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ABSTRACT

Westerly wind bursts (WWBs), a significant player in ENSO dynamics, are modeled using an observa-

tionally motivated statistical approach that relates the characteristics of WWBs to the large-scale sea surface

temperature. Although the WWB wind stress at a given location may be a nonlinear function of SST, the

characteristics of WWBs are well described as a linear function of SST. Over 50% of the interannual variance

in the WWB likelihood, zonal location, duration, and fetch is explained by changes in SST. The model

captures what is seen in a 17-yr record of satellite-derived winds: the eastward migration and increased

occurrence of wind bursts as the western Pacific warm pool extends. The WWB model shows significant skill

in predicting the interannual variability of the characteristics of WWBs, while the prediction skill of the

WWB seasonal cycle is limited by the record length of available data. The novel formulation of the WWB

model can be implemented in a stochastic or deterministic mode, where the deterministic mode predicts the

ensemble-mean WWB characteristics. Therefore, the WWB model is especially appropriate for ensemble

prediction experiments with existing ENSO models that are not capable of simulating realistic WWBs on

their own. Should only the slowly varying component of WWBs be important for ENSO prediction, this

WWB model allows a shortcut to directly compute the slowly varying ensemble-mean wind field without

performing many realizations.

1. Introduction

Westerly wind bursts (WWBs) have occurred in the

tropical Pacific during the onset and development of

every major El Niño event of the last 25 years (Kerr

1999; McPhaden 2004). Recent observational evidence

shows that the timing and characteristics of these seem-

ingly random wind bursts are, in fact, modulated by the

large-scale SST and, in particular, by the phase of

ENSO (Yu et al. 2003; Batstone and Hendon 2005;

Tziperman and Yu 2007, hereafter TY). Recent mod-

eling studies have suggested that the proper simulation

of the feedback between sea surface temperature and

WWBs significantly affects the characteristics and dy-

namical regime of the ENSO system (Eisenman et al.

2005; Perez et al. 2005; Gebbie et al. 2007; Jin et al.

2007). For example, the amplitude of the simulated

ENSO in intermediate complexity models (Eisenman

et al. 2005) and hybrid coupled general circulation

models (Gebbie et al. 2007) is twice as large with SST-

modulated WWBs than with WWBs that are a white-

noise process.

Given the critical role of modulated WWBs in ENSO

dynamics, their proper representation in models is im-

portant for ENSO prediction. At present, some ENSO

prediction models represent WWBs as a white-noise

external forcing, excluding the modulating influence of

the ocean (see the reviews by Mason and Mimmack

2002; Fedorov et al. 2003). Some atmospheric general

circulation models forced with the observed SST are

capable of producing wind bursts (e.g., Vecchi et al.

2006), but the situation is worse for coupled GCMs.

Fully coupled models still contain major biases in their

mean state (Wittenberg et al. 2006), and thus the char-

acteristics of wind bursts are likely to be similarly biased.

ENSO prediction models that use a linear statistical
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atmosphere also misrepresent WWBs because less than

half of the WWB wind stress can be explained by a linear

relationship with SST (Gebbie et al. 2007). The other half

of the wind residuals was shown by Wittenberg (2002)

to fail a white noise test. Furthermore, the results of

Batstone and Hendon (2005) suggest that these resid-

uals are also correlated with SST.

To what degree are wind bursts a deterministic

function of the sea surface temperature field? Because

WWBs are associated with many different processes,

including extratropical cold surges, tropical cyclones,

and the Madden–Julian oscillation, it is sometimes as-

sumed that they are essentially part of the ‘‘weather

noise,’’ with the implied rapid loss of predictability.

Previous works (e.g., Yu et al. 2003; Batstone and

Hendon 2005) have shown, however, that, while the

timing of individual bursts is certainly difficult to pre-

dict, the statistics of wind bursts may be more predict-

able. Specifically, the modulation of WWBs by the SST

seems to induce the bursts to occur when the warm pool

is extended, while their stochasticity may result in a

relatively small range of uncertainty of their precise

time of occurrence (possibly a few weeks). One may

hope, therefore, that the longer-term ocean memory

should make it possible to predict an ensemble of WWB

realizations based on their modulation by the SST and

that this may result in improved ENSO prediction skill.

The relationship between wind bursts and SST has

been previously analyzed by using ocean composites

over multiple WWBs (Harrison and Vecchi 1997) and

by correlation studies (Batstone and Hendon 2005; TY).

In particular, TY found that, if instead of correlating the

WWB wind stress field with SST one correlates the

WWB characteristics including their amplitude, width,

duration, location, and probability of occurrence, then

more of the WWB variability can be linked to SST. A

correlation, of course, does not imply causality between

two events, and the correlations of TY cannot serve as a

prognostic model for WWBs given SST. The goal of this

paper is to build on these observed correlations and to

present a quantitative, observationally based approach

for predicting WWBs and representing them in ENSO

models in a way that accounts for the WWB modulation

by the SST. This goal differs from TY in that causality

must be taken into account, as we wish to find the WWB

response to a given SST field. For this reason, this study

uses statistical tools to determine the robustness and

significance of the postulated cause–effect relationship,

something that has not been attempted before.

The WWB model developed here is used to demon-

strate that there is a strong deterministic component in

WWBs and a strong connection between the western

Pacific warm pool extent and WWB characteristics. This

approach may be considered an extension of statistical

atmospheric models to include WWBs. The relevance of

the resulting WWB model to the modeling and pre-

dictability of the tropical Pacific interannual variability

is discussed. Many studies (e.g., Chang et al. 1995)

model the atmospheric response as a combination of

deterministic and white noise processes. However, these

approaches are not meant to explicitly represent WWBs

as a state-dependent noise process as attempted here.

In addition to the relevance to ENSO prediction, our

WWB model may be viewed as an efficient way to rep-

resent the observational evidence of SST modulation on

WWBs. It may then be used to evaluate the ability of

complicated coupled models to reproduce the same be-

havior. We note that the implications of the WWB pre-

diction model to ENSO prediction were examined by

Gebbie and Tziperman (2008), using a hybrid coupled

model, with encouraging, even if tentative, results.

To achieve our stated goal, we first introduce the

WWB dataset and analyze the statistics of occurrence

times of WWBs to determine whether one can reject the

hypothesis that WWBs are a random system where the

probability of WWB occurrence is constant in time

(section 2). The observationally based empirical WWB

model is presented in section 3. The WWB model pre-

dicts the WWB characteristics from the SST, and leads

to new insights regarding the interannual variability of

WWBs (section 4) and the seasonal cycle (section 5).

