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Bayes' theorem
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Model: topology AND branch lengths

¢ Parameters

topology (7)

branch lengths (v;)
(expected amount of change)
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Posterior probability distribution
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We can focus on any parameter of interest
(there are no nuisance parameters) by
marginalizing the posterior over the other
parameters (integrating out the
uncertainty in the other parameters)
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tree 1 tree 2 tree 3

(Percentages denote marginal probability distribution on trees)



Why is it called marginalizing?
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Markov chain Monte Carlo

1. Start at an arbitrary point
. Make a small random move

3. Calculate height ratio () of new state to old state:
1. r>1->new state accepted

2. r<1->new state accepted with probability . If new
state not accepted, stay in the old state

4. Go tostep?2

always accept

The proportion of time the
MCMC procedure samples
from a particular parameter
region is an estimate of that
region's posterior
probability density

tree 1 tree 2 tree 3



InL

stationary phase sampled with thinning
(rapid mixing essential)
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Metropolis-
coupled
Markov chain
Monte Carlo

a. k. a.
MCMCMC
a. k. a.
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Incremental Heating

T is temperature, 1 is heating coefficient

T =1/(1+ i)

i=1{0,1,..,n-1]

Example for 4= 0.2:

T Distr.

0 1.00 f(@|X ) cold chain
1 083 f(@|X)”

2 071 f(6 x)‘”il heated chains
3 062 f(6 x)°-62/



i Assessing Convergence

= Plateau in the trace plot (unreliablell)

= Compare windows within the same run
(better)

= Compare independent runs starting
from different randomly chosen
topologies (best)
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i Improving Convergence

(Only if convergence diaghostics indicate problem!)

Change tuning parameters of proposals to bring
acceptance rate into the range 10 % to 70 %

Propose changes to ‘difficult’ parameters more
often

Use different proposal mechanisms

Change heating femperature to bring acceptance
rate of swaps between adjacent chains into the
range 10 % to 70 %.

Run the chain longer
Increase the number of heated chains
Make the model more realistic



Target distribution

Too modest proposals
Acceptance rate too high
Poor mixing

Sampled value

_________________ Too bold proposals
[ — | ‘ . Acceptance rate too low

+— - Poor mixing

Moderately bold proposals
Acceptance rate intermediate
Good mixing




i Running MrBayes

= Use execute to bring data in a Nexus file
info MrBayes

= Set the model and priors using Iset and
prset

= Run the chain using memc

= Summarize the parameter samples using
sump

= Summarize the tree samples using sumt

= Note that MrBayes 3.1 runs two
independent analyses by default



Ver. 3.1 Convergence Diagnostics

= By default performs two independent analyses
s’rar’rmg from different random trees (mcmc
nruns=2)

= Average standard deviation of clade frequencies
calculated and presented dur'irg the run (memc
mcmcdiagn=yes diagnfreq=1000) and written to
file (.mecmc)

= Standard deviation of each clade frequency and
potential scale reduction for branch lengths
calculated with sumt

= Potential scale reduction calculated for all
substitution model parameters with sump



i Bayes' theorem
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Marginal likelihood (of the model)
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We have implicitly conditioned on a model:
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Bayesian Model Choice

Posterior model odds:
f(M,)f(X]M,)
f(M,)f (XIM,)

Bayes factor:
f(X[M,)

B —
P (XIM,)




ayesian Model Choice

=

The nor'malizing constant in Bayes' theorem, the
mar%inal probability of the model, f(X) or f(X|M),
can be used for model choice

f(X|M) can be estimated by taking the harmonic
mean of the likelihood values from the MCMC run
(MrBayes will do this automatically with 'sump’)

Any models can be compared: nested, non-nested,
data-derived

No correction for number of parameters

Car(\jplr'efer a simpler model over a more complex
mode

Critical values in Kass and Raftery (1997)



i Bayes Factor Comparisons

Interpretation of the Bayes factor

2In(B,,) B, Evidence against M,

0 to 2 {+0 3 Not wor"rh_ more than a
bare mention

2tob 31020 Positive
6 to 10 20 to 150 Strong

> 10 > 150 Very strong




i Resources

= MrBayes web site (www.mrbayes.net)
= MrWiki manual (on the MrBayes web site)
= MrBayes 3.1 command reference

= MrBayes 3.1 manual (pdf) with two tutorials: a
simple analysis (primates.nex) and an analysis of
partitioned data (cynmix.nex)

= Last pages of the manual contain graphical
summaries of the MrBayes 3 models and most
common types of proposal mechanisms

= MrBayes 3 chapter: complex partitioned analysis
(kim.nex)



http://www.mrbayes.net/

Models supported by MrBayes 3 (simplified)

