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Abstract

Markov Chain Monte Carlo algorithms play a key role in the Bayesian approach to
phylogenetic inference. In this paper, we present the first theoretical work analyzing the
rate of convergence of several Markov Chains widely used in phylogenetic inference. We
analyze simple, realistic examples where these Markov chains fail to converge quickly. In
particular, the studied data is generated from a pair of trees, under a standard evolutionary
model. We prove that many of the popular Markov chains take exponentially long to
reach their stationary distribution. Our construction is pertinent since it is well known that
phylogenetic trees for genes may differ within a single organism. Our results are a cautionary
light for phylogenetic analysis using Bayesian inference, and highlight future directions for
potential theoretical work.

1 Introduction

Bayesian inference of phylogeny has had a significant impact in Evolutionary Biology, see
e.g. [17]. Some of the popular algorithms for Bayesian inference include MrBayes [16], BAMBE [25],
and PAML [22, 28]. These algorithms are cited in more than 2000 scientific publications accord-
ing to scholar.google.com. All of these algorithms rely on Markov Chain Monte Carlo Methods
to sample from the posterior probability of a tree given the data. In particular, they design
a Markov chain whose stationary distribution is the desired posterior distribution, computed
using the likelihood and the priors. Hence, the running time of the algorithm depends on the
convergence rate of the Markov chain to its stationary distribution.

Therefore, reliable phylogenetic estimates depend on the Markov chains reaching their sta-
tionary distribution before the phylogeny is inferred. A variety of schemes (such as multiple
starting points [15]), and increasingly sophisticated algorithms (such as Metropolis Coupled
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Markov Chain Monte Carlo in MrBayes [16]) are heuristically used to ensure the chains converge
quickly to their stationary distribution. However, prior to this work there was no theoretical
understanding of when the Markov chains converge quickly or slowly. Thus, here we answer a
crucial need for theoretical work to guide the multitude of phylogenetic studies using Bayesian
inference.

We consider a setting where the data is generated at random, under a standard evolutionary
model, from the mixture of two tree topologies. Such a setting is extremely relevant to real-life
data sets. A simple example is molecular data consisting of DNA sequences for more than
one gene. It is well known that phylogenetic trees can vary between genes (see [14] for an
introduction).

A poignant example of varying gene trees is from the study of the phylogeny of humans,
chimpanzees, and gorillas. It is now widely believed that humans and chimpanzees are each
others closest extant relative (thus, humans and chimpanzees form what is known as a clade),
but there are genes (such as the involucrin gene [9]) which favor the chimpanzee-gorilla clade,
and other genes (such as the Y-linked RPS4Y locus [24]) which favor the human-gorilla clade.
Even for molecular data from just one gene, it is conceivable that different regions within this
single gene have different phylogenies (perhaps via intragenic recombination).

We prove that in the above setting, many of the popular Markov chains take extremely long
to reach the stationary distribution. In particular, the convergence time is exponentially long
in the number of characters of the data set (a character is a sample from the distribution on the
pair of trees). This appears to be the first theoretical work analyzing the convergence rates of
Markov chains for Bayesian inference. Previously, Diaconis and Holmes [7] analyzed a Markov
chain whose stationary distribution is uniformly distributed over all trees, which corresponds
to the case with no data.

Our work lays a cautionary tale for Bayesian inference of phylogenies, and suggests that if the
data contains more than one phylogeny than great caution should be used before reporting the
results from Bayesian inference of the phylogeny. Our results clearly identify further theoretical
work that would be of great interest. We discuss possible directions in Section 3.

The complicated geometry of “tree space” poses highly non-trivial difficulties in analyzing
maximum likelihood methods on phylogenetic trees, even for constant size trees.

Initial attempts in studying tree-space includes work by Chor et al [3], which constructs
several examples where multiple local maxima for likelihood occur. Their examples use non-
random data sets (i.e., not generated from any model) on a four species taxa, and the multiple
optima occur on a specific tree topology, differing only in the branch lengths.

