which constant s* curves are straight lines normal to
the front and constant #* curves are orthogonal to the
constant s* curves (Fig. 11), the asterisk denoting di-
mensional quantities. The coordinate system is fixed
and is determined by the configuration of the front at
t* = t§. The position of the front is n* = 5" (s*, t*)
and, by definition, the position at t* = ¥ is »*
=7, (0, t¥). At subsequent times, the frontal position
is

0 (5% t*) = 0/ (0, £8) + (¢* — 18)onS" J o}
+ (1* — 18)(s* — s8)9%ny/dsE A% + O(¢e* — %)%
(A1)

The dimensional quasi-geostrophic potential vortic-
ity equation (Pedlosky 1979, p. 91) can be written

o(§* — fh*/H)/ot* + V- [a*({* — fh*/H)] = 0
(A2)

where f is the Coriolis parameter, H is the mean upper-
layer thickness, and 2* (< H) is the departure of the
actual upper-layer thickness from H. Also the quasi-
geostrophic velocity #* has s*- and n*-components ©*
and v* and

v* = (1 — k*n*)gf " Oh*/ ds*,

u* = —gf'oh*/ on* (A3a,b)
where «*(s) is the curvature of the front. Finally, {*
is the vertical component of vorticity, given in intrinsic
coordinates by

FIG. 11. Integration region defined by fixed
intrinsic coordinate system.
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& = (1 — «*n*) "' v*/ ds* — Ju*/ an*
+ k* (1 — k*p* ) lu*
(Goldstein 1938, p. 119).
If (A2) is integrated over an area A bounded by »*

= q*, n* = ¥ and s* = £As¥, as shown in Fig. 11,
the result is ‘

(A4)

oo [ [ o - mrymaa
+ [T 1 = o YUt n) e aged®

_ J:,”—* [(£* = [ H)(G*+ 0*)]yoem agedn*= 0
(A5)

where n¥* is a unit vector pointing outward. The values
of n/ — n* and n* — n* are taken »L,, allowing the
fluxes of potential vorticity across the boundaries »*
= 5* and 7* = n* to be neglected.

Now consider the limit of small curvature by re-
quiring that the scale L; = (gH)'/?/f of variation in
the n-direction be small compared to the typical value
R of 1/«*, so that ¢ = L;/R < 1. The velocity and
vorticity can then be approximated as follows:

v* = gf"[Ld"eah*/a(s"‘/R) + 0(52)] (A6a)
u* = —gf =L \oh* d(n*/ Ly) (A6b)

£* = Ly '[—du*/d(n*/ L) + (Re*)u* + O(e?)].
(A7)

Substituting these into (A5), eliminating those terms
whose contributions are zero, and retaining only the
lowest order terms within each integral leads to

3 past
a/ot* fﬂ f («*u* — fh*/ H)dA
ne —As* -

nt . e
[0 it e = [ 00U g =0,

7t n
(A8)

Up to this point the analysis is more or less the same
as in Robinson et al. (1975). I now depart from that
analysis by formulating the structure of ¥* and h* for
the piecewise continuous potential vorticity distribu-
tion. To lowest order in ¢ the potential vorticity is de-
scribed by

~fh¥/H, n*>nf

A9
—fhr/H, 49

—du*/om* — fh*/H = *
™ <nf

where h* and h* are the values of 4* as (¢* — 3,) >
+co. Eliminating u#* between (A6b) and (A9) gives
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R, 4*>nf
8*h*/on*? — Ly *h* = *Ld’z[ : . f*
h%, 9* <ny

(A10)

and this equation leads to the O(0) thickness and ve-
locity profiles

v = L [ART expl=(a* = 0f)/Lal + ht, o* >/
2 [ —ARr* expl(n* — nf)/La] + h*, v* <n/
(All)

u* = u¥ exp[ |n* — /" | /Ld] (A12)

where Ah* = h* — h* and u¥ = 1gAh*/ fL,.

If (A11) and (A12) are now used to substitute for
u* and h* in (A8) and »* and n* are taken to +oo,
the result is

As*
~gja [ (DRt = )
+ h*(n/ — n*)1ds* + uf [x*(As) — K*(—As)]
x [ explzin = n?1/La1dn* = 0.

The first integral in the above equation originates from
the vortex stretching term (fH~'3h*/dt) in the vor-
ticity equation (A2), while the second integral origi-
nates from vorticity advection term. Substituting (A1)
for n/* and letting t* — r§ and As* — 0 leads to

(fAR*) H)3n[ 3t — ul?L,0c*/3s* = 0. (A13)

Finally, letting s* = sLg/¢, n/ = I'Ly/¢, k* = xe/ Ly,
t* = te”3L,/u¥ and substituting into (A13) gives the
desired nondimensional result
8l'/at — 3 9k/ s = 0. (A14)
This derivation demonstrates that /'/d¢ is associated
with the net vortex stretching in the region, while dx/
ds is associated with the export of vorticity from the
region. For an alternative interpretation, consider the
equation of mass conservation for the ageostrophic
corrections u¥, v¥, and 2% to the velocity and thick-
ness fields (Pedlosky, p. 90). If curvature terms [i.e.,
terms of O(¢)] are neglected, this equation may be
written in intrinsic coordinates as

Oh*/ 3t + A u*h*)/os* + Hv*h*)/on*
+ Hou* /s + Hov* /on* = 0.