State Frequencies

Across-Site

Coding Bias Misc.
DataType (Substitution Rates) Rate Variation S
Restriction fixed/estimated (Dirichlet) equal/gamma all/variable/ ’
0-1 prset statefreqpr Iset rates nopresencesites/noabsencesites
Iset coding
Standard equal/estimated (SymmDir) equal/gamma all/variable/informative unordered/ordered
0-9 prset symdirihyperpr Iset rates Iset coding ctype
Data Type Model Type State Frequencies  Substitution Rates R:t:er?f;sr-ig:tieon R::::\'l?r-i.;rt‘:zn
DNA 4by4 fixed/est. (Dirichlet) F81/HKY/GTR equal/gamma/ yes/no
ACGT Iset nucmodel prset statefreqpr Iset nst=1/2/6 propinv/invgamma/ Iset covarion
adgamma
Iset rates
doublet fixed/est. (Dirichlet) F81/HKY/GTR equal/gamma/
Iset nucmodel (over 16 states) Iset nst=1/2/6 propinv/invgamma
prset statefreqpr Iset rates
Across-Site
Omega Variation
codon fixed/est. (Dirichlet) F81/HKY/GTR equal/Ny98/M3
Iset nucmodel (over 61 states) Iset nst=1/2/6 Iset omegavar

prset statefreqpr




Models supported by MrBayes 3 (simplified)

page 2

Data Type Model Type State Frequencies  Substitution Rates R;:er?f:-igltieon R::::fsasr-i.;:‘:sn
Protein GTR fixed/est. (Dirichlet) | | fixed/est. (Dirichlet) equal/gamma/ yes/no
A-Y prsetaamodelpr| |  prset statefreqpr ||  prset statefreqpr || propinv/invgamma/ Iset covarion
adgamma
Equalin fixed/est. (Dirichlet) Iset rates
prsetaamodelpr| |  prset statefreqpr _‘ Gl [ I— equal/gamma/
propinv/invgamma/ | yes/ no'
Poisson/Jones/ adgamma set covarion
Dayhoff/Mtrev/ Iset rates
Mtmam/Wag/ e
- : - - qual/gamma/
Rtrev/Cprev/ fixed/mixed fixed/mixed propinv/invgamma/ yes/no
Vt/Blossum/ adgamma Iset covarion
mixed Iset rates
prset aamodelpr
Brlens Variation
Tree Type Brlens Type Brlens Prior L
. . equal/proportional
Non-clock | | Unconstrained | |Exponential/Uniform|  Additional prset ratepr
prset brlenspr prset brlenspr parameters
Sl unlinked
Clock Clock B Uniform (Iset for ploidy) unlink brlens
prset brlenspr prsetbrlenspr 14 Treeheight
Coalescence | | T B0 neross Paritons
prset brlenspr Growth
- Speciation same/unlinked
Birth-Death Extinction link topology
prset brlenspr Sampleprob unlink topology




Sliding Window Proposal

New values are picked uniformly from a shiding window
of s1ze & centered on x.

Tuming parameter: &

Bolder proposals: increase

More modest proposals: decrease &

Works best when the effect on the probability of the
data is similar throughout the parameter range



Dirichlet proposal

New values are picked from a Dirichlet (or Beta) distribution
centered on x.

Tuning parameter: ¢
Bolder proposals: decrease o
More modest proposals: increase o

Worls well for proportions, such as revmat and statefregs.



Multiplier Proposal

x/a x ax

New values are picked from the equivalent of a
shiding window on the log-transformed x axis.

Tuming parameter: A=2Ina

Bolder proposals: increase A

More modest proposals: decrease A

Works well when changes in small values of x have
a larger effect on the probability of data than
changes in large values of x. Example: branch lengths.



Node Slider

X

Two adjacent branches a and b are chosen at random

The length of a + b 1s changed using a multiphier with tuning
paremeter A

The node x 1s randomly inserted on a + b according to a
uniform distribution

Bolder proposals: increase A
More modest proposals: decrease A

The boldness of the proposal depends heavily on the umiform
reinsertion of x, so changing A may have limited effect



Three internal branches - a, b, and ¢ - are chosen at random.

Their total length 1s changed using a multiplier with tuning
paremeter A.

One of the subtrees A or B 1s picked at random.

It 1s randomly remserted on a + b + ¢ according to a um-
form distribution

Bolder proposals: increase A
More modest proposals: decrease A



Extending TBR

An internal branch a 1s chosen at random

The length of a 15 changed using a multiplier with tuning
paremeter A

The node x 1s moved, with one of the adjacent branches, in subtree A,
one node at a time, each time the probability of moving one more
branch 1s p (the extension probability).

The node y 1s moved similarly in subiree B.

Bolder proposals: increase p
More modest proposals: decrease p
Changing A has little effect on the boldness of the proposal.



i Why Bayesian?

= Priors: accumulate scientific knowledge

Easy to deal with complex models, and current
models need to be improved

Computational efficiency: today hundreds of taxa,
can probably be extended considerably

Convergence diagnostics to detect problems with
convergence

Model testing with Bayes factors

Model averaging using reversible-jump MCMC
sampling
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