A different line of work beginning at Yang [27] analytically determines the maximum likeli-
hood over rooted trees on three species and binary characters. Since then, some sophisticated
tools from Algebraic Geometry have been used to study the likelihood function and other poly-
nomials on tree space, see e.g. [8, 26]. It seems like the main result on tree spaces needed in
this paper does not follow directly from the Algebraic Geometry methodology.

The algebraic approach seems very powerful at first glance. However, even analyzing the
likelihood functions on trees on 5 leaves, requires the solution of an optimization problem of a
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rational function with 7 variables on a simplex with a large number of low dimensional facets.
Thus, this seems like a computationally intractable problem.

Our approach uses an asymptotic expansion where different terms of the expansion cor-
respond to simple combinatorial quantities in terms of the underlying trees. This allows the
analysis of the complicated likelihood function on tree space.

1.1 Definitions

We present the formal definitions of the various notions, and then precisely state our results.
Let Ω denote the set of all phylogenetic trees for n species. Combinatorially, Ω is the set of

(unrooted) trees T = (V,E) of internal degree 3 and n leaves.
The likelihood of a data set for a tree is defined as the probability the tree generates the

data set, under a chosen evolutionary model. For simplicity we discuss our results for one of the
simplest evolutionary models, known as the Cavender-Farris-Neyman (CFN) model [2, 11, 21],
which uses a binary alphabet. Our results extends to the Jukes-Cantor model with a 4 state
alphabet and many other mutation models.

For a tree T ∈ Ω, let Vext denote the leaves, Vint denote the internal vertices, E denote
the edge set, and −→p : E → [0, 1/2] denote the edge probabilities. The data is a collection
of binary assignments to the leaves. Under the CFN model, the probability of an assignment
D : Vext → {0, 1} is

Pr (D | T, p) =
∑

D′∈{0,1}V :

D′(Vext)=D(Vext)

∏

e=(u,v)∈E(T ):

D′(u)=D′(v)

(1 −−→p (e))
∏

e=(u,v)∈E(T ):

D′(u) 6=D′(v)

−→p (e).

We will further assume below that the distribution at any nodes of the tree is given by the
uniform distribution on {0, 1}.

Note, that when −→p (e) close to zero the endpoints are likely to receive the same assign-
ment, whereas, when −→p (e) is close to 1/2 the endpoints are likely to receive independently
random assignments. Under the “molecular clock” assumption, edge e has length proportional
to − log2(1 − 2−→p (e)).

An algorithmic way of generating a character D for a tree T with weights −→p , is to first
generate a uniformly random assignment for an arbitrary vertex v. Then, beginning at v, for
each edge e = (v,w), given the assignment to one of the endpoints, the other endpoint receives
the same assignment with probability 1 − −→p (e) and a different assignment with probability
−→p (e).

Finally, for a collection of data
−→
D = (D1, . . . ,DN ):

Pr
(−→

D | T,−→p
)

=
∏

D∈
−→
D

Pr (D | T,−→p )

= exp





∑

D∈
−→
D

log (Pr (D | T,−→p ))
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Now, applying Bayes law, we can write the posterior probability of a tree given the data:

Pr
(

T |
−→
D

)

=

∫

p Pr
(−→

D | T, p
)

Ψ(T, p)dp

Pr
(−→

D
)

=

∫

p Pr
(−→

D | T, p
)

Ψ(T, p)dp

∑

T ′

∫

p Pr
(−→

D | T, p
)

Ψ(T ′, p)dp

where Ψ(T, p) is the prior density on the space of trees so that

∑

T

∫

−→p
Ψ(T,−→p )dp = 1.

Since the denominator is difficult to compute, Markov chain Monte Carlo is used to sample
from the above distribution. For an introduction to Markov chains in phylogeny see Felsenstein
[12].