If this equation is integrated with respect to #* from
—o00 to oo and the profiles (A11) and (A12) and the
condition v¥ = 0 at »* = xoo are used, the second,
third, and fifth terms vanish, leaving

(Ah*)an;'/aer.wa (Ju%/3s*)dq* = 0. (Al5)
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The leading term in (A15) measures volume changes
associated with the lateral movement of the deeper,
low potential vorticity region relative to the shallower,
high potential vorticity region. These changes are bal-
anced in (A15) by a term measuring the divergence of
the alongfront ageostrophic velocity. To relate the latter
to dk/ds, use the n*-momentum equation

K*u*? + fu* = —goh* /o™ (A16)

in which O(€?) terms, including the time derivative,
have been dropped. Integrating (A16) with respect to
n* as before and differentiating the resuit with respect
to s* leads to

f (OuX* /ds*)dn* = —ul?f~'9«*/ ds*.
Using this result to substitute for the integral in (A15)
leads once again to (A13).

APPENDIX B
Numerical Method

The numerical method for solving Eq. (2.1) is based
on a scheme in which spatial derivatives are evaluated
using polynomial approximations to the contour.
Starting from some location west of the isolated dis-
turbance, the contour is resolved using NP points whose
positions at time ¢ = 1, are denoted by (x,,;, {,;) where
i = 1, NP as shown in Fig. 12. The arclength spacing
As between points is approximately uniform and the
points are numbered so that i increases with increasing
arclength beginning with the westernmost point i = 1.
To calculate the derivative of the curvature of the con-
tour at point / = j, one uses new cartesian coordinates
x' and y’ which are tilted so that x' is tangent to the
contour at [ = j and points in the direction of increasing
s, as in Fig. 12. The front liesat y' = /',

A fifth-order polynomial is then fit through (x}, ;,
I},;) and the nearest four points and the derivative of
the curvature is calculated from

(nittofni+)

(xn,i v‘n,i)
(xn,i—lvln,i—l)

X

F1G. 12. Sketch showing notation and coordinate system
used in numerical algorithm.
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aK,,’j _

__ @yiex?)
as [1 + (8l),,/9x")*)*"?

_ 3(0ly,;/0x")(3%1,;/9x'%)
(1 + (aly,;/9x")*1°?

using the polynomial to estimate the derivatives of /,, ;.

Time stepping is implemented using a trapezoidal
implicit scheme (Haltiner and Williams 1980). For
the equation u#, = F(u) this two-step scheme takes the
form

(B1)

Uy = Up—y + 28tF(uy)
thysy = thy + 5 ALF(un) + F(12)]

where At is the time increment.
For Eq. (2.1) the two steps take the form

'*,j = l,n—l,j + Atax,,,j/as (B2)

sy = Loy + 5 At[9kn /05 + O, ;1051 (B3)

where 9k, ;/ s is calculated from (B1) and «, ; is the
curvature based on the provisional values /' ;. For the
first (n = 1) step /1 ; (and thus 7, ;) can be calculated
from

l’]yj = lb,j + % AtaTo,j/aS

where [ ; and 7o ; are given by the initial conditions.

Since the estimation of 8/'/dt at a given point re-
quires the positions of the two neighboring points on
either side, the points i = 1, { = 2, NP-1, and NP cannot
be followed using the main algorithm. For isolated dis-
turbances the value of / and d«/ds at points i = 1 and
i = 2 can simply be set to zero. At the other end of the
‘domain this specification does not work because waves
must be allowed to pass through. After some trial and
error the procedure settled upon was to extrapolate /
and d«/ds at points NP and NP-1 from the values at
NP-2 and NP-3. Next, the values of / at points NP-4
through NP are reduced by a factor of 2. This condition
seemed to allow waves to pass through the boundary
without enough reflection to cause a buildup of energy
just upstream, as occurred in other schemes.

Although it is difficult to formulate a stability cri-
terion for the fully nonlinear numerical algorithm, one
may be guided by the stability criterion for the linear
version of Eq. 2.3. According to Haltiner and Williams
(1980) this criterion is

At < 2V2773(As)3. (B4)

In practice, the largest stable value of At can be as
much as an order of magnitude greater than the value
given by (B4). Table 2 lists the maximum stable value
of At (found by trial and error) for various values of
As. The actual values of As and At used for each run
are listed in Table 1.
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In order to avoid untoward computer expenses, it is
important to frequently adjust the space and time steps
over the course of each numerical integration. Because
of the dispersive character of Eq. (2.1), less and less
spatial resolution is required as time progresses and As
can be increased accordingly. The savings in expense
is due to the fact that A can be increased in proportion
to the third power of As (at least). In Run 7, for ex-
ample, the values of As and Ar varied from (0.02,
0.000002) at ¢ = 0 to (0.05, 0.00008) at the end.
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