We conclude in section 6.

2. Statistics of observed WWB timing

To identify WWBs, TY used a 18 gridded surface wind

analysis with 6-h time resolution based on an analysis

combining the European Centre for Medium-Range

Weather Forecasts 10-m surface wind analyses, Special

Sensor Microwave Imager (SSM/I) wind speeds, and

ship and buoy winds. A westerly wind burst was defined

as any zonal wind anomaly greater than 5 m s21 with a

duration between 2 and 40 days and with a longitudinal

extent greater than 500 km. The anomaly is defined

relative to the seasonal climatology of the trade winds,

which are as strong as 4 m s21, and thus a WWB signifies

a reversal of the total wind direction. This definition is

necessarily arbitrary, as are all previous WWB defini-

tions. It is important, however, that this definition does

not preclude that WWBs have some low-frequency in-

terannual power, in addition to the high frequency

(2–40 days) power inherent in the length of an individual

event. The existence of interannual power is thought to

be critical to the ENSO response to WWBs (Roulston

and Neelin 2000; Eisenman et al. 2005; Gebbie et al.

2007).
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Previous studies (Luther et al. 1983; Fasullo and

Webster 2000; Yu et al. 2003; Eisenman et al. 2005) have

suggested that the zonal wind speed of a westerly wind

burst can be approximately represented by a Gaussian

in space and time. We use this idealization, yet note that

this assumption is far from being perfect and has not

been justified by a sufficiently rigorous analysis of ob-

served WWBs. In particular, we model a WWB as

u
wwb

(x, y, t) 5 A exp �
(t�T

o
)2

T2
�

(x�x
o
)2

L2
x

�
(y� y

o
)2

L2
y

 !
,

(1)

where xo and yo are the central longitude and latitude of

the wind event, To is the time of peak wind, A is the

peak wind speed, T is a measure of event duration, and

Lx and Ly are the spatial scales. Using the TY catalog of

WWB events from the SSM/I satellite-derived winds for

1988–2004, the number of events identified is NWWB 5

127, at an average of 7.5 WWBs per year.

Of particular importance is whether the temporal

distribution of WWBs is consistent with a Bernoulli

process, a discrete-time stochastic process that has two

possible outcomes: failure or success. Success, as we

define it, indicates that a WWB is triggered. We there-

fore first consider the null hypothesis that a WWB event

is equally likely at every time, P(t) 5 Po, where Po is

the probability of a WWB occurring on any given day

(day21). If the occurrence times of individual WWB

events are independent of each other, the expected

number of WWBs over an interval of N days follows a

binomial distribution with a mean hNwwbi 5 NPo and a

variance of hN2
wwbi 5 NPo(1 2 Po). The observation of

127 WWBs over 17 yr (i.e., Nwwb 5 127) allows us to de-

termine a plausible value of Po, namely, 1/(58.8 days) ,

Po , 1/(40.8 days) with 95% confidence. The most likely

value of Po is simply the number of WWBs divided by

the number of days, Po 5 Nwwb/N 5 1/(48.9 days),

shown as a straight line in Fig. 1. There are prolonged

periods, such as 1988–90, with relatively few WWBs,

and other periods, such as 2002–05, with more frequent

WWBs. The long periods without WWBs call into

question whether a constant Po explains the data.

To judge more quantitatively whether the observed

distribution could possibly be from the expected bino-

mial distribution, we analyze the separation times be-

tween WWBs. Here, Tr(n) is defined as the elapsed time

between WWB number ‘‘n’’ and ‘‘n 1 1’’ (days). The

expected distribution of Tr between any two WWBs is

denoted FTr(N) and is given by

F
Tr

(N) 5 (1� P
0
)N�1P

0
, (2)

where N is an integer number of days. The observed

distribution of Tr is taken by differencing the To values

in the WWB catalog. A higher than expected number of

WWBs occur within 15 to 50 days of each other (Fig. 2).

Furthermore, there are gaps of 400 and 600 days without

any WWBs at all, such as the period from January 1998

to May 2001. Based on the Kolmogorov–Smirnov test, a

nonparametric statistical tool that does not rely on any

assumption of Gaussian statistics, the null hypothesis is

rejected at the 5% insignificance level with a P value

of 0.02. The observed WWB distribution is therefore

unlikely to be from a stochastic process in which the

probability of occurrence is constant in time.

If P is defined instead as a continuous function of

time, rather than a daily value, a Poisson distribution

would describe the timing of WWBs. Given the large

number of days in the 17 years of data, there is no ap-

preciable difference between the binomial distribution

and Poisson distribution. To confirm this, we repeated

the null hypothesis test with an assumed Poisson dis-

tribution with P 5 Po and found the same results: that

the null hypothesis can be rejected.

The observed histogram can possibly be explained

by the likelihood of a WWB changing in time; that is,

P 5 P(t). When P(t) is large, the time between WWBs

is shorter. In the case smaller values of P(t) persist over

multiple years, long breaks without WWBs are possible.

We hypothesize that low frequency variations in SST

modulate P(t) and explain the distribution of observed

WWBs through time (in the nomenclature of statistics,

a time-inhomogeneous Bernoulli process). The WWB

FIG. 1. The timing of observed WWBs, 1988–2004. The cumu-

lative sum of the number of WWBs (solid) is compared to the

mean of a binomial distribution with P 5 P0 and N, the number of

trials, equal to the number of days since 1 Jan 1988. Long runs with

relatively few WWBs (1998–2001) and many WWBs (1990–95) are

both apparent.
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model of the next section attempts to make this con-

nection explicit.

3. The empirical WWB model

For a prognostic WWB model, the necessary param-

eters are slightly different from those in the WWB

dataset. Instead of the observed start times of individual

WWBs, To, we need an estimate of P, the likelihood of

the triggering of a WWB. TY defined an observational

estimate of the likelihood of a WWB as the number of

WWBs in a period of 3 months centered on the time of

interest, divided by 3 months.

The WWB model state can therefore be represented

by the following vector of characteristics:

r 5 [A; x
o
; y

o
; L

x
; L

y
; T; P], (3)

corresponding to the parameters in Eq. (1). Note that

the WWB characteristics, apart from the probability of

occurrence, are only defined when a WWB occurs. A

regression model for the WWB parameters may be

developed by creating a list of WWB events with their

observed characteristics and the average SST field during

the event, as was done in the correlation study of TY.