The algorithms for Bayesian inference differ in their choice of a Markov chain to sample from
the distribution, and in their choice of a prior. In practice, the choice of an appropriate prior
is an important concern. Felsenstein [12] gives an introduction to many of the possible priors.
Rannala and Yang [22] introduce a prior based on a birth-death process, whereas Huelsenbeck
and Ronquist’s program MrBayes [16] allows the user to input a prior (using either uniform or
exponential distributions). Our results holds for all these popular priors, and only require that
the priors are so-called ε-regular for some ε > 0, in the sense that

for all T, p, Ψ(T,−→p ) ≥ ε.

Each tree T ∈ Ω is given a weight

w(T ) =

∫

−→p
Pr

(−→
D | T,−→p

)

Ψ(T,−→p )d−→p .

Computing the weight of a tree can be done efficiently via dynamic programming in cases
where Ψ admits a simple formula. In other cases, numerical integration is needed. See Felsen-
stein [12] for background.

The transitions of the Markov chain (Tt) are defined as follows. From a tree Tt ∈ Ω at
time t,

1. Choose a neighboring tree T ′. See below for design choices for this step.

2. Set Tt+1 = T ′ with probability min{1, w(T ′)/w(T )}, otherwise set Tt+1 = Tt.

Two natural approaches for connecting the tree space Ω are nearest-neighbor interchanges
(NNI), and subtree pruning and regrafting (SPR). In NNI, one of the n − 3 internal edges is
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chosen at random and the four subtrees are reconnected randomly in one of the three ways, see
Figure 1 on page 6 for an illustration. In SPR, a random edge is chosen, one of the two subtrees
attached to it is removed at random and reinserted along a random edge in the remaining
subtree, see Figure 2 on page 6. We refer to the above chains as Markov chains with discrete
state space and NNI and/or SPR transitions.

Some Markov chains instead walk on the continuous state space where a state consists of
a tree with an assignment of edge probabilities. Our results extend to chains with continuous
state space where transitions only modify the tree topology by an NNI or SPR transition, and
edge probabilities are always in (0, 1/2). Some examples of continuous state space chains are
Li, Pearl and Doss [19], and Larget and Simon [18].

See Felsenstein [12] for an introduction to the various Markov chains, and also Durbin et al
[5] for a description of the Markov chain of Larget and Simon.

The mixing time of the Markov chain Tmix is defined as the number of transitions until the
chain is within total variation distance 1/4 from the stationary distribution.

1.2 Formal Statement of Results

We consider data coming from a mixture of two trees T1(a, a2) and T2(a, a2). T1 is given by
((12), 3), (45) while T2 is given by ((14), 3), (25), see Figure 3 on page 6. On the trees T1(a, a2)
and T2(a, a2) we have two edge probabilities, one for those edges incident to the leaves, and
a different edge probabilities for internal edges. We let the probabilities of edges going to the
leaves be a2 and the internal edges have probability a where a will be chosen as a sufficiently
small constant. The trees T1(a, a2), T2(a, a2) will have small edge probabilities, as commonly
occurs in practice.

We let D1 be the distribution of the data according to T1(a, a2) and D2 according to T2(a, a2).
We let D = 0.5(D1 + D2), and consider a data set consisting of N characters.

We prove the following theorem.

Theorem 1. There exist a constant c > 0 such that for all ε > 0 the following holds. Consider a

data set with N characters, i.e.,
−→
D = (D1, . . . ,DN ), chosen independently from the distribution

D. Consider the Markov chains on tree topologies defined by nearest-neighbor interchanges or
subtree pruning and regrafting. Then with probability 1 − exp(−cN) over the data generated,
the mixing time of the Markov chains, with priors which are ε-regular, satisfies

Tmix ≥ cε exp(cN).

Note that ε only has a small effect on the mixing time lower bound. Naturally, there is
very little interest in studying Markov chains on trees with 5 leaves (there are 15 such trees).
However, the result above immediately implies slow mixing for Markov chains on larger trees,
assuming the pair of trees generating the data contain copies of T1, T2.

