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Timing, Duration, and
Transitions of the Last
Interglacial Asian Monsoon
Daoxian Yuan,1 Hai Cheng,2 R. Lawrence Edwards,2*

Carolyn A. Dykoski,2 Megan J. Kelly,2 Meiliang Zhang,1

Jiaming Qing,1 Yushi Lin,1 Yongjin Wang,3 Jiangyin Wu,3

Jeffery A. Dorale,4 Zhisheng An,5 Yanjun Cai5

Thorium-230 ages and oxygen isotope ratios of stalagmites from Dongge Cave,
China, characterize the Asian Monsoon and low-latitude precipitation over the
past 160,000 years. Numerous abrupt changes in 18O/16O values result from
changes in tropical and subtropical precipitation driven by insolation and mil-
lennial-scale circulation shifts. The Last Interglacial Monsoon lasted 9.7 � 1.1
thousand years, beginning with an abrupt (less than 200 years) drop in 18O/16O
values 129.3 � 0.9 thousand years ago and ending with an abrupt (less than
300 years) rise in 18O/16O values 119.6 � 0.6 thousand years ago. The start
coincides with insolation rise and measures of full interglacial conditions,
indicating that insolation triggered the final rise to full interglacial conditions.

The characterization of past climate is often
limited by the temporal resolution, geo-
graphic coverage, age precision and accu-
racy, and length and continuity of available
records. Among the most robust are ice
core records (1, 2), which characterize,
among other measures of climate, the oxy-
gen isotopic composition of precipitation.

Although many such records are bench-
marks, they are limited to high-latitude or
high-elevation sites, which record the oxy-
gen isotopic composition of the last frac-
tion of atmospheric moisture remaining af-
ter transit from moisture source regions.
Cave calcite also contains information
about the isotopic composition of meteoric
precipitation, is widespread, and can be
dated with 230Th methods. Thus, caves may
yield well-dated, low-latitude, low-eleva-
tion records that characterize atmospheric
moisture earlier in its transit from source
regions. We report here on such a record of
Asian Monsoon precipitation, which covers
most times since the penultimate glacial
period, about 160 thousand years ago (ka).

We have previously reported a cave oxy-
gen isotope record of the East Asian Mon-
soon (3) from Hulu Cave, China [32°30�N,

119°10�E; elevation 100 m; cave tempera-
ture 15.7°C; mean annual precipitation
�18OVSMOW � –8.4 per mil (‰) (VSMOW,
Vienna standard mean ocean water); and
mean annual precipitation 1036 mm] (table
S1), covering the last glacial period [75 ka
to 10 thousand years (ky) before the
present]. We now report similar data from
Dongge Cave, China, 1200 km WSW of
Hulu Cave, a site affected by the Asian
Monsoon. The Dongge record more than
doubles the time range covered in the Hulu
record and overlaps the Hulu record for
�35 ky, allowing comparison between
sites. Highlights include the timing and
rapidity of the onset (4) and end of the Last
Interglacial Asian Monsoon and the degree
of Last Interglacial Monsoon variability.

Dongge Cave is 18 km SE of Libo,
Guizhou Province (25°17�N, 108°5�E), at an
elevation of 680 m. The cave temperature
(15.6°C), mean annual �18O of precipitation
(–8.3‰), and seasonal changes in precipita-
tion and �18O of precipitation are similar to
those at Hulu, with mean annual precipitation
being higher (1753 mm) (table S1). Stalag-
mites D3 and D4 were collected �100 m
below the surface, 300 and 500 m from the
entrance, in the 1100-m-long main passage-
way. D3 is 210 cm and D4 is 304 cm long,
with the diameters of each varying between
12 and 20 cm. Stalagmites were halved ver-
tically and drilled along growth axes to pro-
duce subsamples for oxygen isotope analysis
(5) and 230Th dating by thermal ionization (6,
7) and inductively coupled plasma mass spec-
troscopy (8). Sixty-six 230Th dates from D3
and D4 (table S2) and 10 dates from Hulu
Cave stalagmite H82 (table S3), all in strati-
graphic order, have 2� analytical errors of
�80 years at 10 ky and �1 ky at 120 ky. Six
hundred and forty �18O measurements have
spatial resolution corresponding to 20 years
to 2 ky for different portions of D3 and D4
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(Dongge Cave, table S4), and 830 �18O mea-
surements on H82 have average spatial
resolution corresponding to 7 years (Hulu
Cave, table S5).