When this is attempted, the model strongly underesti-

mates the variance of WWB parameters. This result is

not surprising since it should be necessary to train the

model with both the SST fields that lead to WWBs and

those that do not, in order to reproduce the full range of

behavior in the model. Instead, we proceed with a sec-

ond method of pairing the WWB and SST data that

produces better results. This second method uses an es-

timate of WWB characteristics and SST for every month

during the data record. We use a linear interpolation

from the nearest WWBs in time to evaluate the WWB

parameters at non-WWB times. The only exception is

that the probability parameter is set to zero if no WWBs

are observed, rather than being interpolated. When

more than one WWB occurred in a month, we take the

average WWB characteristics for that month.

The observed WWB dataset for all months may now

be written as a Nmon 3 7 matrix,

R 5 [r
1
; r

2
; . . . ; r

Nmon
], (4)

where Nmon 5 204 is the total number of months in

17 years. We wish to predict the WWB parameter

anomalies, so the R dataset is referenced to an appro-

priate time average. We explore two approaches to

defining the anomalies. In section 4, we reference the

anomalies to the seasonally varying climatology and

model the interannual WWB variability. In section 5,

we reference the anomalies to a mean that is not a

function of month and attempt to model both interan-

nual and seasonal variability.

The monthly SST field of the tropical Pacific (258N–

258S, 1208E–808W) is arranged in a similar way such that

S is the SST data matrix that contains Nxy rows and

Nmon columns. The SST dataset has a 28 resolution in

longitude and latitude and a total of Nxy 5 1890 ocean

grid points. Again, the appropriate time-averaged monthly

climatology is subtracted from the data. A complete

WWB model is described by a set of simultaneous

equations of the form

R 5 SW 1 E, (5)

where W is the desired WWB model matrix relating the

WWB characteristics to the SST, and E is the misfit. We

solve for the matrix W, which minimizes the sum of

squared elements (i.e., the Frobenius norm) of ED21
R ,

where D21
R is a square diagonal matrix with the inverse

of the standard deviation of each WWB parameter

along the diagonal. Column weighting with DR accounts

for the differing units and magnitudes of the WWB

parameters. In other words, the model is designed with

equal weight given to the variability in each parameter.

Such a weighting scheme does not necessarily result in a

WWB model that leads to optimal ENSO predictions,

and future work would need to test the sensitivity of

ENSO prediction using this WWB model to the weighting

strategy.

The W matrix contains Nxy 3 7 elements, to be calcu-

lated from the Nwwb 3 7 available data points (one seven-

element vector for each of the 127 observed WWBs).

FIG. 2. The recurrence time Tr between WWB events. The ob-

served distribution of Tr (gray histogram) is compared to Tr for the

null hypothesis H0 (black line), a binomial distribution with P 5 P0,

and one time step per day.
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Given that Nxy� Nwwb, the 17-yr observational record

of WWBs is not long enough to robustly estimate W by

the above regression of each WWB parameter onto the

SST at all geographic locations. Instead, we express the

SST as a sum over large-scale modes, to be defined

shortly, and regress the WWB parameters only with

these large-scale patterns. (Base function might be a

more appropriate description than ‘‘mode.’’)

We explore two alternatives for the SST modes. In the

first, the modes are the left singular vectors of the co-

variance matrix between the SST and the westerly wind

burst parameters, C 5 STR (the matrix multiplication is

effectively an average over all months in the dataset).

These left singular vectors, also called singular value

decomposition (SVD) modes, are the modes of SST

variability that explain the most covariance with the

wind. Another possibility for the reduced SST space is

to use the leading EOFs of the SST field. We find that

the first two leading EOFs are remarkably similar to the

first two singular vectors (Fig. 3). In the calculations

below we use the first seven left singular vectors as the

reduced space representation for the SST. Given that a

few such vectors explain most of the covariance be-

tween the SST and WWB parameters, the leading re-

sults of the WWB model are not significantly altered

using the EOFs instead. Note that the first SST singular

vector resembles the El Niño pattern, demonstrating

that the characteristics of WWBs covary with the phase

of ENSO.

With a set of NQ large-scale SST modes, the SST field

is represented by NQ nondimensional, time-varying

coefficients. These coefficients are stored in a Nmon by

NQ matrix given by ~SQ* 5 SQD�2
S , where the rows of

matrix Q are the dimensional SST modes, Q itself is a

mapping from the full SST field to the reduced space of

SST mode amplitudes, and D22
S is a square, diagonal

matrix with the inverse of the variance of each expan-

sion coefficient time series along the diagonal. The final

equation for the WWB model is now rewritten as

R 5 ~S
Q
*W

Q
1 E, (6)

where the desired WWB model matrix W is now re-

placed by the much smaller matrix WQ of size NQ 3 7.

Now there are Nwwb 3 7 data points to constrain NQ 3 7

values, and NQ , Nwwb.

This combined regression–singular vectors approach

is similar to that used by Harrison et al. (2002) and

Wittenberg (2002) to develop their linear statistical at-

mospheric models. An alternative approach is a purely

SVD-based approach (e.g., Syu et al. 1995). Such an

SVD-based approach, however, effectively assumes a

perfect time correlation between SST and WWB SVD

modes, either at zero lag or some other fixed lag. Future

FIG. 3. The first two SST (top) singular vectors and (middle) EOFs, with the projection of the 1988–2005 obser-

vations onto those patterns, that is, (bottom) the principal components. Positive values are shaded. Both the pro-

jection onto the singular vectors and EOFs are plotted in the bottom panels, but they are nearly identical and cannot

be distinguished.
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studies may need to look into the possibility of allowing

for a nonzero lag between the two. In general, such a

scheme does not account for the possible statistical in-

significance of a particular SVD mode, and it is unlikely

to be the best fit to the observations in a least squares

sense (cf. Bretherton et al. 1992).