Corollary 2. Let n ≥ 5. Let D = 0.5(D1 + D2) be a distribution on n leaves, where D1 is
generated according to a phylogenetic tree that has T1(a, a2) as an induced subtree on some set
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Figure 1: Illustration of NNI transition. An internal edge has 4 subtrees attached. The tran-
sition reattaches the subtrees randomly. Since the trees are unrooted, there are three ways of
attaching the subtrees, one of which is the same as the original tree.
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Figure 2: Illustration of SPR transition. The randomly chosen edge is marked by an arrow.
The subtree containing B,C is removed and reattached at the random edge marked by a starred
arrow. The resulting tree is illustrated.
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Figure 3: The trees T1 and T2
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S ⊂ [n] of size |S| = 5 and D2 is generated according to a phylogenetic tree that has T2(a, a2)
as an induced subtree on the same set S.

Consider the Markov chains on tree topologies defined by nearest-neighbor interchanges or
subtree pruning and regrafting. Then there exist a constant c > 0 such that for all ε > 0, with
probability 1 − exp(−cN) over the data generated, the mixing time of the Markov chains, with
priors which are ε-regular, satisfies

Tmix ≥ cε exp(cN).

Remark 1. One may still try to overcome the slow mixing above by using random starts.
However, note that if the trees generating D1 and D2 have r disjoint sets Si for in which the
induced subtree in one is T1(a, a2) and in the other is T2(a, a2) one needs to average on at least
2r starting points, and these starting points need to be cleverly chosen.

1.3 General Mutation models

As mentioned above, our theorem is valid for many of the mutation models discussed in the
literature. We now define these models and derive some elementary features of them that will
be used below. In the general case, it is easier to define the evolution model on rooted trees.
However, since we will only discuss reversible models, the trees may be rooted arbitrarily. For
general models we consider rooted trees with edge lengths, as opposed to unrooted trees with
edge probabilities. As it is well known for the CFN model, the edge probability −→p (e) is related

to the edge length
−→
` (e) define below by −→p (e) = (1 − exp(−

−→
` (e)))/2.

The mutation models are defined on a finite character set A of size q. We will denote the
letters of the alphabet by α, β etc. The mutation model is given by an q × q mutation rate

matrix Q that is common to all edges of the tree along with edge length
−→
` (e) for all edges of

the tree. The mutation along edge e is given by

exp(
−→
` (e)Q) = I +

−→
` (e)Q +

−→
` 2(e)Q2

2!
+

−→
` 3(e)Q3

3!
+ · · ·

Thus, the probability of an assignment D : Vext → A is

Pr
(

D | T,
−→
`

)

=
∑

D′∈AV :
D′(Vext)=D(Vext)

πD′(r)

∏

e=(u,v)∈E(T )

[

exp(
−→
` (e)Q)

]

D′(u),D′(v)

where all the edges (u, v) are assumed to be directed away from the root r.
We will further make the following assumptions below:

Assumption 1. 1. The Markov semi-group (exp(
−→
` Q))`≥0 has a unique stationary distri-

bution π, such that πα > 0 for all α. Moreover, the semi-group is reversible with respect
to π, i.e., Qπ = πQ.
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2. The character at the root has marginal distribution π. This implies that the marginal
distribution at every node is π.

3. The rate of transitions from a state is the same for all states. More formally, there exists
a number q such that for all α:

∑

β 6=α

qα,β = −qα,α = q. (1)

In fact, by rescaling the edge-length of all edges we assume WLOG that q = 1.

4. There exists constant c > 0 such that qα,β > c for all α 6= β.

Remark 2. Parts 1 and 2 of the assumption imply that we obtain the same model for all
possible rootings of any specific tree. Thus, the model is in fact defined on unrooted trees.

Remark 3. It is straightforward to check that our assumptions include as special cases the
CFN model, the Jukes-Cantor model, Kimura’s two parameter model and many other models.
See [20] for an introduction to the various evolutionary models.