A key issue is whether stalagmite �18O
values (Figs. 1 and 2) can be interpreted
solely in terms of the �18O of precipitation
and cave temperature. The general replication
(3) of �18O values for 35 ky of contempora-
neous growth, for D3 and D4 (Fig. 2), argues

that the �18O values are not strongly affected
by water/rock interactions or kinetic fraction-
ation (9, 10). Although we have not yet iden-
tified young calcite from Hulu, D4’s young-
est calcite (Fig. 2) was deposited in isotopic
equilibrium, because its �18O value, the mean
annual �18O of modern meteoric precipita-
tion, and mean annual temperature (table S1)
satisfy the equilibrium calcite/water fraction-
ation equation (11). For times of contempo-

raneous deposition of D4 and the Hulu Cave
stalagmites (�35 ky), the caves’ records rep-
licate remarkably well (Figs. 1 and 2), indi-
cating not only that the calcite �18O can
largely be interpreted in terms of the �18O of
meteoric precipitation and cave temperature,
but also that the two sites have a similar
history of meteoric �18O and cave tempera-
ture. Because Dongge is 1200 km from Hulu,
this generalizes the Hulu results to areas well
to the southwest. Indeed, the broad trends in
the Dongge/Hulu data have similarities with
Northern Hemisphere tropical and subtropi-
cal records at least as far west as the Middle
East (12, 13) and probably as far away as
northern South America (14).

An important characteristic of the Hulu/
Dongge record (Fig. 2) is the large amplitude
of the oxygen isotope ratio: 4.7‰. Because
the change in the calcite/water fractionation
of oxygen isotopes with temperature is small
[–0.23‰ per °C (11)], the amplitude must
result largely from changes in the �18O of
meteoric precipitation. A second important
observation is the general anticorrelation be-
tween �18O values at Hulu Cave and in
Greenland ice during the last glacial period
and the last deglaciation (Figs. 1 and 2) (3), a
relation that has now been observed at a
number of northern low-latitude sites [Israel
(12) and Venezuela (14), in addition to Hulu
(3) and Dongge Caves].

Interpretations of changes in precipitation
�18O have focused on (i) the correlation be-
tween mean annual temperature and �18O of
modern meteoric precipitation [for tempera-
tures �10°C (15)] and (ii) the anticorrelation
between rainfall amount and precipitation
�18O [the “amount effect” (15)]. However,
modern precipitation �18O trends basically
result from the progressive removal of water
vapor from air masses as they move from
moisture source regions, resulting in decreas-
ing water vapor and precipitation �18O,
which explains the first-order observation of
lower precipitation �18O values at higher lat-
itudes. Precipitation �18O at Hulu/Dongge is
therefore largely a measure of the fraction of
water vapor removed from air masses be-
tween the tropical Indo-Pacific and southeast-
ern China. To first order, this process can be
modeled assuming Rayleigh fractionation
(15). Although more sophisticated models
may ultimately be useful, any model for
which meteoric �18O decreases with the re-
moval of water vapor will lead us, at least
qualitatively, to the conclusions below. Using
the standard Rayleigh equation (16), the per-
centage of water vapor lost before reaching
Hulu/Dongge is 63% (16) during the mid-
Holocene and Last Interglacial Period, 59%
(16 ) today, and 52% (16 ) during glacial
periods [about 16 ka (Heinrich Event I) and
immediately before and after the Last In-
terglacial Period], indicating that rainfall
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integrated between tropical sources and
southeast China was lower during glacial
than interglacial times, perhaps related to
lower relative humidity.

To estimate absolute amounts of rainfall
integrated from sources to southeast China,
we must make assumptions about absolute
humidity in tropical source regions. Even
assuming a glacial relative humidity as high
as today’s and only a modest tropical temper-
ature depression (2.5°C), we calculate an ab-
solute tropical glacial vapor pressure that is
85% of today’s and 79% of mid-Holocene/
Last Interglacial values (at a mid-Holocene
temperature 1°C greater than today and con-
stant relative humidity). Coupled with the
Rayleigh calculations, the amount of precip-
itation integrated between tropical sources
and southeast China is today �87% of mid-
Holocene/Last Interglacial values and was
�65% of mid-Holocene/Last Interglacial val-
ues at glacial times corresponding to the
heaviest Hulu/Dongge calcite �18O values,
indicating that this region was significantly
drier during glacial times. This phenomenon
may be applicable to broad areas of the north-
ern tropics and subtropics, because precipita-
tion �18O records from Israel (12) and Ven-
ezuela (14) have the same general character
as the Hulu/Dongge record (high �18O during
glacial times), and Amazon discharge has
been estimated to have been diminished by
40% or more during the Younger Dryas (17).
Thus, the Hulu/Dongge record indicates ma-
jor and abrupt changes in tropical and sub-
tropical precipitation, which correlate with
temperature in the North Atlantic region as
recorded in Greenland ice.