4. Interannual WWB model

We now form a model for the interannual WWB

variability, while prescribing the climatological seasonal

cycle of WWBs. This ‘‘interannual-only’’ model is formed

by solving (6) after subtracting the seasonally varying

climatology from the datasets R and S.

a. Modes of variability

The interannual-only WWB model uses the SST sin-

gular vectors of the covariance matrix as the basis for all

calculations (Fig. 4) by first calculating the projection of

the observed SST onto the SST singular vectors (Fig. 5),

and then regressing these projections onto the WWB

parameters. The first SST mode explains 97% of the

covariance between SST and the WWB parameters, and

its spatial pattern is directly related to El Niño. The time

series of the projection onto the second SST mode leads

the first mode with a maximum lagged cross-correlation

of r 5 0.6 at 11 months. SST mode 2 captures the

eastward propagation of SST anomalies during recent

El Niño events. The third mode calculated here is dif-

ferent from that of TY. This is partially because, as

explained above, we use a correlation between WWB

parameters and SST that is calculated at all times, not

only those times when WWB events occurred. The

sensitivity of the structure of the third mode indicates,

of course, that this structure is not a robust result of our

study even if the third mode is useful for the WWB

prediction. We will attempt to interpret the higher SST

modes with respect to particular WWB parameters later

in this work.

In a regression model, the addition of another SST

mode will always lead to a better fit to the observations,

but we wish to eliminate modes that are simply fitting

noise. To determine the number of significant modes,

NQ, we use an iterative statistical procedure. At each

step, a single mode is added to the WWB model and the

residual between the observed and modeled wind burst

FIG. 4. The seven SST singular vectors for the co-

variance matrix of the SST and WWB parameters

based upon anomalies from the seasonally varying

climatology. Positive values are shaded.
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parameters is calculated. The reduction in the sum of

the squared errors is considered significant when a

two-tailed F test finds the variance of the residual be-

fore and after adding the new mode to be different at

the 5% insignificance level (see Wittenberg 2002). The

WWB model can be based on a maximum of seven

modes, corresponding to the seven westerly wind burst

parameters.

Figure 6 displays the variance explained for each

WWB parameter as additional modes are added. We

find that all modes significantly reduce the error (in-

creasing the explained variance) in at least two wind

burst parameters, and we therefore keep all seven

modes in our model. The ENSO SST pattern (the first

SVD mode) explains over 30% of the variance in four

wind burst parameters. The zonal location and likeli-

hood of occurrence are explained best (63% and 58% of

their variance, respectively, is explained by seven SVD

modes). Not all WWB parameters are explained equally

well by SST, however. Meridional extent (33%) and

amplitude (7%) are least well explained. These results

reflect the considerable high-frequency variance that

cannot be explained by the slowly varying SST. When

considering only the low frequency atmospheric com-

ponents (using a 6-month running mean), the WWB

model explains more than 65% of four WWB parame-

ters (probability, zonal location, zonal extent, and du-

ration) and 25% of the variance in amplitude (lower

panel, Fig. 6).

Despite our attempts to determine NQ by objective

statistical means, some subjectivity cannot be elimi-

nated in the choice of NQ. For example, we determined

FIG. 5. The nondimensional SST expansion coeffi-

cients for the first seven SST modes corresponding to

Fig. 4.

FIG. 6. The fraction of explained variance (top) for each WWB

parameter and a WWB model with a given number of modes 1–7

and (bottom) at periods greater than six months.
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the statistical significance of the improvement in each

WWB parameter separately, while the significance of

the covariance between WWB parameters may be more

important to other investigators. Furthermore, the ex-

planation of 7% variance in WWB amplitude is barely

significant (P 5 0.05) with the F test and the available

degrees of freedom. Figure 4 underscores the fact that

modes 4–7 are probably less significant than the first

three modes, as might be deduced by the existence of

smaller-scale spatial patterns. We note that the WWB

model may be easily rederived with a different number

of modes. For the results emphasized later in this work,

the exclusion of the higher modes does not appreciably

change our conclusions.

b. Key relationships

The coefficients of the resulting regression model

(elements of the matrix WQ) are shown in Table 1.

Entries in parentheses do not significantly decrease the

residuals between the observed WWB characteristics

and those predicted by the WWB model. The values in

the table can be used to form a linear relationship be-

tween SST and WWB characteristics. For the first SST

mode amplitude (s*1) and the zonal location of WWBs

(x9o), for example, we have x9o 5 12.298s*1. This relation-

ship indicates that the WWBs move by 12.298 longitude

in response to a one standard deviation (1 s) change in

the amplitude of the first SST singular vector (see the

best-fit line in Fig. 7). For the 1997 El Niño (a 3s event),

the regression coefficient of first mode of the WWB

model predicts that wind bursts move more than 308 to

the east. As shown in the figure, the linear function is a

good approximation to the observed relationship be-

tween SST and the zonal location of WWBs. The misfit

between the linear model and observations (bottom-left

panel of Fig. 7) cannot be distinguished from a Gaussian

distribution (p 5 0.82), a posterior check that the linear

regression form of the model (based upon minimizing a

sum of squares) is reasonable.

The eastward migration of WWBs with the edge of

the warm pool during ENSO has been shown to be an

important feedback in the evolution of ENSO events

(e.g., Chang et al. 1995; Picaut et al. 1997). This feed-

back was not built into the WWB model by the as-

sumptions used here, and we can therefore check to see

if such an effect is captured by our model. Defining the

warm pool edge, g, to be the longitude of the 28.08 SST

isotherm, the temporal correlation between movements

of the warm pool and the first SST mode is r 5 0.85, with

a best-fit linear relationship g 5 10.038s*1 1 1598E. This

linear relationship is nearly identical to the aforemen-

tioned anomaly equation given by the regression model;

thus, our model captures the observed movement of

WWBs with the extension of the warm pool. The re-

gression model is linearized around the seasonally

varying WWB location, between 1558 and 1658E, so

there appears to be no significant offset between the

TABLE 1. The transpose of the interannual WWB model matrix WQ. The first seven rows give the seven regression vectors for the WWB

parameters. Entries in parentheses do not significantly reduce the model–observations misfit.

1 2 3 4 5 6 7

A (m s21) (0.00) 20.94 (0.19) (0.33) 20.60 0.40 20.76

xo (8 lon) 12.29 (22.56) 5.16 (20.31) (21.32) (0.42) 22.63

Lx (8 lon) 4.87 22.00 (0.55) 2.53 (20.71) (0.10) (20.62)

Ly (8 lat) 1.62 (0.34) (0.21) 1.60 0.99 1.30 (0.21)

T (days21) 2.80 21.41 20.52 (0.52) 20.22 0.84 (0.02)

P (yr21) 3.93 2.22 21.46 0.64 (20.31) (20.98) (20.32)

yo (8 lat) 20.41 (0.22) 21.16 (0.09) (0.79) 20.30 (20.01)

FIG. 7. Relationship of the first SST mode to (left) the zonal

location of WWBs and (right) the probability of WWB occurrence.