1.4 Statement of the General Theorem

Definition 3. Let T be the space of all trees and edge lengths on 5 leaves. We say that a prior

density Ψ on T is (ε, a)-regular, if for every T and
−→
` where

−→
` (e) ≤ 2a for all e, it holds that

Ψ(T,
−→
` ) ≥ ε.

Remark 4. All of the priors used in the literature are (a, ε)-regular for an appropriate value
of ε = ε(a).

Theorem 4. Let Q be a mutation rate matrix that satisfies assumption 1. For trees (T1,
−→
` 1), (T2,

−→
` 2)

on n ≥ 5 leaves, let the distribution D1 be generated at the leaves of (T1,
−→
` 1) and the distribution

D2 be generated at the leaves of (T2,
−→
` 2). Now, let D = 0.5(D1+D2) and let

−→
D = (D1, . . . ,DN ),

chosen independently from the distribution D.
There exists an a > 0, a constant c > 0, two trees T ∗

1 , T ∗
2 on 5 leaves and open sets

L∗
1 ⊂ (0,∞)E(T ∗

1 ), L∗
2 ⊂ (0,∞)E(T ∗

2 ) such that if for some S ⊂ [n] of size |S| = 5 the induced
subgraph of T1 on S is T ∗

1 and has edge weights in the set L∗
1, and the induced subgraph of T2

on S is T ∗
2 with edge weights in L∗

2. Then, the following holds for all ε > 0.
Consider a Markov chain on discrete or continuous tree space where the only moves that

change the topology of the tree are NNI and SPR transitions. Then with probability 1−exp(−cN)
over the data generated, the mixing time of the Markov chain, for priors which are (a, ε)-regular,
satisfies

Tmix ≥ cε exp(cN).

Remark 5. It is straightforward to check that Theorem 1 is a special case of Theorem 4. This
follows by the standard translation between edge-lengths and edge-probabilities. As mentioned
above, the CFN model (as well as Jukes-Cantor and many other models) satisfy the properties
we assumed in Assumption 1.
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2 Proof of the General Theorem

We first expand the distribution D. It is easy to do so in terms of C∗, where C∗ is the set of
cherries in T1 ∪ T2. We will use the following definition of a cherry.

Definition 5. Let T be a tree. We say that that a pair of leaves i, j is a cherry of T if there
exists a single edge e of T such that removing e disconnects i, j from the other leaves of T . For
a tree T we let C(T ) denote the set of cherries of T .

Note that according to this definition the “star”-tree has no cherries. We clearly have
C∗ = C(T1) ∪ C(T2) = {(12), (14), (45), (25)}.

Our theorem holds for a sufficiently small. Hence, the asymptotic notation in our proofs is
in terms of 1/a → ∞. Thus, a = o(a log a) and a2 = o(a log a) since − log a grows as a → 0.

Part 3 of Assumption 1 implies that for an edge of length a, given a character assignment
α for one endpoint, the other endpoint has a different assignment with a probability a + O(a2)
independently of α. This is used implicitly throughout the following proof. Dropping this
assumption would complicate many of our calculations depending on the probability of a set of
mutations.

It is easy to estimate D for small a. This follows from the following lemma.

Lemma 6. For an edge e of length b, conditioned on the character at the end point of the edge,
the probability that the other end-point has the same label is 1− b + O(b2). The probability that
it obtains a different label is b + O(b2).

Proof. Part 4 of Assumption 1 along with the expansion of exp(bQ) implies

exp(bQ) = I + bQ + O(b2).

We will use the following notation for characters. By α we denote the character that is
constant α. We let F∅ denote the set of all constant characters. By (α, i, β) we denote the
character that is α on all leaves except i where it is β. The set of all such characters is denote
by Fi. By (α, i, j, β) we denote the character that is β on i, j and α on all other leaves. The set
of all such characters is denoted by Fi,j. We denote the set of all other characters by G.

