
Infer relationships among three species:
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Model: topology AND branch lengths
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tree 1 tree 2 tree 3

20% 48% 32%

We can focus on any parameter of interest 
(there are no nuisance parameters) by 
marginalizing the posterior over the other 
parameters (integrating out the 
uncertainty in the other parameters)

(Percentages denote marginal probability distribution on trees)
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tree 1 tree 2 tree 3

always accept

accept sometimes

1. Start at an arbitrary point 
2. Make a small random move
3. Calculate height ratio (r) of new state to old state:

1. r > 1 -> new state accepted
2. r < 1 -> new state accepted with probability r. If new 

state not accepted, stay in the old state
4. Go to step 2

Markov chain Monte Carlo

The proportion of time the 
MCMC procedure samples 
from a particular parameter 
region is an estimate of that 
region’s posterior 
probability density
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burn-in

stationary phase sampled with thinning
(rapid mixing essential)



cold chain

heated chain

Metropolis-
coupled 
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Monte Carlo
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Incremental Heating
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T is temperature, λ is heating coefficient

Example for λ = 0.2:

cold chain

heated chains



Assessing Convergence
Plateau in the trace plot (unreliable!!)
Compare windows within the same run 
(better)
Compare independent runs starting 
from different randomly chosen 
topologies (best)
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Improving Convergence
(Only if convergence diagnostics indicate problem!)

Change tuning parameters of proposals to bring 
acceptance rate into the range 10 % to 70 %
Propose changes to ‘difficult’ parameters more 
often
Use different proposal mechanisms
Change heating temperature to bring acceptance 
rate of swaps between adjacent chains into the 
range 10 % to 70 %.
Run the chain longer
Increase the number of heated chains
Make the model more realistic
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Too modest proposals
Acceptance rate too high
Poor mixing

Too bold proposals
Acceptance rate too low
Poor mixing

Moderately bold proposals
Acceptance rate intermediate
Good mixing



Running MrBayes
Use execute to bring data in a Nexus file 
into MrBayes
Set the model and priors using lset and 
prset
Run the chain using mcmc
Summarize the parameter samples using 
sump
Summarize the tree samples using sumt
Note that MrBayes 3.1 runs two 
independent analyses by default



Ver. 3.1 Convergence Diagnostics
By default performs two independent analyses 
starting from different random trees (mcmc
nruns=2)
Average standard deviation of clade frequencies 
calculated and presented during the run (mcmc
mcmcdiagn=yes diagnfreq=1000) and written to 
file (.mcmc)
Standard deviation of each clade frequency and 
potential scale reduction for branch lengths 
calculated with sumt
Potential scale reduction calculated for all 
substitution model parameters with sump



Bayes’ theorem
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Bayesian Model Choice
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Bayesian Model Choice
The normalizing constant in Bayes’ theorem, the 
marginal probability of the model, f(X) or f(X|M), 
can be used for model choice
f(X|M) can be estimated by taking the harmonic 
mean of the likelihood values from the MCMC run 
(MrBayes will do this automatically with ‘sump’)
Any models can be compared: nested, non-nested, 
data-derived
No correction for number of parameters
Can prefer a simpler model over a more complex 
model
Critical values in Kass and Raftery (1997)



Bayes Factor Comparisons
Interpretation of the Bayes factor

2ln(B10) B10 Evidence against M0

0 to 2 1 to 3 Not worth more than a 
bare mention

2 to 6 3 to 20 Positive

6 to 10 20 to 150 Strong

> 10 > 150 Very strong



Resources
MrBayes web site (www.mrbayes.net)
MrWiki manual (on the MrBayes web site)
MrBayes 3.1 command reference
MrBayes 3.1 manual (pdf) with two tutorials: a 
simple analysis (primates.nex) and an analysis of 
partitioned data (cynmix.nex)
Last pages of the manual contain graphical 
summaries of the MrBayes 3 models and most 
common types of proposal mechanisms
MrBayes 3 chapter: complex partitioned analysis 
(kim.nex)

http://www.mrbayes.net/


















Why Bayesian?
Priors: accumulate scientific knowledge
Easy to deal with complex models, and current 
models need to be improved
Computational efficiency: today hundreds of taxa, 
can probably be extended considerably
Convergence diagnostics to detect problems with 
convergence
Model testing with Bayes factors
Model averaging using reversible-jump MCMC 
sampling
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