(top) Observations of xo and P plotted vs the observed projection

onto SST mode 1 (dots) and including the model prediction from

one SST mode (solid line); (middle) the single-mode model pre-

diction (solid line) reproduced and compared to the model pre-

diction with seven modes (dots); and (bottom) histograms of the

misfit between the seven-mode model output and observations.
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warm pool edge and the center longitude of the WWB,

xo, in the data.

Yu et al. (2003) suggested that WWBs are more likely

with an extended warm pool. The WWB model predicts

the following relationship for the first mode P9 5

3.93[yr21] 3 s*1, variations of almost four WWBs per

year in response to a one standard deviation increase

in the amplitude of the first SST singular vector (see

upper-right panel of Fig. 7). The average number of

WWBs per year is 7.5; thus the variability is large rel-

ative to the mean and potentially important to ENSO

dynamics. Again, the linear relationship seems to be a

good first-order explanation for the majority of variance

in P. It is not obvious what physical mechanism leads to

an increase of WWBs with an extended warm pool, but

the results here suggest that it has to do with the

changing large-scale SST and extension of the warm

pool, as opposed to an atmospheric-only explanation

based, say, purely on MJO dynamics. Note that this

discussion refers to the propagation of sequential events,

not to a propagation of the wind within a given event.

The second SST mode of the WWB model contains

important information, as it precedes mode 1 by 11

months and may therefore be a precursor to El Niño

events. The coefficient relating this mode to xo corre-

sponds to a 22.568 longitude change in the location of

the WWBs in response to a one standard deviation

change in the amplitude of the second SST singular

vector. Therefore, WWBs occur farther to the west than

average when the second SST mode increases in am-

plitude. This seems sensible because a positive projec-

tion onto mode 2 reflects the warm pool edge being

farther to the west. Interestingly, the coefficient relating

the second SST mode to the WWB probability P is

positive, 2.22 yr21, indicating that WWBs are more

likely when mode 2 is excited. If WWBs occur when the

SST has the structure of mode 2, the ocean response can

lead to a warming of the central and eastern Pacific, thus

initiating the development of an El Niño event some

months later. Mode 2 explains much less variance of the

WWB parameters than mode 1, but the aspects of the

WWB evolution explained by this mode may still be

crucial for ENSO.

c. Retrospective WWB predictions

Given the observed SST during 1988–2005, a retro-

spective prediction of the WWB parameters is produced

by the regression model (Fig. 8). The robustness of the

WWB model is checked by predicting the WWB pa-

rameters for a given year with a cross-validated model

that does not explicitly use data from that year. For

example, the prediction for 1997 is made with a model

fitted only to data from years 1988–96 and 1998–2005. In

prediction mode, the WWB model is

r(t) 5~s
Q
*(t)W

Q
, (7)

FIG. 8. Time series of WWB parameters as observed (diamonds), as predicted by the cross-validated

WWB model (thick line), and as predicted by the model trained with all 17 years (thin line).
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where r(t), a vector containing the estimated WWB

parameters at a time t, is predicted from ~s
Q
*(t), the vector

of SST mode coefficients for that time, normalized by

the standard deviation of the expansion coefficients

over the training period. The cross-validated estimate is

not significantly degraded from an estimate made with

the model fitted to data from all years (cf. thick and thin

lines in Fig. 8), an indication that the statistical model is

robust. One exception may be the discrepancy in model

prediction for 1997, perhaps because an event of that

amplitude only occurred once in the record.

The amplitude A, duration T, and probability P of

wind bursts are all nonnegative by definition. Formally,

this situation could be handled by a linear programming

(e.g., Luenberger 1984) or a nonnegative least squares

method (e.g., Tziperman and Hecht 1988). In this work,

we have found only rare instances of negative values

predicted by the WWB model for these parameters, in

which case they are simply set to zero.

The model prediction of the WWB characteristics is

deterministic, but we now introduce a scheme for cre-

ating multiple stochastic realizations of WWBs using

the probability parameter P(t) in (3). A random number

h is sampled at every model time step from a flat dis-

tribution between 0 and 1, and an event is triggered if

h , P(t). Given the time series of P, therefore, we can

produce many realizations of the time series of WWB

occurrence times.

Our model calculates the WWB wind stress field from

the probability P, which in turn is calculated from the

SST, and is therefore a stochastic model. It is instructive

to compare the form of our model to models using ex-

plicit multiplicative noise forcing in the SST equation

(Perez et al. 2005; Jin et al. 2007; Sura and Sardeshmukh

2008). Both types of models rely upon a random number

generator and the inclusion of SST information into the

stochastic process. Our model is different in that the

SST determines the probability for a WWB, and a

random number is then used to obtain specific realiza-

tions of the WWB wind field. Both formulations can be

considered state-dependent noise processes, although

our model is not derived from mathematical principles

but, instead, from physical reasoning.

To address the relative importance of deterministic

versus stochastic processes affecting the wind bursts,

consider the number of WWBs recorded in each year

from 1988 to 2004 (Fig. 9). Without any interannual

variability, 7.5 WWBs per year (P0 3 365 5 7.5) are

expected, with a standard deviation of 2.7 WWBs per

year given the expression for the variance of the bino-

mial distribution in section 2. The WWB model predicts

a distribution of WWBs for each year, where the mean

represents the deterministic modulation by SST. One

thousand realizations of the WWB model were run, and

the 10th and 90th percentile of the number of WWBs

per year are plotted as the vertical bar in Fig. 9, repre-

senting the impact of the stochastic part of the WWB

model. The observed number of WWBs lies within the

modeled error bars for 14 of 17 yr, or 82% of the time,

consistent with the expected value of 80% (because we

use the range 10%–90%). Overall, it appears that the

interannual variability in the number of WWBs can be

predicted as a deterministic function of SST and the

stochastic component of WWBs seems less dominant,

raising hopes for the potential to improve ENSO pre-

diction by including the SST modulation effect on WWBs

in ENSO prediction models.

During some years, such as 1997, the observed num-

ber of WWBs is outside the one standard deviation level

of the WWB model. Figure 10 shows the detailed model

distribution computed from 1000 realizations of the

year 1997. The observed number of WWBs [Nwwb(yr 5

1997) 5 17] lies at the 95th percentile, indicating that if

the model distribution is correct, such a high number of

WWBs would only happen in 1 year out of 20. Year

1997 may have been a year when a special dynamical

regime was reached, and therefore, the model distri-

bution may be an underestimate owing to a model bias.