We begin with some easy bounds on the dominant terms for the probabilities of various
characters. Consider the probability D 6∈ F∅. There are two ways this can occur, either: there is
a mutation on exactly one of the internal edges which occurs with probability 2a(1−a)+O(a2) =
2a+O(a2); or there is a mutation on a terminal branch (i.e., an edge connected to a leaf) and/or
both internal edges, these occur with probability O(a2) by our choice of edge lengths on T1 and
T2. Hence,

D[F∅] = 1 − 2a + O(a2) (2)

For D ∈ Fi there needs to be a mutation on a terminal branch, hence

D[Fi] = O(a2)
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Consider a cherry (i, j) ∈ C∗, say (i, j) = (1, 2) ∈ C(T1). To generate D ∈ Fi,j we need to be
generating from T1, and need a mutation on the internal edge to the parent of leaves 1 and 2,
or a mutation on more than one terminal branch. Thus, for (i, j) ∈ C∗,

D[Fi,j ] = a/2 + O(a2) (3)

For (i, j) 6∈ C∗, we instead have
D[Fi,j ] = O(a2)

Finally, the remaining characters will be lower order terms, i.e.,

D[G] = O(a2).

Remark 6. The lemma above summarizes what we need to know on the distribution D for the
rest of the theorem. Note that the same estimates would hold if all the internal branch length
of T1, T2 are in [a − a3, a + a3] and the terminal edges are in [a2 − a3, a2 + a3]. Thus we will
in fact show that there are two open sets S1, S2 of edge-length for which the conclusion of the
theorem holds.

Definition 7. The expected likelihood of a tree T with edge lengths
−→
` given the data is defined

as
LD(T,

−→
` ) = Ex∈D log Pr

(

x | T,
−→
`

)

Let LD(T, `) denote the expected likelihood of the tree T with all edge length `. We will
show that tree T1 with all edge length a (including terminal branches) has large likelihood.

Lemma 8. The tree T1 satisfies

LD(T1, a) ≥ H(π) + (1 + o(1))3a log a.

and similarly for T2, where

H(π) =
∑

α

πα log πα.

Proof. Consider T1. We first consider the sequences in F∅. By (2), the D probability of the
sequence α is

πα(1 − 2a + O(a2)) = πα + o(a log a).

while the log-likelihood of α according to (T1, a) is given by

log Pr (α | T, a) = log(πα(1 − 7a + O(a2)))

= log(πα) + 7a + O(a2)

= log(πα) + o(a log a).

Thus, the total contribution to LD(T1, a) coming from F∅ is

H(π) + o(a log a).
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All sequences in Fi have a contribution of O(a2) up to log corrections, which is also o(a log a).
Similarly for sequences in Fi,j such that (i, j) /∈ C∗, and for sequences in G. If (i, j) belongs to
C∗ there are two possibilities. First, if (i, j) is a cherry of T1 and (α, i, j, β) ∈ Fi,j then

log Pr ((α, i, j, β) | T, a) = (1 + o(1)) log a.

(This follows by considering a single mutation along the edge the separates the cherry (i, j)
from the rest of the tree). Thus, using (3), for (i, j) ∈ C(T1) we have a total contribution of

(0.5 + o(1))a log a.

For (i, j) ∈ C∗ \C(T1) (i.e., (i, j) ∈ C(T2)), then for all (α, i, j, β) ∈ Fi,j this character occurs if
the only mutations are on the pair of terminal edges connected to i and j, otherwise it requires
at least 3 mutations. Hence,

log Pr ((α, i, j, β) | T, a) = (2 + o(1)) log a,

Thus, using (3), we get a total contribution of

(1 + o(1))a log a.

Since C∗ contains two cherries from T1 and two from T2, the total contribution of Fi,j is
(1 + o(1))3a log a as needed.