Whatever the ultimate causes of the ob-
served changes, the inferred moisture differ-
ences may play an important role in amplify-
ing climatic change through feedbacks tied to
water vapor’s greenhouse properties. Be-
cause atmospheric general circulation model-
ing of glacial precipitation does not recover
low-latitude �18O values as high (18, 19) as
those observed here and elsewhere (12), it is
plausible that this feedback is not fully cap-
tured in these models.

The timing of the Last Interglacial Peri-
od’s onset [Termination II; see (4) and refer-
ences therein], duration (6, 20–23), and end-
ing have been the source of extensive
research and controversy. The low �18O ex-
cursion associated with the Last Interglacial
Asian Monsoon (Figs. 2 and 3) is character-
ized by (i) a large abrupt decrease in �18O of
about 3‰ (Monsoon Termination II), which
took place 129.3 � 0.9 ka; (ii) �18O values
varying within a range of �1‰ for the ensu-
ing 9.7 � 1.1 ky; and (iii) a large and abrupt
increase in �18O of about 3‰ 119.6 � 0.6 ka.
Based on constant growth rates, the transi-
tions took place extremely rapidly: most of
Monsoon Termination II in �200 years and

most of the transition at the end of the Last
Interglacial in �300 years. Monsoon Termi-
nation II is similar in rapidity, magnitude, and
relation to insolation to the transition into the
Bølling-Allerød during Termination I (Fig. 1)
(3). Thus, the rapidity of changes that char-
acterizes the last glacial period also pertains
to the glacial/interglacial transitions.

The Last Interglacial “square wave” is
centered under the 25°N summer insolation
peak (24). Monsoon Termination II takes
place after a significant insolation rise, and
the transition at the end of the Last Intergla-
cial takes place after a significant insolation
decrease, indicating that the low Last Inter-
glacial Monsoon �18O values result from
Northern Hemisphere insolation changes
(25). Indeed, the low-frequency component
of the whole Hulu/Dongge record (Fig. 3)
correlates with insolation, indicating that in-
solation is important in controlling monsoon
intensity as predicted (25). At higher frequen-
cy, the correlation between millennial-scale
events in Greenland and southeast China in-
dicates that Asian Monsoon changes are an
integral part of millennial-scale reorganiza-
tion of ocean/atmosphere circulation patterns
(3). Although the timing of the Last Intergla-
cial Monsoon is consistent with insolation
forcing, the abruptness of the transitions in-
dicates that the detailed mechanism likely
includes threshold effects. Although smaller
in range than that of the last glacial period,

the �18O range of the Last Interglacial Period
(�1‰) is still significant, amounting to
about half the amplitude of typical last glacial
period monsoon interstadial events (Fig. 2)
(3). This supports indications of Last Inter-
glacial Monsoon variability from loess de-
posits (26) and the idea that, in addition to
well-documented examples of glacial climate
instability, interglacial climate is also charac-
terized by substantial variability.