At this point, however, our record is only 17 years long

and such a result cannot be ruled out as being due to

statistical chance.

FIG. 9. Number of WWBs per year, 1988–2005: observed (gray

histogram), predicted by the cross-validated WWB model (bold

line with bold bars), and predicted by the WWB model with all

17 years of data (dashed line with thin bars). The 10th and 90th

percentile limits (vertical bars) of the stochastic model prediction,

the mean of the cross-validated distribution (squares), and the

mean of the full WWB model (circles). The model captures the

interannual variability of WWBs without any tuning parameters.

The total number of WWBs is also consistent with observations.
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d. The ensemble-mean WWB wind field

To further examine the importance of deterministic

versus stochastic processes affecting the WWBs, we plot

the observed WWBs on a longitude–time diagram, with

three realizations of the WWB model with the same

observed SST (Fig. 11). During El Niño years, WWBs

migrate eastward into the central Pacific and they occur

in groups. All three model realizations show this general

behavior even though the exact timing of individual

WWBs is different. Roulston and Neelin (2000) sug-

gested that the high frequency component of WWBs is

significantly less important to the excitation of ENSO

events than the slow interannual component (see also

Eisenman et al. 2005). The modeled WWB parameters

vary with the same time scales as the SST and are, there-

fore, dominated by the slow interannual component.

It is possible to calculate an approximation of the

slowly evolving ensemble-mean WWB wind field with-

out simulating an ensemble of realizations. The proba-

bility of triggering a WWB at a time t is P(t) and the

expected ensemble-mean amplitude is P(t)A(t). We must

also account for the temporal variations in wind speed

in the WWB life cycle, assumed in our model to vary

with time as u(t) } exp(2t2/T2). At any given time and

location, there is a contribution to the ensemble-mean

wind by WWBs that are exactly at their peak and those

that peaked earlier or later by an interval t9. The events

that affect a given location may be centered at neigh-

boring locations. Integrating over the ensemble of WWBs

with different peak times, the ensemble-mean zonal

wind speed at t is

FIG. 10. Model distribution of the number of WWBs in calendar

year 1997 over 1000 realizations. The 5th and 95th percentiles of

the distribution (dashed vertical lines), the mean of the distribu-

tion is 10 WWBs (solid, vertical line); 17 WWBs were observed in

1997.

FIG. 11. Westerly wind burst zonal wind speed as a function of time and longitude: (from top

to bottom) a reconstruction from the observed WWB parameter vector and three different

realizations calculated by the WWB model from the observed SST field. Values greater than

5 m s21 are shown, with a contour interval of 5 m s21.

3904 J O U R N A L O F C L I M A T E VOLUME 22



where P(t9) denotes the likelihood of having a WWB

peaking at t9, whose amplitude, duration, location, and

spatial extent are given by A(t9), T(t9), Xo(t9), Yo(t9),

Lx(t9), and Ly(t9). Because the WWB characteristics

vary with the same time scale as SST, which is much

longer than the duration of an individual WWB event,

we may assume P(t9) ’ P(t) to a good approximation.

Similarly, the other WWB characteristics at a time t9

may also be replaced by those at t. With this approxi-

mation, the integral is solved to give

This formula allows a shortcut to directly calculate the

slowly varying component of WWBs, which seems to be

the most important part for ENSO dynamics and pre-

dictability (Roulston and Neelin 2000).

The low frequency component of the observations is

shown in the top panel of Fig. 12. The ensemble average

WWB wind field was calculated from 1000 realizations

of the WWB model (middle panel) and from Eq. (9)

(bottom panel). The middle and lower panels are vir-

tually indistinguishable, suggesting that the approxi-

mations of the previous paragraph are valid. We also

note that the expected ensemble-mean model WWB

wind is similar to the low frequency component of the

observed wind.
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ð‘

�‘

P(t9) A(t9) exp �(t � t9)2

T(t9)2
�
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o
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FIG. 12. Comparison of three time–longitude representations of WWBs: (top) the low-

frequency component (3-month running mean) of the observed WWBs, (middle) the ensemble

average WWB wind field calculated from 1000 realizations, and (bottom) the direct calculation

of the ensemble-mean WWB wind field from Eq. (9). Values greater than 1.8 m s21 (5/e 5 1.8)

are shown with contours at 5, 10, 15, and 20 m s21.
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5. Model for both seasonal and interannual
WWB variability

In the interannual-only WWB model discussed above,

the seasonal cycle in wind burst parameters was pre-

scribed from climatology. We next attempt to develop a

model that will predict both the seasonal and the in-

terannual WWB variability from the SST.

We first remove the 17-yr time-mean fields (constant

in time) from the wind and SST observations. The SST

modes of variability are now diagnosed as the left sin-

gular vectors of the new covariance matrix between SST

and the WWB parameters (Fig. 13). The first SST mode

still resembles the typical El Niño pattern, but the sec-

ond mode, with opposite-sign structure across the

equator, is related to the seasonal cycle. The singular

vector expansion coefficients (Fig. 14) reveal that all

seven SST modes contain variability at the annual pe-

riod, demonstrating that the seasonal cycle is not com-

pletely represented by the second mode, as all seven

modes are strongly influenced by seasonality. Philander

(1990), for example, showed that the seasonal cycle in

the tropical Pacific evolves via a complicated spatially

propagating signal. The difference in the structure of

the singular vectors 2–7 between Fig. 13 and Fig. 4 also

serves as a warning that it is not straightforward to at-

tach a dynamical meaning to any particular pattern.

Now that the WWB parameter anomalies contain

seasonal variability, there is much more variance for the

WWB model to explain. After performing the same

procedure described in section 3, we find that WWB

model still explains more than 50% of the variance in

the zonal location and probability of WWBs. At inter-

annual periods, the seasonal and interannual model

explains similar amounts of variance as the interannual-

only model—over 50% of the total variance in five of

seven parameters. Figure 15 shows that all seven modes

significantly reduce the model error in at least two

WWB parameters according to the two-tailed F test.

The 7 3 7 model matrix is included in Table 2.