Remark 7. Repeating the proof above shows that

LD(T1,
−→
` ) ≥ H(π) + (1 + o(1))3a log a

if all the edge lengths
−→
` are in [a/2, 2a].

Next we show that for any tree that is close to the optimum, all of its edge lengths are at
most O(a log(1/a)).

Lemma 9. Let (T, p) be a tree such that at least one of the edge lengths is greater than
4a log(1/a). Then,

LD(T,
−→
` ) ≤ H(π) + 4a log a + o(a log a).

Proof. Let T be any tree for which the sum of the edge lengths is more than 4a log(1/a). It
is easy to see that the probability that this tree generates the sequence α is at most πα(1 +
4a log a + o(a log a)). Since all the terms appearing in the likelihood are negative, we obtain

LD(T,
−→
` ) ≤

∑

α

(πα + o(a log a)) log (πα(1 + 4a log a + o(a log a)))

≤ H(π) + 4a log a
∑

α

πα + o(a log a)

= H(π) + 4a log a + o(a log a),

which proves the claim.
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Once we restrict to trees all of whose edges lengths are at most 4a log(1/a) it is easier to
see that the optimal tree must have the correct topology.

Lemma 10. Let (T,
−→
` ) be a tree all of whose edges length are at most 4a log(1/a) and suppose

further that T has a topology different than T1 or T2. Then

LD(T, p) ≤ H(π) + (1 + o(1))3.5a log a.

Before proving the above lemma we state the following combinatorial observation.

Observation 11. Let T 6= T1, T2 then

|C(T ) ∩ C∗| ≤ 1

To see the observation, consider a tree T that contains at least one of the cherries of C∗,
say (1, 2). Clearly, T can not also contain the cherries (1, 4) or (2, 5). And if it contains the
cherry (4, 5) then T = T1.

Proof of Lemma 10. Many of the calculations in this proof are identical to the proof of Lemma

8. We first observe that as in Lemma 8 the contribution to LD(T,
−→
` ) coming from F∅ is at

most H(π) + o(a log a). We will now show that the contribution to LD(T,
−→
` ) coming from

the cherries in C∗ is smaller than 3.5(1 + o(1))a log a (recall that all terms are negative). By
Observation 11 the number of cherries of T that belong to C∗ is at most 1. Note that if
(i, j) ∈ C∗ and (i, j) /∈ C(T ) then for all α and β,

log Pr
(

(α, i, j, β) | T,
−→
`

)

≤ log(O(a2 log2(1/a))) = 2(1 + o(1)) log a.

If (i, j) ∈ C(T ) ∩ C∗ then (as in the proof of Lemma 8) we have

log Pr
(

(α, i, j, β) | T,
−→
`

)

≤ log(a log(1/a) + o(a log(1/a))

= (1 + o(1)) log a.

Thus,

LD(T,
−→
` ) ≤ H(π) + o(a log a) + (1 + o(1))a(3 ∗ 2 log a + log a)/2

= H(π) + (1 + o(1))3.5a log a.

Based on Lemmas 8, 9 and 10, we can now make the following assumption.

Assumption 2. From now on we fix a > 0 sufficiently small so that if D is generated as a

mixture from the two trees (T1,
−→
` 1) and (T2,

−→
` 2) where, for all i = 1, 2, all internal edges

e satisfy
−→
` i(e) ∈ [a − a3, a + a3] and all terminal edges (i.e., connected to a leaf) satisfy

−→
` i(e) ∈ [a2 − a3, a2 + a3], then

12



• If T = T1 or T = T2 and the edge lengths
−→
` are in [a/2, 2a] then

LD(T,
−→
` ) ≥ H(π) + 3.1a log a

• If T 6= T1, T2, then for any edge lengths
−→
` ,

LD(T,
−→
` ) ≤ H(π) + 3.4a log a

Definition 12. Let
−→
D = (D1, . . . ,DN ) be N characters. We let

L−→
D

(T, p) =
∑

D∈
−→
D

log Pr (D | T, p).