Monsoon Termination I (the transition into
the Bølling-Allerød) and Monsoon Termination
II are each characterized by an abrupt lowering
of �18O in less than 200 years (Fig. 2). Both
shifts occur after significant rises in summer
insolation but before insolation peaks. The
clearest difference is Termination I’s prominent
high �18O excursion during the Younger Dryas,
a feature not observed in Monsoon Termination
II, indicating that Younger Dryas–type events
are not a general feature of terminations. An-
other difference is the fact that �18O trends
toward lower values for several millennia after
Termination I, whereas �18O values in the mil-
lennia immediately after Termination II do not
follow a clear trend. Both differences could be
related to ice volume, because sea level during
and after Monsoon Termination II (27–29)
may have been higher than during Termina-
tion I (30). If so, the cause of the Younger
Dryas is likely to be ice sheet–related, and the
intensity of the monsoon is affected by ice
sheet volume.
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Fig. 3. (Bottom) An
enlargement of the
portion of the Dongge
�18O record around
the Last Interglacial
Period versus time.
The gray curve is the
summer (June, July,
and August) insolation
curve at 25°N (24).
(Top) Portions of the
direct sea level record
[after (34)] and other
directly dated mea-
sures of climate
change. Error bars de-
pict the ages of the
half-height (1/2) of
Devils Hole Termina-
tion II (20), the half-
height of the marine
oxygen isotope Termi-
nation II (29), and the
first full interglacial �18O values at Crevice Cave, MO (36). The three black horizontal bars centered
at �125 ky indicate the duration of the Last Interglacial sea level high stand from Bahamian corals
[upper bar (21)], Australian corals [middle bar (22)], and direct dating of the marine oxygen isotope
record [lower bar (35)]. The timing of Monsoon Termination II coincides within error with insolation
rise, the final rise of sea level (34), the final rise of Crevice Cave �18O (35), and the final rise of
Soreq Cave �18O [not depicted (12)] to full interglacial values. Thus, Monsoon Termination II
appears to mark the final insolation-forced rise to full Last Interglacial conditions. However, a
number of events not directly caused by insolation change preceded Monsoon Termination II by
thousands of years [Devils Hole Termination II (20), marine oxygen isotope Termination II (29), a
significant fraction of the sea level rise toward interglacial values (27, 28), Antarctic temperature
rise (not depicted) (4, 32, 33), and atmospheric CO2 rise (not depicted) (4, 32, 33)]. Thus, Monsoon
Termination II appears to be an event forced by Northern Hemisphere insolation, which follows a
number of events not directly forced by Northern Hemisphere insolation.
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Although the timing of Monsoon Termi-
nation II is consistent with Northern Hemi-
sphere insolation forcing, not all evidence of
climate change at about this time is consistent
with such a mechanism (Fig. 3). Sea level
apparently rose to levels as high as –21 m as
early as 135 ky before the present (27, 28),
preceding most of the insolation rise. The
half-height of marine oxygen isotope Termi-
nation II has been dated at 135 � 2.5 ky (29).
Speleothem evidence from the Alps indicates
temperatures near present values at 135 � 1.2
ky (31). The half-height of the �18O rise at
Devils Hole (142 � 3 ky) also precedes most
of the insolation rise (20). Increases in Ant-
arctic temperature and atmospheric CO2 (32)
at about the time of Termination II appear to
have started at times ranging from a few to
several millennia before most of the insola-
tion rise (4, 32, 33). On the other hand,
Monsoon Termination II coincides within er-
ror with the final rise in sea level to full Last
Interglacial values (6, 21–23, 28, 34, 35) and
the last rise to full Last Interglacial �18O at
Soreq Cave (12) and Crevice Cave (36).
Thus, Monsoon Termination II appears to be
an event forced by Northern Hemisphere in-
solation change, coincident with other such
events but after a number of events not di-
rectly caused by Northern Hemisphere orbital
forcing. As such, it may mark the inception of
full interglacial conditions worldwide.
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Early Life Recorded in Archean
Pillow Lavas

Harald Furnes,1*† Neil R. Banerjee,1,2† Karlis Muehlenbachs,2

Hubert Staudigel,3 Maarten de Wit4

Pillow lava rims from the Mesoarchean Barberton Greenstone Belt in South
Africa contain micrometer-scale mineralized tubes that provide evidence of
submarinemicrobial activity during the early history of Earth. The tubes formed
during microbial etching of glass along fractures, as seen in pillow lavas from
recent oceanic crust. Themargins of the tubes contain organic carbon, andmany
of the pillow rims exhibit isotopically light bulk-rock carbonate �13C values,
supporting their biogenic origin. Overlappingmetamorphic andmagmatic dates
from the pillow lavas suggest that microbial life colonized these subaqueous
volcanic rocks soon after their eruption almost 3.5 billion years ago.

Biologically mediated corrosion of synthetic
glass is a well-known phenomenon (1). Early
studies of natural volcanic glass suggested
that colonizing microbes can actively dis-
solve glass substrates to extract nutrients,
thereby producing channel-like tubular struc-
tures (2, 3). This mechanism has been veri-
fied experimentally (4–7). Over the past de-
cade, numerous studies have documented mi-
crometer-sized corrosion structures produced
by microbial activity in natural basaltic glass-
es throughout the upper few hundreds of
meters of the oceanic crust (8–13). These

structures have textural characteristics (such
as size range, morphology, and organization)
that are consistent with a biogenic origin. The
presence of carbon and nitrogen (10, 12, 13)
as well as nucleic acids associated with the
corrosion textures (10, 13) and characteristi-
cally depleted �13C values of disseminated
carbonate within microbially altered basaltic
glass (10, 13, 14) further support the biogenic
origin of these structures. In this paper, we
document evidence of ancient microbial ac-
tivity within exceptionally well-preserved
pillow lavas of the �3.5 billion-year-old Bar-
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