The mean of 1000 realizations of the WWB model pre-

dicts more WWBs during the spring and fall, consistent with

the observations (Fig. 16). Overall, the boreal summer is

predicted to have a smaller number of WWBs than other

FIG. 13. The seven SST singular vectors for the co-

variance matrix of the SST and WWB parameters

based upon anomalies from the 17-yr mean. Positive

values are shaded.
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seasons, as shown by Harrison and Vecchi (1997). The

model predicts that July is the month with the least num-

ber of WWBs, as observed. The observed number of July

WWBs over the last 17 years is outside the 10th percentile

of the model distribution, but this should occur by chance

one-tenth of the time. As this only occurs for the month of

July, the observations are consistent with the modeled

seasonal cycle. The size of the error bars are relatively

large compared to the seasonal variations, and therefore, a

longer observational record is necessary before we can

have greater statistical confidence in these results.

Further explanation of the seasonal cycle of WWBs

could shed light on some observed ENSO characteris-

tics. The number of WWBs per month shows a double-

peak pattern, similar to the evolution of the sea surface

during many El Niño events when the Niño-3.4 index

peaks in both May and December. Furthermore, the

seasonal cycle of WWBs can potentially explain the

phase locking of ENSO to the seasonal cycle.

6. Conclusions

This paper developed and tested an observationally

motivated approach for modeling and predicting west-

erly wind bursts from SST, which may be used to repre-

sent WWBs in ENSO simulation and prediction models.

This approach is motivated by the analysis of TY who

found that WWB characteristics are related to the large-

scale spatial patterns of SST, even if the linear corre-

lation of the WWB wind stress itself with SST does not

explain much of the WWB wind stress variance (Gebbie

et al. 2007). The WWB model of this study goes beyond

previous works by taking cause and effect into account

in determining the statistically significant WWB re-

sponse to SST. As a prognostic rather than diagnostic

tool, it is successful in capturing the observed number of

WWBs per year, the interannual variability of WWBs,

and their eastward propagation and increased likeli-

hood during a warm event. Apart from the hope that

such an empirical WWB model may serve to improve

ENSO prediction, a largely successful prediction of major

WWB characteristics as is achieved in this paper also

provides an important lesson about the dynamics of the

tropical Pacific.

For our WWB model to be successful, we needed to

determine in which ways SST can be used to determine

a WWB response, and to understand the robustness

(statistical significance) of the model. In addition, we

tested the model performance by explicitly examining

the model data misfit of WWBs over the last 20 years.

FIG. 14. The nondimensional SST expansion coeffi-

cients for the first seven SST modes corresponding to

the spatial patterns in Fig. 13.
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We note that the correlation study of TY did none of

these things, did not attempt to make a convincing case

for the causality in the relationship between WWBs

and SST, and could not be sensibly used for modeling

studies.

Our WWB model can be integrated in a stochastic

way, providing an ensemble of WWB realizations for a

given SST history. Although the stochastic spread in the

number of model WWBs can be up to five events in a

given year, there is still a strong resemblance between

the model-predicted and observed interannual varia-

bility of these events. This similarity, and the ability to

directly calculate the ensemble-mean WWB wind stress,

indicates that the deterministic modulation of WWBs

by SST may dominate the stochastic signal in these

events. This, in turn, may imply greater ENSO pre-

dictability than if the WWBs were an independent, white

noise process. In a recent companion work (Gebbie and

Tziperman 2009), it was found that the incorporation of

the WWB model developed here to a hybrid coupled

model led to some improvement in the prediction of

large El Niño events. These results are not conclusive

because of the preliminary nature of the ENSO model

used, and work is now in progress to test this WWB

model within a state-of-the-art coupled general circu-

lation ENSO model.

We assume that the WWB statistics are a function of

SST and are therefore state dependent. Our model,

when combined with an ENSO prediction model, is a

form of a multiplicative noise process, although this

terminology emphasizes the stochastic element of the

WWBs, while an important message of this paper is that

WWB statistics can largely be predicted from the SST.

This implies that the WWBs are essentially predictable

even if their precise occurrence time is random to within

a few weeks. Only the interannual frequency compo-

nent of the WWB variability affects ENSO (Roulston

and Neelin 2000), and this slow part may be expected to

be similar to the ensemble average WWB amplitude,

which was found here to be quite predictable. There-

fore, the essential contribution of WWBs to ENSO dy-

namics does not seem to involve the stochastic compo-

nent of the WWBs. As noted, for example, by Eisenman

et al. (2005), the SST-modulated WWBs act as an en-

hanced ocean–atmosphere coupling during warm events

only, an effect which cannot be captured by linear sta-

tistical atmospheric models yet is important for our un-

derstanding of ENSO dynamics. Note that some other

related works (Perez et al. 2005; Jin et al. 2007; Sura and
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FIG. 15. The fraction of explained variance (top) for each WWB

parameter and a WWB model with a given number of modes, 1–7,

and (bottom) at periods greater than one year. (Anomaly model

based on the 17-yr mean.)

TABLE 2. The transpose of the interannual and seasonal WWB

model matrix WQ. The first seven rows give the seven regression

vectors for the WWB parameters.

1 2 3 4 5 6 7

A (m s21) 0.01 1.02 0.40 0.61 20.21 0.10 0.00

xo (8 lon) 18.76 210.90 6.91 5.15 5.62 3.83 20.86

Lx (8 lon) 7.56 22.87 1.14 3.64 1.75 22.20 0.92

Ly (8 lat) 2.62 22.19 20.60 0.30 1.77 21.31 20.21

T (day) 4.65 20.94 0.44 3.81 20.84 0.26 0.49

P (yr21) 6.03 25.37 24.42 0.40 20.05 22.20 0.18

yo (8 lat) 20.60 0.28 21.19 1.05 21.05 20.98 20.69

FIG. 16. Comparison of number of WWBs per calendar month as

observed (gray, histogram) and predicted by the seasonal and in-

terannual WWB model (lines and error bars) for the years 1988–

2004: The cross-validated model (thick lines) and the model

trained with the full 17-yr time series (dashed lines with thin error

bars); the 10th and 90th percentiles of the modeled distributions

(error bars), the mean of the cross-validated distribution (squares),

and the mean of the full WWB model (circles).
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Sardeshmukh 2008) use multiplicative noise forcing in

the more straightforward sense, following a detailed

analysis of the heat equation, as was done by Penland and

Matrosova (1994). We take a different, more empirical

approach to deriving our model, and the relationship

between the two approaches requires further study.