Using Chernoff bound, we get the following lemma.

Lemma 13. Suppose
−→
D is drawn according to N independent samples from the distribution D.

Then, with probability 1− e−Ω(N), for all trees (T,
−→
` ) with the topology T1(T2) and edge length

−→
` (e) in [a/2, 2a] for all e, it holds that

L−→
D

(T,
−→
` ) ≥ (H(π) + (3.2a log a)) N. (4)

and for all trees (T,
−→
` ) with topologies different than T1, T2 it holds that

L−→
D

(T,
−→
` ) ≤ (H(π) + (3.3a log a)) N. (5)

Proof. Use Chernoff for each of the q5 sequences in A5.

Lemma 14. Let ε > 0 and let Ψ be an (ε, a)-regular prior on T . Then with probability 1−e−Ω(N)

it holds that if T 6= T1, T2 then

w(T )

w(T1)
≤

1

ε
exp (−0.1a log(1/a)N) .

Proof. With probability 1 − e−Ω(N) we have that (5) and (4) hold. We show that this implies

w(T )

w(T1)
≤

1

ε
exp (−0.1a log(1/a)N) .

Since Ψ is (ε, a)-regular we see that:

w(T1) =

∫

−→
`

exp(L−→
D

(T1,
−→
` ))Ψ(T1,

−→
` )dp

≥ εa7 exp(H(π)N) exp((3.2a log a)N).

13



On the other hand,

w(T ) =

∫

−→
`

exp(L−→
D

(T,
−→
` ))Ψ(T,

−→
` )dp

≤ exp(H(π)N) exp((3.3a log a)N).

The claim follows.

To finish off the proof of Theorem 1 we need to show that bad conductance implies slow
mixing. Since we also work in the continuous setting, we prove the following claim below.

Lemma 15. Consider a discrete time Markov chain P on a discrete or continuous state space
with a unique stationary measure µ. Assume furthermore that there exists a partition of the
state space into 3 sets A1, A2, B such that the probability of a move from A2 to A1 is 0 (in the
sense that

∫

dµ(x)1(x ∈ A2)
∫

dP (x, y)1(y ∈ A1) = 0) and µ(A1) ≥ µ(A2), µ(B)/µ(Ai) ≤ ε for
i = 1, 2.

Let µt denote the distribution of the chain after t steps, where the initial distribution µ0 is
given by µ conditioned to A2. Then the total variation distance between µ1/4ε and µ is at least
1/4.

Proof. Let t = 1/4ε and consider sequences (x1, . . . , xt) of trajectories of the chain where x1 is
chosen according to the stationary distribution. Since each xi is distributed according to the
stationary distribution, the fraction of sequences that contain an element of B is by the union
bound at most tεµ(A2) = µ(A2)/4. The fraction of sequences that have their first element in
A2 is µ(A2). Thus, conditioned on having x1 ∈ A2, the probability that xt ∈ B ∪A1 is at most
1/4. Since the stationary measure of B ∪ A1 is at least 1/2, the claim follows.

Proof of Theorem 1. The proof now follows from Lemmas 14 and 15 – we take the two sets
corresponding to T1 and T2 with all edge lengths strictly between 0 and ∞. The proof follows
by the observation that T1 and T2 are not connected by a transition by either NNI or SPR
transitions.

3 Future Directions

A popular program is MrBayes [16] which additionally uses what is known as Metropolis Cou-
pled Markov Chain Monte Carlo, referred to as (MC)3 [13]. Analysis of this approach requires
more detailed results, and it is unclear whether our techniques can be extended to this ex-
tent. Some theoretical work analyzing MC3 in a different context was done by Bhatnagar and
Randall [1].

An interesting future direction is to prove a positive result. In particular, is there a class
of trees where we can prove fast convergence to the stationary distribution when the data is
generated by a tree in this class. More generally, if the data is generated by a single tree, do
the Markov chains always converge quickly to the stationary distribution?

14
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