Most coupled GCMs do not simulate realistic WWB

activity. Given the importance of WWBs during the

onset of El Niño events, the skill of such models in

predicting ENSO is clearly degraded. Our empirical

model could be used within ENSO prediction models as

part of an ensemble approach, provided that any WWB-

like internal variability in the coupled model is taken

into account first. The deterministic part of WWBs has

not been quantitatively captured before, and thus imple-

mentation of the WWB model could lead to improved

ENSO prediction skill. The stochastic part of the model

allows the isolation and quantification of the spread in

forecasts, and hence loss of predictability due to WWBs. It

would be interesting to use this tool to examine the rela-

tive importance of the deterministic and stochastic parts

of WWBs on ENSO forecasts, and future work can now

directly address this problem.

Acknowledgments. This work was funded by the

NSF Climate Dynamics program, Grant ATM-0351123,

NASA (ECCO2 project), and the McDonnell Founda-

tion. Martin Tingley provided assistance with the sta-

tistics. ET thanks the Weizmann Institute where some

of this work was done during a sabbatical.

REFERENCES

Batstone, C., and H. H. Hendon, 2005: Characteristics of stochastic

variability associated with ENSO and the role of the MJO.

J. Climate, 18, 1773–1789.

Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An inter-

comparison of methods for finding coupled patterns in climate

data. J. Climate, 5, 541–560.

Chang, P., L. Ji, B. Wang, and T. Li, 1995: On the interactions

between the seasonal cycle and El Niño–Southern Oscilla-

tion in an intermediate coupled ocean–atmosphere model.

J. Atmos. Sci., 52, 2353–2372.

Eisenman, I., L. S. Yu, and E. Tziperman, 2005: Westerly wind bursts:

ENSO’s tail rather than the dog? J. Climate, 18, 5224–5238.

Fasullo, J., and P. Webster, 2000: Atmospheric and surface varia-

tions during westerly wind bursts in the tropical western Pa-

cific. Quart. J. Roy. Meteor. Soc., 126, 899–924.

Fedorov, A. V., S. L. Harper, S. G. Philander, B. Winter, and

A. Wittenberg, 2003: How predictable is El Niño? Bull. Amer.

Meteor. Soc., 84, 911–919.

Gebbie, G., and E. Tziperman, 2009: Incorporating a semi-

stochastic model of ocean-modulated westerly wind bursts

into an ENSO prediction model. Theor. Appl. Climatol.,

doi:10.1007/s00704-008-0069-6, in press.

——, I. Eisenman, A. Wittenberg, and E. Tziperman, 2007:

Modulation of westerly wind bursts by sea surface tempera-

ture: A semistochastic feedback for ENSO. J. Atmos. Sci., 64,

3281–3295.

Harrison, D. E., and G. A. Vecchi, 1997: Westerly wind events in

the tropical Pacific, 1986–95. J. Climate, 10, 3131–3156.

Harrison, M. J., A. Rosati, B. J. Soden, E. Galanti, and E. Tziperman,

2002: An evaluation of air–sea flux products for ENSO simula-

tion and prediction. Mon. Wea. Rev., 130, 723–732.

Jin, F.-F., L. Lin, A. Timmermann, and J. Zhao, 2007: Ensemble-

mean dynamics of the ENSO recharge oscillator under state-

dependent stochastic forcing. Geophys. Res. Lett., 34, L03807,

doi:10.1029/2006GL027372.

Kerr, R. A., 1999: Atmospheric science: Does a globe-girdling

disturbance jigger El Niño? Science, 285, 322–323.

Luenberger, D. G., 1984: Linear and Nonlinear Programming.

Addison-Wesley, 491 pp.

Luther, D. S., D. E. Harrison, and R. A. Knox, 1983: Zonal winds in

the central equatorial Pacific and El Niño. Science, 222, 327–330.

Mason, S. J., and G. M. Mimmack, 2002: Comparison of some

statistical methods of probabilistic forecasting of ENSO.

J. Climate, 15, 8–29.

McPhaden, M. J., 2004: Evolution of the 2002/03 El Niño. Bull.

Amer. Meteor. Soc., 85, 677–695.

Penland, C., and L. Matrosova, 1994: A balance condition for

stochastic numerical-models with application to the El Niño–

Southern Oscillation. J. Climate, 7, 1352–1372.

Perez, C. L., A. M. Moore, J. Zavala-Garay, and R. Kleeman,

2005: A comparison of the influence of additive and multi-

plicative stochastic forcing on a coupled model of ENSO.

J. Climate, 18, 5066–5085.

Philander, S. G. H., 1990: El Niño, La Niña, and the Southern

Oscillation. Academic Press, 293 pp.

Picaut, J., F. Masia, and Y. DuPenhoat, 1997: An advective-

reflective conceptual model for the oscillatory nature of the

ENSO. Science, 277, 663–666.

Roulston, M. S., and J. D. Neelin, 2000: The response of an ENSO

model to climate noise, weather noise and intraseasonal

forcing. Geophys. Res. Lett., 27, 3723–3726.

Sura, P., and P. D. Sardeshmukh, 2008: A global view of non-

Gaussian SST variability. J. Phys. Oceanogr., 38, 639–647.

Syu, H.-H., J. Neelin, and D. Gutzler, 1995: Seasonal and interannual

variability in a hybrid coupled GCM. J. Climate, 8, 2121–2143.

Tziperman, E., and A. Hecht, 1988: Circulation in the Eastern

Levantine Basin determined by inverse methods. J. Phys.

Oceanogr., 18, 506–518.

——, and L. Yu, 2007: Quantifying the dependence of westerly

wind bursts on the large-scale tropical Pacific SST. J. Climate,

20, 2760–2768.

Vecchi, G. A., A. T. Wittenberg, and A. Rosati, 2006: Reassessing

the role of stochastic forcing in the 1997–1998 El Niño. Geo-

phys. Res. Lett., 33, L01706, doi:10.1029/2005GL024738.

Wittenberg, A. T., 2002: ENSO response to altered climates. Ph.D.

thesis, Princeton University, 475 pp.

——, A. Rosati, N.-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2

global coupled climate models. Part III: Tropical Pacific cli-

mate and ENSO. J. Climate, 19, 698–722.

Yu, L., R. A. Weller, and T. W. Liu, 2003: Case analysis of a role of

ENSO in regulating the generation of westerly wind bursts in

the Western Equatorial Pacific. J. Geophys. Res., 108, 3128,

doi:10.1029/2002JC001498.

15 JULY 2009 G E B B I E A N D T Z I P E R M A N 3909


